You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
216 lines
5.7 KiB
216 lines
5.7 KiB
*> \brief \b DHST01
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DHST01( N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK,
|
|
* LWORK, RESULT )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER IHI, ILO, LDA, LDH, LDQ, LWORK, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION A( LDA, * ), H( LDH, * ), Q( LDQ, * ),
|
|
* $ RESULT( 2 ), WORK( LWORK )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DHST01 tests the reduction of a general matrix A to upper Hessenberg
|
|
*> form: A = Q*H*Q'. Two test ratios are computed;
|
|
*>
|
|
*> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
|
|
*> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
|
|
*>
|
|
*> The matrix Q is assumed to be given explicitly as it would be
|
|
*> following DGEHRD + DORGHR.
|
|
*>
|
|
*> In this version, ILO and IHI are not used and are assumed to be 1 and
|
|
*> N, respectively.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ILO
|
|
*> \verbatim
|
|
*> ILO is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] IHI
|
|
*> \verbatim
|
|
*> IHI is INTEGER
|
|
*>
|
|
*> A is assumed to be upper triangular in rows and columns
|
|
*> 1:ILO-1 and IHI+1:N, so Q differs from the identity only in
|
|
*> rows and columns ILO+1:IHI.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is DOUBLE PRECISION array, dimension (LDA,N)
|
|
*> The original n by n matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] H
|
|
*> \verbatim
|
|
*> H is DOUBLE PRECISION array, dimension (LDH,N)
|
|
*> The upper Hessenberg matrix H from the reduction A = Q*H*Q'
|
|
*> as computed by DGEHRD. H is assumed to be zero below the
|
|
*> first subdiagonal.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDH
|
|
*> \verbatim
|
|
*> LDH is INTEGER
|
|
*> The leading dimension of the array H. LDH >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] Q
|
|
*> \verbatim
|
|
*> Q is DOUBLE PRECISION array, dimension (LDQ,N)
|
|
*> The orthogonal matrix Q from the reduction A = Q*H*Q' as
|
|
*> computed by DGEHRD + DORGHR.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of the array Q. LDQ >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The length of the array WORK. LWORK >= 2*N*N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESULT
|
|
*> \verbatim
|
|
*> RESULT is DOUBLE PRECISION array, dimension (2)
|
|
*> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
|
|
*> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup double_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DHST01( N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK,
|
|
$ LWORK, RESULT )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER IHI, ILO, LDA, LDH, LDQ, LWORK, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION A( LDA, * ), H( LDH, * ), Q( LDQ, * ),
|
|
$ RESULT( 2 ), WORK( LWORK )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ONE, ZERO
|
|
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER LDWORK
|
|
DOUBLE PRECISION ANORM, EPS, OVFL, SMLNUM, UNFL, WNORM
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DLAMCH, DLANGE
|
|
EXTERNAL DLAMCH, DLANGE
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DGEMM, DLACPY, DORT01
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( N.LE.0 ) THEN
|
|
RESULT( 1 ) = ZERO
|
|
RESULT( 2 ) = ZERO
|
|
RETURN
|
|
END IF
|
|
*
|
|
UNFL = DLAMCH( 'Safe minimum' )
|
|
EPS = DLAMCH( 'Precision' )
|
|
OVFL = ONE / UNFL
|
|
SMLNUM = UNFL*N / EPS
|
|
*
|
|
* Test 1: Compute norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
|
|
*
|
|
* Copy A to WORK
|
|
*
|
|
LDWORK = MAX( 1, N )
|
|
CALL DLACPY( ' ', N, N, A, LDA, WORK, LDWORK )
|
|
*
|
|
* Compute Q*H
|
|
*
|
|
CALL DGEMM( 'No transpose', 'No transpose', N, N, N, ONE, Q, LDQ,
|
|
$ H, LDH, ZERO, WORK( LDWORK*N+1 ), LDWORK )
|
|
*
|
|
* Compute A - Q*H*Q'
|
|
*
|
|
CALL DGEMM( 'No transpose', 'Transpose', N, N, N, -ONE,
|
|
$ WORK( LDWORK*N+1 ), LDWORK, Q, LDQ, ONE, WORK,
|
|
$ LDWORK )
|
|
*
|
|
ANORM = MAX( DLANGE( '1', N, N, A, LDA, WORK( LDWORK*N+1 ) ),
|
|
$ UNFL )
|
|
WNORM = DLANGE( '1', N, N, WORK, LDWORK, WORK( LDWORK*N+1 ) )
|
|
*
|
|
* Note that RESULT(1) cannot overflow and is bounded by 1/(N*EPS)
|
|
*
|
|
RESULT( 1 ) = MIN( WNORM, ANORM ) / MAX( SMLNUM, ANORM*EPS ) / N
|
|
*
|
|
* Test 2: Compute norm( I - Q'*Q ) / ( N * EPS )
|
|
*
|
|
CALL DORT01( 'Columns', N, N, Q, LDQ, WORK, LWORK, RESULT( 2 ) )
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DHST01
|
|
*
|
|
END
|
|
|