Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

361 lines
8.9 KiB

*> \brief \b DLATB9
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DLATB9( PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB,
* ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB,
* DISTA, DISTB )
*
* .. Scalar Arguments ..
* CHARACTER DISTA, DISTB, TYPE
* CHARACTER*3 PATH
* INTEGER IMAT, KLA, KLB, KUA, KUB, M, MODEA, MODEB, N, P
* DOUBLE PRECISION ANORM, BNORM, CNDNMA, CNDNMB
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLATB9 sets parameters for the matrix generator based on the type of
*> matrix to be generated.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name.
*> \endverbatim
*>
*> \param[in] IMAT
*> \verbatim
*> IMAT is INTEGER
*> An integer key describing which matrix to generate for this
*> path.
*> = 1: A: diagonal, B: upper triangular
*> = 2: A: upper triangular, B: upper triangular
*> = 3: A: lower triangular, B: upper triangular
*> Else: A: general dense, B: general dense
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows in the matrix to be generated.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns in the matrix to be generated.
*> \endverbatim
*>
*> \param[out] TYPE
*> \verbatim
*> TYPE is CHARACTER*1
*> The type of the matrix to be generated:
*> = 'S': symmetric matrix;
*> = 'P': symmetric positive (semi)definite matrix;
*> = 'N': nonsymmetric matrix.
*> \endverbatim
*>
*> \param[out] KLA
*> \verbatim
*> KLA is INTEGER
*> The lower band width of the matrix to be generated.
*> \endverbatim
*>
*> \param[out] KUA
*> \verbatim
*> KUA is INTEGER
*> The upper band width of the matrix to be generated.
*> \endverbatim
*>
*> \param[out] KLB
*> \verbatim
*> KLB is INTEGER
*> The lower band width of the matrix to be generated.
*> \endverbatim
*>
*> \param[out] KUB
*> \verbatim
*> KUA is INTEGER
*> The upper band width of the matrix to be generated.
*> \endverbatim
*>
*> \param[out] ANORM
*> \verbatim
*> ANORM is DOUBLE PRECISION
*> The desired norm of the matrix to be generated. The diagonal
*> matrix of singular values or eigenvalues is scaled by this
*> value.
*> \endverbatim
*>
*> \param[out] BNORM
*> \verbatim
*> BNORM is DOUBLE PRECISION
*> The desired norm of the matrix to be generated. The diagonal
*> matrix of singular values or eigenvalues is scaled by this
*> value.
*> \endverbatim
*>
*> \param[out] MODEA
*> \verbatim
*> MODEA is INTEGER
*> A key indicating how to choose the vector of eigenvalues.
*> \endverbatim
*>
*> \param[out] MODEB
*> \verbatim
*> MODEB is INTEGER
*> A key indicating how to choose the vector of eigenvalues.
*> \endverbatim
*>
*> \param[out] CNDNMA
*> \verbatim
*> CNDNMA is DOUBLE PRECISION
*> The desired condition number.
*> \endverbatim
*>
*> \param[out] CNDNMB
*> \verbatim
*> CNDNMB is DOUBLE PRECISION
*> The desired condition number.
*> \endverbatim
*>
*> \param[out] DISTA
*> \verbatim
*> DISTA is CHARACTER*1
*> The type of distribution to be used by the random number
*> generator.
*> \endverbatim
*>
*> \param[out] DISTB
*> \verbatim
*> DISTB is CHARACTER*1
*> The type of distribution to be used by the random number
*> generator.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DLATB9( PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB,
$ ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB,
$ DISTA, DISTB )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER DISTA, DISTB, TYPE
CHARACTER*3 PATH
INTEGER IMAT, KLA, KLB, KUA, KUB, M, MODEA, MODEB, N, P
DOUBLE PRECISION ANORM, BNORM, CNDNMA, CNDNMB
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION SHRINK, TENTH
PARAMETER ( SHRINK = 0.25D0, TENTH = 0.1D+0 )
DOUBLE PRECISION ONE, TEN
PARAMETER ( ONE = 1.0D+0, TEN = 1.0D+1 )
* ..
* .. Local Scalars ..
LOGICAL FIRST
DOUBLE PRECISION BADC1, BADC2, EPS, LARGE, SMALL
* ..
* .. External Functions ..
LOGICAL LSAMEN
DOUBLE PRECISION DLAMCH
EXTERNAL LSAMEN, DLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, SQRT
* ..
* .. Save statement ..
SAVE EPS, SMALL, LARGE, BADC1, BADC2, FIRST
* ..
* .. Data statements ..
DATA FIRST / .TRUE. /
* ..
* .. Executable Statements ..
*
* Set some constants for use in the subroutine.
*
IF( FIRST ) THEN
FIRST = .FALSE.
EPS = DLAMCH( 'Precision' )
BADC2 = TENTH / EPS
BADC1 = SQRT( BADC2 )
SMALL = DLAMCH( 'Safe minimum' )
LARGE = ONE / SMALL
SMALL = SHRINK*( SMALL / EPS )
LARGE = ONE / SMALL
END IF
*
* Set some parameters we don't plan to change.
*
TYPE = 'N'
DISTA = 'S'
DISTB = 'S'
MODEA = 3
MODEB = 4
*
* Set the lower and upper bandwidths.
*
IF( LSAMEN( 3, PATH, 'GRQ' ) .OR. LSAMEN( 3, PATH, 'LSE' ) .OR.
$ LSAMEN( 3, PATH, 'GSV' ) ) THEN
*
* A: M by N, B: P by N
*
IF( IMAT.EQ.1 ) THEN
*
* A: diagonal, B: upper triangular
*
KLA = 0
KUA = 0
KLB = 0
KUB = MAX( N-1, 0 )
*
ELSE IF( IMAT.EQ.2 ) THEN
*
* A: upper triangular, B: upper triangular
*
KLA = 0
KUA = MAX( N-1, 0 )
KLB = 0
KUB = MAX( N-1, 0 )
*
ELSE IF( IMAT.EQ.3 ) THEN
*
* A: lower triangular, B: upper triangular
*
KLA = MAX( M-1, 0 )
KUA = 0
KLB = 0
KUB = MAX( N-1, 0 )
*
ELSE
*
* A: general dense, B: general dense
*
KLA = MAX( M-1, 0 )
KUA = MAX( N-1, 0 )
KLB = MAX( P-1, 0 )
KUB = MAX( N-1, 0 )
*
END IF
*
ELSE IF( LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GLM' ) )
$ THEN
*
* A: N by M, B: N by P
*
IF( IMAT.EQ.1 ) THEN
*
* A: diagonal, B: lower triangular
*
KLA = 0
KUA = 0
KLB = MAX( N-1, 0 )
KUB = 0
ELSE IF( IMAT.EQ.2 ) THEN
*
* A: lower triangular, B: diagonal
*
KLA = MAX( N-1, 0 )
KUA = 0
KLB = 0
KUB = 0
*
ELSE IF( IMAT.EQ.3 ) THEN
*
* A: lower triangular, B: upper triangular
*
KLA = MAX( N-1, 0 )
KUA = 0
KLB = 0
KUB = MAX( P-1, 0 )
*
ELSE
*
* A: general dense, B: general dense
*
KLA = MAX( N-1, 0 )
KUA = MAX( M-1, 0 )
KLB = MAX( N-1, 0 )
KUB = MAX( P-1, 0 )
END IF
*
END IF
*
* Set the condition number and norm.
*
CNDNMA = TEN*TEN
CNDNMB = TEN
IF( LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) .OR.
$ LSAMEN( 3, PATH, 'GSV' ) ) THEN
IF( IMAT.EQ.5 ) THEN
CNDNMA = BADC1
CNDNMB = BADC1
ELSE IF( IMAT.EQ.6 ) THEN
CNDNMA = BADC2
CNDNMB = BADC2
ELSE IF( IMAT.EQ.7 ) THEN
CNDNMA = BADC1
CNDNMB = BADC2
ELSE IF( IMAT.EQ.8 ) THEN
CNDNMA = BADC2
CNDNMB = BADC1
END IF
END IF
*
ANORM = TEN
BNORM = TEN*TEN*TEN
IF( LSAMEN( 3, PATH, 'GQR' ) .OR. LSAMEN( 3, PATH, 'GRQ' ) ) THEN
IF( IMAT.EQ.7 ) THEN
ANORM = SMALL
BNORM = LARGE
ELSE IF( IMAT.EQ.8 ) THEN
ANORM = LARGE
BNORM = SMALL
END IF
END IF
*
IF( N.LE.1 ) THEN
CNDNMA = ONE
CNDNMB = ONE
END IF
*
RETURN
*
* End of DLATB9
*
END