You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
278 lines
7.5 KiB
278 lines
7.5 KiB
*> \brief \b DORT03
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DORT03( RC, MU, MV, N, K, U, LDU, V, LDV, WORK, LWORK,
|
|
* RESULT, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER*( * ) RC
|
|
* INTEGER INFO, K, LDU, LDV, LWORK, MU, MV, N
|
|
* DOUBLE PRECISION RESULT
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION U( LDU, * ), V( LDV, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DORT03 compares two orthogonal matrices U and V to see if their
|
|
*> corresponding rows or columns span the same spaces. The rows are
|
|
*> checked if RC = 'R', and the columns are checked if RC = 'C'.
|
|
*>
|
|
*> RESULT is the maximum of
|
|
*>
|
|
*> | V*V' - I | / ( MV ulp ), if RC = 'R', or
|
|
*>
|
|
*> | V'*V - I | / ( MV ulp ), if RC = 'C',
|
|
*>
|
|
*> and the maximum over rows (or columns) 1 to K of
|
|
*>
|
|
*> | U(i) - S*V(i) |/ ( N ulp )
|
|
*>
|
|
*> where S is +-1 (chosen to minimize the expression), U(i) is the i-th
|
|
*> row (column) of U, and V(i) is the i-th row (column) of V.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] RC
|
|
*> \verbatim
|
|
*> RC is CHARACTER*1
|
|
*> If RC = 'R' the rows of U and V are to be compared.
|
|
*> If RC = 'C' the columns of U and V are to be compared.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] MU
|
|
*> \verbatim
|
|
*> MU is INTEGER
|
|
*> The number of rows of U if RC = 'R', and the number of
|
|
*> columns if RC = 'C'. If MU = 0 DORT03 does nothing.
|
|
*> MU must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] MV
|
|
*> \verbatim
|
|
*> MV is INTEGER
|
|
*> The number of rows of V if RC = 'R', and the number of
|
|
*> columns if RC = 'C'. If MV = 0 DORT03 does nothing.
|
|
*> MV must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> If RC = 'R', the number of columns in the matrices U and V,
|
|
*> and if RC = 'C', the number of rows in U and V. If N = 0
|
|
*> DORT03 does nothing. N must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> The number of rows or columns of U and V to compare.
|
|
*> 0 <= K <= max(MU,MV).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] U
|
|
*> \verbatim
|
|
*> U is DOUBLE PRECISION array, dimension (LDU,N)
|
|
*> The first matrix to compare. If RC = 'R', U is MU by N, and
|
|
*> if RC = 'C', U is N by MU.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU
|
|
*> \verbatim
|
|
*> LDU is INTEGER
|
|
*> The leading dimension of U. If RC = 'R', LDU >= max(1,MU),
|
|
*> and if RC = 'C', LDU >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] V
|
|
*> \verbatim
|
|
*> V is DOUBLE PRECISION array, dimension (LDV,N)
|
|
*> The second matrix to compare. If RC = 'R', V is MV by N, and
|
|
*> if RC = 'C', V is N by MV.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDV
|
|
*> \verbatim
|
|
*> LDV is INTEGER
|
|
*> The leading dimension of V. If RC = 'R', LDV >= max(1,MV),
|
|
*> and if RC = 'C', LDV >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The length of the array WORK. For best performance, LWORK
|
|
*> should be at least N*N if RC = 'C' or M*M if RC = 'R', but
|
|
*> the tests will be done even if LWORK is 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESULT
|
|
*> \verbatim
|
|
*> RESULT is DOUBLE PRECISION
|
|
*> The value computed by the test described above. RESULT is
|
|
*> limited to 1/ulp to avoid overflow.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> 0 indicates a successful exit
|
|
*> -k indicates the k-th parameter had an illegal value
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup double_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DORT03( RC, MU, MV, N, K, U, LDU, V, LDV, WORK, LWORK,
|
|
$ RESULT, INFO )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER*( * ) RC
|
|
INTEGER INFO, K, LDU, LDV, LWORK, MU, MV, N
|
|
DOUBLE PRECISION RESULT
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION U( LDU, * ), V( LDV, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, IRC, J, LMX
|
|
DOUBLE PRECISION RES1, RES2, S, ULP
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER IDAMAX
|
|
DOUBLE PRECISION DLAMCH
|
|
EXTERNAL LSAME, IDAMAX, DLAMCH
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DBLE, MAX, MIN, SIGN
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DORT01, XERBLA
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Check inputs
|
|
*
|
|
INFO = 0
|
|
IF( LSAME( RC, 'R' ) ) THEN
|
|
IRC = 0
|
|
ELSE IF( LSAME( RC, 'C' ) ) THEN
|
|
IRC = 1
|
|
ELSE
|
|
IRC = -1
|
|
END IF
|
|
IF( IRC.EQ.-1 ) THEN
|
|
INFO = -1
|
|
ELSE IF( MU.LT.0 ) THEN
|
|
INFO = -2
|
|
ELSE IF( MV.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( N.LT.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( K.LT.0 .OR. K.GT.MAX( MU, MV ) ) THEN
|
|
INFO = -5
|
|
ELSE IF( ( IRC.EQ.0 .AND. LDU.LT.MAX( 1, MU ) ) .OR.
|
|
$ ( IRC.EQ.1 .AND. LDU.LT.MAX( 1, N ) ) ) THEN
|
|
INFO = -7
|
|
ELSE IF( ( IRC.EQ.0 .AND. LDV.LT.MAX( 1, MV ) ) .OR.
|
|
$ ( IRC.EQ.1 .AND. LDV.LT.MAX( 1, N ) ) ) THEN
|
|
INFO = -9
|
|
END IF
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'DORT03', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Initialize result
|
|
*
|
|
RESULT = ZERO
|
|
IF( MU.EQ.0 .OR. MV.EQ.0 .OR. N.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
* Machine constants
|
|
*
|
|
ULP = DLAMCH( 'Precision' )
|
|
*
|
|
IF( IRC.EQ.0 ) THEN
|
|
*
|
|
* Compare rows
|
|
*
|
|
RES1 = ZERO
|
|
DO 20 I = 1, K
|
|
LMX = IDAMAX( N, U( I, 1 ), LDU )
|
|
S = SIGN( ONE, U( I, LMX ) )*SIGN( ONE, V( I, LMX ) )
|
|
DO 10 J = 1, N
|
|
RES1 = MAX( RES1, ABS( U( I, J )-S*V( I, J ) ) )
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
RES1 = RES1 / ( DBLE( N )*ULP )
|
|
*
|
|
* Compute orthogonality of rows of V.
|
|
*
|
|
CALL DORT01( 'Rows', MV, N, V, LDV, WORK, LWORK, RES2 )
|
|
*
|
|
ELSE
|
|
*
|
|
* Compare columns
|
|
*
|
|
RES1 = ZERO
|
|
DO 40 I = 1, K
|
|
LMX = IDAMAX( N, U( 1, I ), 1 )
|
|
S = SIGN( ONE, U( LMX, I ) )*SIGN( ONE, V( LMX, I ) )
|
|
DO 30 J = 1, N
|
|
RES1 = MAX( RES1, ABS( U( J, I )-S*V( J, I ) ) )
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
RES1 = RES1 / ( DBLE( N )*ULP )
|
|
*
|
|
* Compute orthogonality of columns of V.
|
|
*
|
|
CALL DORT01( 'Columns', N, MV, V, LDV, WORK, LWORK, RES2 )
|
|
END IF
|
|
*
|
|
RESULT = MIN( MAX( RES1, RES2 ), ONE / ULP )
|
|
RETURN
|
|
*
|
|
* End of DORT03
|
|
*
|
|
END
|
|
|