You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
251 lines
6.9 KiB
251 lines
6.9 KiB
*> \brief \b DSTT22
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
|
|
* LDWORK, RESULT )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER KBAND, LDU, LDWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION AD( * ), AE( * ), RESULT( 2 ), SD( * ),
|
|
* $ SE( * ), U( LDU, * ), WORK( LDWORK, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DSTT22 checks a set of M eigenvalues and eigenvectors,
|
|
*>
|
|
*> A U = U S
|
|
*>
|
|
*> where A is symmetric tridiagonal, the columns of U are orthogonal,
|
|
*> and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1).
|
|
*> Two tests are performed:
|
|
*>
|
|
*> RESULT(1) = | U' A U - S | / ( |A| m ulp )
|
|
*>
|
|
*> RESULT(2) = | I - U'U | / ( m ulp )
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The size of the matrix. If it is zero, DSTT22 does nothing.
|
|
*> It must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of eigenpairs to check. If it is zero, DSTT22
|
|
*> does nothing. It must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KBAND
|
|
*> \verbatim
|
|
*> KBAND is INTEGER
|
|
*> The bandwidth of the matrix S. It may only be zero or one.
|
|
*> If zero, then S is diagonal, and SE is not referenced. If
|
|
*> one, then S is symmetric tri-diagonal.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AD
|
|
*> \verbatim
|
|
*> AD is DOUBLE PRECISION array, dimension (N)
|
|
*> The diagonal of the original (unfactored) matrix A. A is
|
|
*> assumed to be symmetric tridiagonal.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AE
|
|
*> \verbatim
|
|
*> AE is DOUBLE PRECISION array, dimension (N)
|
|
*> The off-diagonal of the original (unfactored) matrix A. A
|
|
*> is assumed to be symmetric tridiagonal. AE(1) is ignored,
|
|
*> AE(2) is the (1,2) and (2,1) element, etc.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SD
|
|
*> \verbatim
|
|
*> SD is DOUBLE PRECISION array, dimension (N)
|
|
*> The diagonal of the (symmetric tri-) diagonal matrix S.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] SE
|
|
*> \verbatim
|
|
*> SE is DOUBLE PRECISION array, dimension (N)
|
|
*> The off-diagonal of the (symmetric tri-) diagonal matrix S.
|
|
*> Not referenced if KBSND=0. If KBAND=1, then AE(1) is
|
|
*> ignored, SE(2) is the (1,2) and (2,1) element, etc.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] U
|
|
*> \verbatim
|
|
*> U is DOUBLE PRECISION array, dimension (LDU, N)
|
|
*> The orthogonal matrix in the decomposition.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU
|
|
*> \verbatim
|
|
*> LDU is INTEGER
|
|
*> The leading dimension of U. LDU must be at least N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is DOUBLE PRECISION array, dimension (LDWORK, M+1)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDWORK
|
|
*> \verbatim
|
|
*> LDWORK is INTEGER
|
|
*> The leading dimension of WORK. LDWORK must be at least
|
|
*> max(1,M).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESULT
|
|
*> \verbatim
|
|
*> RESULT is DOUBLE PRECISION array, dimension (2)
|
|
*> The values computed by the two tests described above. The
|
|
*> values are currently limited to 1/ulp, to avoid overflow.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup double_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DSTT22( N, M, KBAND, AD, AE, SD, SE, U, LDU, WORK,
|
|
$ LDWORK, RESULT )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER KBAND, LDU, LDWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION AD( * ), AE( * ), RESULT( 2 ), SD( * ),
|
|
$ SE( * ), U( LDU, * ), WORK( LDWORK, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J, K
|
|
DOUBLE PRECISION ANORM, AUKJ, ULP, UNFL, WNORM
|
|
* ..
|
|
* .. External Functions ..
|
|
DOUBLE PRECISION DLAMCH, DLANGE, DLANSY
|
|
EXTERNAL DLAMCH, DLANGE, DLANSY
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL DGEMM
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DBLE, MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
RESULT( 1 ) = ZERO
|
|
RESULT( 2 ) = ZERO
|
|
IF( N.LE.0 .OR. M.LE.0 )
|
|
$ RETURN
|
|
*
|
|
UNFL = DLAMCH( 'Safe minimum' )
|
|
ULP = DLAMCH( 'Epsilon' )
|
|
*
|
|
* Do Test 1
|
|
*
|
|
* Compute the 1-norm of A.
|
|
*
|
|
IF( N.GT.1 ) THEN
|
|
ANORM = ABS( AD( 1 ) ) + ABS( AE( 1 ) )
|
|
DO 10 J = 2, N - 1
|
|
ANORM = MAX( ANORM, ABS( AD( J ) )+ABS( AE( J ) )+
|
|
$ ABS( AE( J-1 ) ) )
|
|
10 CONTINUE
|
|
ANORM = MAX( ANORM, ABS( AD( N ) )+ABS( AE( N-1 ) ) )
|
|
ELSE
|
|
ANORM = ABS( AD( 1 ) )
|
|
END IF
|
|
ANORM = MAX( ANORM, UNFL )
|
|
*
|
|
* Norm of U'AU - S
|
|
*
|
|
DO 40 I = 1, M
|
|
DO 30 J = 1, M
|
|
WORK( I, J ) = ZERO
|
|
DO 20 K = 1, N
|
|
AUKJ = AD( K )*U( K, J )
|
|
IF( K.NE.N )
|
|
$ AUKJ = AUKJ + AE( K )*U( K+1, J )
|
|
IF( K.NE.1 )
|
|
$ AUKJ = AUKJ + AE( K-1 )*U( K-1, J )
|
|
WORK( I, J ) = WORK( I, J ) + U( K, I )*AUKJ
|
|
20 CONTINUE
|
|
30 CONTINUE
|
|
WORK( I, I ) = WORK( I, I ) - SD( I )
|
|
IF( KBAND.EQ.1 ) THEN
|
|
IF( I.NE.1 )
|
|
$ WORK( I, I-1 ) = WORK( I, I-1 ) - SE( I-1 )
|
|
IF( I.NE.N )
|
|
$ WORK( I, I+1 ) = WORK( I, I+1 ) - SE( I )
|
|
END IF
|
|
40 CONTINUE
|
|
*
|
|
WNORM = DLANSY( '1', 'L', M, WORK, M, WORK( 1, M+1 ) )
|
|
*
|
|
IF( ANORM.GT.WNORM ) THEN
|
|
RESULT( 1 ) = ( WNORM / ANORM ) / ( M*ULP )
|
|
ELSE
|
|
IF( ANORM.LT.ONE ) THEN
|
|
RESULT( 1 ) = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*ULP )
|
|
ELSE
|
|
RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( M ) ) / ( M*ULP )
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do Test 2
|
|
*
|
|
* Compute U'U - I
|
|
*
|
|
CALL DGEMM( 'T', 'N', M, M, N, ONE, U, LDU, U, LDU, ZERO, WORK,
|
|
$ M )
|
|
*
|
|
DO 50 J = 1, M
|
|
WORK( J, J ) = WORK( J, J ) - ONE
|
|
50 CONTINUE
|
|
*
|
|
RESULT( 2 ) = MIN( DBLE( M ), DLANGE( '1', M, M, WORK, M, WORK( 1,
|
|
$ M+1 ) ) ) / ( M*ULP )
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DSTT22
|
|
*
|
|
END
|
|
|