You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
251 lines
6.4 KiB
251 lines
6.4 KiB
*> \brief \b SBDT04
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SBDT04( UPLO, N, D, E, S, NS, U, LDU, VT, LDVT,
|
|
* WORK, RESID )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER LDU, LDVT, N, NS
|
|
* REAL RESID
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL D( * ), E( * ), S( * ), U( LDU, * ),
|
|
* $ VT( LDVT, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SBDT04 reconstructs a bidiagonal matrix B from its (partial) SVD:
|
|
*> S = U' * B * V
|
|
*> where U and V are orthogonal matrices and S is diagonal.
|
|
*>
|
|
*> The test ratio to test the singular value decomposition is
|
|
*> RESID = norm( S - U' * B * V ) / ( n * norm(B) * EPS )
|
|
*> where VT = V' and EPS is the machine precision.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> Specifies whether the matrix B is upper or lower bidiagonal.
|
|
*> = 'U': Upper bidiagonal
|
|
*> = 'L': Lower bidiagonal
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The order of the matrix B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (N)
|
|
*> The n diagonal elements of the bidiagonal matrix B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is REAL array, dimension (N-1)
|
|
*> The (n-1) superdiagonal elements of the bidiagonal matrix B
|
|
*> if UPLO = 'U', or the (n-1) subdiagonal elements of B if
|
|
*> UPLO = 'L'.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] S
|
|
*> \verbatim
|
|
*> S is REAL array, dimension (NS)
|
|
*> The singular values from the (partial) SVD of B, sorted in
|
|
*> decreasing order.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NS
|
|
*> \verbatim
|
|
*> NS is INTEGER
|
|
*> The number of singular values/vectors from the (partial)
|
|
*> SVD of B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] U
|
|
*> \verbatim
|
|
*> U is REAL array, dimension (LDU,NS)
|
|
*> The n by ns orthogonal matrix U in S = U' * B * V.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU
|
|
*> \verbatim
|
|
*> LDU is INTEGER
|
|
*> The leading dimension of the array U. LDU >= max(1,N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VT
|
|
*> \verbatim
|
|
*> VT is REAL array, dimension (LDVT,N)
|
|
*> The n by ns orthogonal matrix V in S = U' * B * V.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDVT
|
|
*> \verbatim
|
|
*> LDVT is INTEGER
|
|
*> The leading dimension of the array VT.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (2*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESID
|
|
*> \verbatim
|
|
*> RESID is REAL
|
|
*> The test ratio: norm(S - U' * B * V) / ( n * norm(B) * EPS )
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup double_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SBDT04( UPLO, N, D, E, S, NS, U, LDU, VT, LDVT, WORK,
|
|
$ RESID )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER LDU, LDVT, N, NS
|
|
REAL RESID
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL D( * ), E( * ), S( * ), U( LDU, * ),
|
|
$ VT( LDVT, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* ======================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J, K
|
|
REAL BNORM, EPS
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
INTEGER ISAMAX
|
|
REAL SASUM, SLAMCH
|
|
EXTERNAL LSAME, ISAMAX, SASUM, SLAMCH
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SGEMM
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, REAL, MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick return if possible.
|
|
*
|
|
RESID = ZERO
|
|
IF( N.LE.0 .OR. NS.LE.0 )
|
|
$ RETURN
|
|
*
|
|
EPS = SLAMCH( 'Precision' )
|
|
*
|
|
* Compute S - U' * B * V.
|
|
*
|
|
BNORM = ZERO
|
|
*
|
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
|
*
|
|
* B is upper bidiagonal.
|
|
*
|
|
K = 0
|
|
DO 20 I = 1, NS
|
|
DO 10 J = 1, N-1
|
|
K = K + 1
|
|
WORK( K ) = D( J )*VT( I, J ) + E( J )*VT( I, J+1 )
|
|
10 CONTINUE
|
|
K = K + 1
|
|
WORK( K ) = D( N )*VT( I, N )
|
|
20 CONTINUE
|
|
BNORM = ABS( D( 1 ) )
|
|
DO 30 I = 2, N
|
|
BNORM = MAX( BNORM, ABS( D( I ) )+ABS( E( I-1 ) ) )
|
|
30 CONTINUE
|
|
ELSE
|
|
*
|
|
* B is lower bidiagonal.
|
|
*
|
|
K = 0
|
|
DO 50 I = 1, NS
|
|
K = K + 1
|
|
WORK( K ) = D( 1 )*VT( I, 1 )
|
|
DO 40 J = 1, N-1
|
|
K = K + 1
|
|
WORK( K ) = E( J )*VT( I, J ) + D( J+1 )*VT( I, J+1 )
|
|
40 CONTINUE
|
|
50 CONTINUE
|
|
BNORM = ABS( D( N ) )
|
|
DO 60 I = 1, N-1
|
|
BNORM = MAX( BNORM, ABS( D( I ) )+ABS( E( I ) ) )
|
|
60 CONTINUE
|
|
END IF
|
|
*
|
|
CALL SGEMM( 'T', 'N', NS, NS, N, -ONE, U, LDU, WORK( 1 ),
|
|
$ N, ZERO, WORK( 1+N*NS ), NS )
|
|
*
|
|
* norm(S - U' * B * V)
|
|
*
|
|
K = N*NS
|
|
DO 70 I = 1, NS
|
|
WORK( K+I ) = WORK( K+I ) + S( I )
|
|
RESID = MAX( RESID, SASUM( NS, WORK( K+1 ), 1 ) )
|
|
K = K + NS
|
|
70 CONTINUE
|
|
*
|
|
IF( BNORM.LE.ZERO ) THEN
|
|
IF( RESID.NE.ZERO )
|
|
$ RESID = ONE / EPS
|
|
ELSE
|
|
IF( BNORM.GE.RESID ) THEN
|
|
RESID = ( RESID / BNORM ) / ( REAL( N )*EPS )
|
|
ELSE
|
|
IF( BNORM.LT.ONE ) THEN
|
|
RESID = ( MIN( RESID, REAL( N )*BNORM ) / BNORM ) /
|
|
$ ( REAL( N )*EPS )
|
|
ELSE
|
|
RESID = MIN( RESID / BNORM, REAL( N ) ) /
|
|
$ ( REAL( N )*EPS )
|
|
END IF
|
|
END IF
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SBDT04
|
|
*
|
|
END
|
|
|