You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
993 lines
36 KiB
993 lines
36 KiB
*> \brief \b SDRGES
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SDRGES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
|
|
* NOUNIT, A, LDA, B, S, T, Q, LDQ, Z, ALPHAR,
|
|
* ALPHAI, BETA, WORK, LWORK, RESULT, BWORK,
|
|
* INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER INFO, LDA, LDQ, LWORK, NOUNIT, NSIZES, NTYPES
|
|
* REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL BWORK( * ), DOTYPE( * )
|
|
* INTEGER ISEED( 4 ), NN( * )
|
|
* REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
|
|
* $ B( LDA, * ), BETA( * ), Q( LDQ, * ),
|
|
* $ RESULT( 13 ), S( LDA, * ), T( LDA, * ),
|
|
* $ WORK( * ), Z( LDQ, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SDRGES checks the nonsymmetric generalized eigenvalue (Schur form)
|
|
*> problem driver SGGES.
|
|
*>
|
|
*> SGGES factors A and B as Q S Z' and Q T Z' , where ' means
|
|
*> transpose, T is upper triangular, S is in generalized Schur form
|
|
*> (block upper triangular, with 1x1 and 2x2 blocks on the diagonal,
|
|
*> the 2x2 blocks corresponding to complex conjugate pairs of
|
|
*> generalized eigenvalues), and Q and Z are orthogonal. It also
|
|
*> computes the generalized eigenvalues (alpha(j),beta(j)), j=1,...,n,
|
|
*> Thus, w(j) = alpha(j)/beta(j) is a root of the characteristic
|
|
*> equation
|
|
*> det( A - w(j) B ) = 0
|
|
*> Optionally it also reorder the eigenvalues so that a selected
|
|
*> cluster of eigenvalues appears in the leading diagonal block of the
|
|
*> Schur forms.
|
|
*>
|
|
*> When SDRGES is called, a number of matrix "sizes" ("N's") and a
|
|
*> number of matrix "TYPES" are specified. For each size ("N")
|
|
*> and each TYPE of matrix, a pair of matrices (A, B) will be generated
|
|
*> and used for testing. For each matrix pair, the following 13 tests
|
|
*> will be performed and compared with the threshold THRESH except
|
|
*> the tests (5), (11) and (13).
|
|
*>
|
|
*>
|
|
*> (1) | A - Q S Z' | / ( |A| n ulp ) (no sorting of eigenvalues)
|
|
*>
|
|
*>
|
|
*> (2) | B - Q T Z' | / ( |B| n ulp ) (no sorting of eigenvalues)
|
|
*>
|
|
*>
|
|
*> (3) | I - QQ' | / ( n ulp ) (no sorting of eigenvalues)
|
|
*>
|
|
*>
|
|
*> (4) | I - ZZ' | / ( n ulp ) (no sorting of eigenvalues)
|
|
*>
|
|
*> (5) if A is in Schur form (i.e. quasi-triangular form)
|
|
*> (no sorting of eigenvalues)
|
|
*>
|
|
*> (6) if eigenvalues = diagonal blocks of the Schur form (S, T),
|
|
*> i.e., test the maximum over j of D(j) where:
|
|
*>
|
|
*> if alpha(j) is real:
|
|
*> |alpha(j) - S(j,j)| |beta(j) - T(j,j)|
|
|
*> D(j) = ------------------------ + -----------------------
|
|
*> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|)
|
|
*>
|
|
*> if alpha(j) is complex:
|
|
*> | det( s S - w T ) |
|
|
*> D(j) = ---------------------------------------------------
|
|
*> ulp max( s norm(S), |w| norm(T) )*norm( s S - w T )
|
|
*>
|
|
*> and S and T are here the 2 x 2 diagonal blocks of S and T
|
|
*> corresponding to the j-th and j+1-th eigenvalues.
|
|
*> (no sorting of eigenvalues)
|
|
*>
|
|
*> (7) | (A,B) - Q (S,T) Z' | / ( | (A,B) | n ulp )
|
|
*> (with sorting of eigenvalues).
|
|
*>
|
|
*> (8) | I - QQ' | / ( n ulp ) (with sorting of eigenvalues).
|
|
*>
|
|
*> (9) | I - ZZ' | / ( n ulp ) (with sorting of eigenvalues).
|
|
*>
|
|
*> (10) if A is in Schur form (i.e. quasi-triangular form)
|
|
*> (with sorting of eigenvalues).
|
|
*>
|
|
*> (11) if eigenvalues = diagonal blocks of the Schur form (S, T),
|
|
*> i.e. test the maximum over j of D(j) where:
|
|
*>
|
|
*> if alpha(j) is real:
|
|
*> |alpha(j) - S(j,j)| |beta(j) - T(j,j)|
|
|
*> D(j) = ------------------------ + -----------------------
|
|
*> max(|alpha(j)|,|S(j,j)|) max(|beta(j)|,|T(j,j)|)
|
|
*>
|
|
*> if alpha(j) is complex:
|
|
*> | det( s S - w T ) |
|
|
*> D(j) = ---------------------------------------------------
|
|
*> ulp max( s norm(S), |w| norm(T) )*norm( s S - w T )
|
|
*>
|
|
*> and S and T are here the 2 x 2 diagonal blocks of S and T
|
|
*> corresponding to the j-th and j+1-th eigenvalues.
|
|
*> (with sorting of eigenvalues).
|
|
*>
|
|
*> (12) if sorting worked and SDIM is the number of eigenvalues
|
|
*> which were SELECTed.
|
|
*>
|
|
*> Test Matrices
|
|
*> =============
|
|
*>
|
|
*> The sizes of the test matrices are specified by an array
|
|
*> NN(1:NSIZES); the value of each element NN(j) specifies one size.
|
|
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
|
|
*> DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
|
|
*> Currently, the list of possible types is:
|
|
*>
|
|
*> (1) ( 0, 0 ) (a pair of zero matrices)
|
|
*>
|
|
*> (2) ( I, 0 ) (an identity and a zero matrix)
|
|
*>
|
|
*> (3) ( 0, I ) (an identity and a zero matrix)
|
|
*>
|
|
*> (4) ( I, I ) (a pair of identity matrices)
|
|
*>
|
|
*> t t
|
|
*> (5) ( J , J ) (a pair of transposed Jordan blocks)
|
|
*>
|
|
*> t ( I 0 )
|
|
*> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t )
|
|
*> ( 0 I ) ( 0 J )
|
|
*> and I is a k x k identity and J a (k+1)x(k+1)
|
|
*> Jordan block; k=(N-1)/2
|
|
*>
|
|
*> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal
|
|
*> matrix with those diagonal entries.)
|
|
*> (8) ( I, D )
|
|
*>
|
|
*> (9) ( big*D, small*I ) where "big" is near overflow and small=1/big
|
|
*>
|
|
*> (10) ( small*D, big*I )
|
|
*>
|
|
*> (11) ( big*I, small*D )
|
|
*>
|
|
*> (12) ( small*I, big*D )
|
|
*>
|
|
*> (13) ( big*D, big*I )
|
|
*>
|
|
*> (14) ( small*D, small*I )
|
|
*>
|
|
*> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and
|
|
*> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )
|
|
*> t t
|
|
*> (16) Q ( J , J ) Z where Q and Z are random orthogonal matrices.
|
|
*>
|
|
*> (17) Q ( T1, T2 ) Z where T1 and T2 are upper triangular matrices
|
|
*> with random O(1) entries above the diagonal
|
|
*> and diagonal entries diag(T1) =
|
|
*> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
|
|
*> ( 0, N-3, N-4,..., 1, 0, 0 )
|
|
*>
|
|
*> (18) Q ( T1, T2 ) Z diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
|
|
*> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
|
|
*> s = machine precision.
|
|
*>
|
|
*> (19) Q ( T1, T2 ) Z diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
|
|
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
|
|
*>
|
|
*> N-5
|
|
*> (20) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 )
|
|
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
|
|
*>
|
|
*> (21) Q ( T1, T2 ) Z diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
|
|
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
|
|
*> where r1,..., r(N-4) are random.
|
|
*>
|
|
*> (22) Q ( big*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
|
|
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
|
|
*>
|
|
*> (23) Q ( small*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
|
|
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
|
|
*>
|
|
*> (24) Q ( small*T1, small*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
|
|
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
|
|
*>
|
|
*> (25) Q ( big*T1, big*T2 ) Z diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
|
|
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
|
|
*>
|
|
*> (26) Q ( T1, T2 ) Z where T1 and T2 are random upper-triangular
|
|
*> matrices.
|
|
*>
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] NSIZES
|
|
*> \verbatim
|
|
*> NSIZES is INTEGER
|
|
*> The number of sizes of matrices to use. If it is zero,
|
|
*> SDRGES does nothing. NSIZES >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NN
|
|
*> \verbatim
|
|
*> NN is INTEGER array, dimension (NSIZES)
|
|
*> An array containing the sizes to be used for the matrices.
|
|
*> Zero values will be skipped. NN >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NTYPES
|
|
*> \verbatim
|
|
*> NTYPES is INTEGER
|
|
*> The number of elements in DOTYPE. If it is zero, SDRGES
|
|
*> does nothing. It must be at least zero. If it is MAXTYP+1
|
|
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
|
|
*> defined, which is to use whatever matrix is in A on input.
|
|
*> This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
|
|
*> DOTYPE(MAXTYP+1) is .TRUE. .
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] DOTYPE
|
|
*> \verbatim
|
|
*> DOTYPE is LOGICAL array, dimension (NTYPES)
|
|
*> If DOTYPE(j) is .TRUE., then for each size in NN a
|
|
*> matrix of that size and of type j will be generated.
|
|
*> If NTYPES is smaller than the maximum number of types
|
|
*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
|
|
*> MAXTYP will not be generated. If NTYPES is larger
|
|
*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
|
|
*> will be ignored.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] ISEED
|
|
*> \verbatim
|
|
*> ISEED is INTEGER array, dimension (4)
|
|
*> On entry ISEED specifies the seed of the random number
|
|
*> generator. The array elements should be between 0 and 4095;
|
|
*> if not they will be reduced mod 4096. Also, ISEED(4) must
|
|
*> be odd. The random number generator uses a linear
|
|
*> congruential sequence limited to small integers, and so
|
|
*> should produce machine independent random numbers. The
|
|
*> values of ISEED are changed on exit, and can be used in the
|
|
*> next call to SDRGES to continue the same random number
|
|
*> sequence.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] THRESH
|
|
*> \verbatim
|
|
*> THRESH is REAL
|
|
*> A test will count as "failed" if the "error", computed as
|
|
*> described above, exceeds THRESH. Note that the error is
|
|
*> scaled to be O(1), so THRESH should be a reasonably small
|
|
*> multiple of 1, e.g., 10 or 100. In particular, it should
|
|
*> not depend on the precision (single vs. double) or the size
|
|
*> of the matrix. THRESH >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NOUNIT
|
|
*> \verbatim
|
|
*> NOUNIT is INTEGER
|
|
*> The FORTRAN unit number for printing out error messages
|
|
*> (e.g., if a routine returns IINFO not equal to 0.)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] A
|
|
*> \verbatim
|
|
*> A is REAL array,
|
|
*> dimension(LDA, max(NN))
|
|
*> Used to hold the original A matrix. Used as input only
|
|
*> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
|
|
*> DOTYPE(MAXTYP+1)=.TRUE.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of A, B, S, and T.
|
|
*> It must be at least 1 and at least max( NN ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in,out] B
|
|
*> \verbatim
|
|
*> B is REAL array,
|
|
*> dimension(LDA, max(NN))
|
|
*> Used to hold the original B matrix. Used as input only
|
|
*> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
|
|
*> DOTYPE(MAXTYP+1)=.TRUE.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] S
|
|
*> \verbatim
|
|
*> S is REAL array, dimension (LDA, max(NN))
|
|
*> The Schur form matrix computed from A by SGGES. On exit, S
|
|
*> contains the Schur form matrix corresponding to the matrix
|
|
*> in A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] T
|
|
*> \verbatim
|
|
*> T is REAL array, dimension (LDA, max(NN))
|
|
*> The upper triangular matrix computed from B by SGGES.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Q
|
|
*> \verbatim
|
|
*> Q is REAL array, dimension (LDQ, max(NN))
|
|
*> The (left) orthogonal matrix computed by SGGES.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDQ
|
|
*> \verbatim
|
|
*> LDQ is INTEGER
|
|
*> The leading dimension of Q and Z. It must
|
|
*> be at least 1 and at least max( NN ).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] Z
|
|
*> \verbatim
|
|
*> Z is REAL array, dimension( LDQ, max(NN) )
|
|
*> The (right) orthogonal matrix computed by SGGES.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ALPHAR
|
|
*> \verbatim
|
|
*> ALPHAR is REAL array, dimension (max(NN))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ALPHAI
|
|
*> \verbatim
|
|
*> ALPHAI is REAL array, dimension (max(NN))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BETA
|
|
*> \verbatim
|
|
*> BETA is REAL array, dimension (max(NN))
|
|
*>
|
|
*> The generalized eigenvalues of (A,B) computed by SGGES.
|
|
*> ( ALPHAR(k)+ALPHAI(k)*i ) / BETA(k) is the k-th
|
|
*> generalized eigenvalue of A and B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (LWORK)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The dimension of the array WORK.
|
|
*> LWORK >= MAX( 10*(N+1), 3*N*N ), where N is the largest
|
|
*> matrix dimension.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESULT
|
|
*> \verbatim
|
|
*> RESULT is REAL array, dimension (15)
|
|
*> The values computed by the tests described above.
|
|
*> The values are currently limited to 1/ulp, to avoid overflow.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BWORK
|
|
*> \verbatim
|
|
*> BWORK is LOGICAL array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> > 0: A routine returned an error code. INFO is the
|
|
*> absolute value of the INFO value returned.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup single_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SDRGES( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
|
|
$ NOUNIT, A, LDA, B, S, T, Q, LDQ, Z, ALPHAR,
|
|
$ ALPHAI, BETA, WORK, LWORK, RESULT, BWORK,
|
|
$ INFO )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER INFO, LDA, LDQ, LWORK, NOUNIT, NSIZES, NTYPES
|
|
REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL BWORK( * ), DOTYPE( * )
|
|
INTEGER ISEED( 4 ), NN( * )
|
|
REAL A( LDA, * ), ALPHAI( * ), ALPHAR( * ),
|
|
$ B( LDA, * ), BETA( * ), Q( LDQ, * ),
|
|
$ RESULT( 13 ), S( LDA, * ), T( LDA, * ),
|
|
$ WORK( * ), Z( LDQ, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
|
INTEGER MAXTYP
|
|
PARAMETER ( MAXTYP = 26 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL BADNN, ILABAD
|
|
CHARACTER SORT
|
|
INTEGER I, I1, IADD, IERR, IINFO, IN, ISORT, J, JC, JR,
|
|
$ JSIZE, JTYPE, KNTEIG, MAXWRK, MINWRK, MTYPES,
|
|
$ N, N1, NB, NERRS, NMATS, NMAX, NTEST, NTESTT,
|
|
$ RSUB, SDIM
|
|
REAL SAFMAX, SAFMIN, TEMP1, TEMP2, ULP, ULPINV
|
|
* ..
|
|
* .. Local Arrays ..
|
|
INTEGER IASIGN( MAXTYP ), IBSIGN( MAXTYP ),
|
|
$ IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
|
|
$ KATYPE( MAXTYP ), KAZERO( MAXTYP ),
|
|
$ KBMAGN( MAXTYP ), KBTYPE( MAXTYP ),
|
|
$ KBZERO( MAXTYP ), KCLASS( MAXTYP ),
|
|
$ KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 )
|
|
REAL RMAGN( 0: 3 )
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL SLCTES
|
|
INTEGER ILAENV
|
|
REAL SLAMCH, SLARND
|
|
EXTERNAL SLCTES, ILAENV, SLAMCH, SLARND
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ALASVM, SGET51, SGET53, SGET54, SGGES, SLACPY,
|
|
$ SLARFG, SLASET, SLATM4, SORM2R, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN, REAL, SIGN
|
|
* ..
|
|
* .. Data statements ..
|
|
DATA KCLASS / 15*1, 10*2, 1*3 /
|
|
DATA KZ1 / 0, 1, 2, 1, 3, 3 /
|
|
DATA KZ2 / 0, 0, 1, 2, 1, 1 /
|
|
DATA KADD / 0, 0, 0, 0, 3, 2 /
|
|
DATA KATYPE / 0, 1, 0, 1, 2, 3, 4, 1, 4, 4, 1, 1, 4,
|
|
$ 4, 4, 2, 4, 5, 8, 7, 9, 4*4, 0 /
|
|
DATA KBTYPE / 0, 0, 1, 1, 2, -3, 1, 4, 1, 1, 4, 4,
|
|
$ 1, 1, -4, 2, -4, 8*8, 0 /
|
|
DATA KAZERO / 6*1, 2, 1, 2*2, 2*1, 2*2, 3, 1, 3,
|
|
$ 4*5, 4*3, 1 /
|
|
DATA KBZERO / 6*1, 1, 2, 2*1, 2*2, 2*1, 4, 1, 4,
|
|
$ 4*6, 4*4, 1 /
|
|
DATA KAMAGN / 8*1, 2, 3, 2, 3, 2, 3, 7*1, 2, 3, 3,
|
|
$ 2, 1 /
|
|
DATA KBMAGN / 8*1, 3, 2, 3, 2, 2, 3, 7*1, 3, 2, 3,
|
|
$ 2, 1 /
|
|
DATA KTRIAN / 16*0, 10*1 /
|
|
DATA IASIGN / 6*0, 2, 0, 2*2, 2*0, 3*2, 0, 2, 3*0,
|
|
$ 5*2, 0 /
|
|
DATA IBSIGN / 7*0, 2, 2*0, 2*2, 2*0, 2, 0, 2, 9*0 /
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Check for errors
|
|
*
|
|
INFO = 0
|
|
*
|
|
BADNN = .FALSE.
|
|
NMAX = 1
|
|
DO 10 J = 1, NSIZES
|
|
NMAX = MAX( NMAX, NN( J ) )
|
|
IF( NN( J ).LT.0 )
|
|
$ BADNN = .TRUE.
|
|
10 CONTINUE
|
|
*
|
|
IF( NSIZES.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( BADNN ) THEN
|
|
INFO = -2
|
|
ELSE IF( NTYPES.LT.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( THRESH.LT.ZERO ) THEN
|
|
INFO = -6
|
|
ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
|
|
INFO = -9
|
|
ELSE IF( LDQ.LE.1 .OR. LDQ.LT.NMAX ) THEN
|
|
INFO = -14
|
|
END IF
|
|
*
|
|
* Compute workspace
|
|
* (Note: Comments in the code beginning "Workspace:" describe the
|
|
* minimal amount of workspace needed at that point in the code,
|
|
* as well as the preferred amount for good performance.
|
|
* NB refers to the optimal block size for the immediately
|
|
* following subroutine, as returned by ILAENV.
|
|
*
|
|
MINWRK = 1
|
|
IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN
|
|
MINWRK = MAX( 10*( NMAX+1 ), 3*NMAX*NMAX )
|
|
NB = MAX( 1, ILAENV( 1, 'SGEQRF', ' ', NMAX, NMAX, -1, -1 ),
|
|
$ ILAENV( 1, 'SORMQR', 'LT', NMAX, NMAX, NMAX, -1 ),
|
|
$ ILAENV( 1, 'SORGQR', ' ', NMAX, NMAX, NMAX, -1 ) )
|
|
MAXWRK = MAX( 10*( NMAX+1 ), 2*NMAX+NMAX*NB, 3*NMAX*NMAX )
|
|
WORK( 1 ) = MAXWRK
|
|
END IF
|
|
*
|
|
IF( LWORK.LT.MINWRK )
|
|
$ INFO = -20
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'SDRGES', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
|
|
$ RETURN
|
|
*
|
|
SAFMIN = SLAMCH( 'Safe minimum' )
|
|
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
|
|
SAFMIN = SAFMIN / ULP
|
|
SAFMAX = ONE / SAFMIN
|
|
ULPINV = ONE / ULP
|
|
*
|
|
* The values RMAGN(2:3) depend on N, see below.
|
|
*
|
|
RMAGN( 0 ) = ZERO
|
|
RMAGN( 1 ) = ONE
|
|
*
|
|
* Loop over matrix sizes
|
|
*
|
|
NTESTT = 0
|
|
NERRS = 0
|
|
NMATS = 0
|
|
*
|
|
DO 190 JSIZE = 1, NSIZES
|
|
N = NN( JSIZE )
|
|
N1 = MAX( 1, N )
|
|
RMAGN( 2 ) = SAFMAX*ULP / REAL( N1 )
|
|
RMAGN( 3 ) = SAFMIN*ULPINV*REAL( N1 )
|
|
*
|
|
IF( NSIZES.NE.1 ) THEN
|
|
MTYPES = MIN( MAXTYP, NTYPES )
|
|
ELSE
|
|
MTYPES = MIN( MAXTYP+1, NTYPES )
|
|
END IF
|
|
*
|
|
* Loop over matrix types
|
|
*
|
|
DO 180 JTYPE = 1, MTYPES
|
|
IF( .NOT.DOTYPE( JTYPE ) )
|
|
$ GO TO 180
|
|
NMATS = NMATS + 1
|
|
NTEST = 0
|
|
*
|
|
* Save ISEED in case of an error.
|
|
*
|
|
DO 20 J = 1, 4
|
|
IOLDSD( J ) = ISEED( J )
|
|
20 CONTINUE
|
|
*
|
|
* Initialize RESULT
|
|
*
|
|
DO 30 J = 1, 13
|
|
RESULT( J ) = ZERO
|
|
30 CONTINUE
|
|
*
|
|
* Generate test matrices A and B
|
|
*
|
|
* Description of control parameters:
|
|
*
|
|
* KCLASS: =1 means w/o rotation, =2 means w/ rotation,
|
|
* =3 means random.
|
|
* KATYPE: the "type" to be passed to SLATM4 for computing A.
|
|
* KAZERO: the pattern of zeros on the diagonal for A:
|
|
* =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
|
|
* =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
|
|
* =6: ( 0, 1, 0, xxx, 0 ). (xxx means a string of
|
|
* non-zero entries.)
|
|
* KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
|
|
* =2: large, =3: small.
|
|
* IASIGN: 1 if the diagonal elements of A are to be
|
|
* multiplied by a random magnitude 1 number, =2 if
|
|
* randomly chosen diagonal blocks are to be rotated
|
|
* to form 2x2 blocks.
|
|
* KBTYPE, KBZERO, KBMAGN, IBSIGN: the same, but for B.
|
|
* KTRIAN: =0: don't fill in the upper triangle, =1: do.
|
|
* KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
|
|
* RMAGN: used to implement KAMAGN and KBMAGN.
|
|
*
|
|
IF( MTYPES.GT.MAXTYP )
|
|
$ GO TO 110
|
|
IINFO = 0
|
|
IF( KCLASS( JTYPE ).LT.3 ) THEN
|
|
*
|
|
* Generate A (w/o rotation)
|
|
*
|
|
IF( ABS( KATYPE( JTYPE ) ).EQ.3 ) THEN
|
|
IN = 2*( ( N-1 ) / 2 ) + 1
|
|
IF( IN.NE.N )
|
|
$ CALL SLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
|
|
ELSE
|
|
IN = N
|
|
END IF
|
|
CALL SLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ),
|
|
$ KZ2( KAZERO( JTYPE ) ), IASIGN( JTYPE ),
|
|
$ RMAGN( KAMAGN( JTYPE ) ), ULP,
|
|
$ RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 2,
|
|
$ ISEED, A, LDA )
|
|
IADD = KADD( KAZERO( JTYPE ) )
|
|
IF( IADD.GT.0 .AND. IADD.LE.N )
|
|
$ A( IADD, IADD ) = ONE
|
|
*
|
|
* Generate B (w/o rotation)
|
|
*
|
|
IF( ABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN
|
|
IN = 2*( ( N-1 ) / 2 ) + 1
|
|
IF( IN.NE.N )
|
|
$ CALL SLASET( 'Full', N, N, ZERO, ZERO, B, LDA )
|
|
ELSE
|
|
IN = N
|
|
END IF
|
|
CALL SLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ),
|
|
$ KZ2( KBZERO( JTYPE ) ), IBSIGN( JTYPE ),
|
|
$ RMAGN( KBMAGN( JTYPE ) ), ONE,
|
|
$ RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 2,
|
|
$ ISEED, B, LDA )
|
|
IADD = KADD( KBZERO( JTYPE ) )
|
|
IF( IADD.NE.0 .AND. IADD.LE.N )
|
|
$ B( IADD, IADD ) = ONE
|
|
*
|
|
IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN
|
|
*
|
|
* Include rotations
|
|
*
|
|
* Generate Q, Z as Householder transformations times
|
|
* a diagonal matrix.
|
|
*
|
|
DO 50 JC = 1, N - 1
|
|
DO 40 JR = JC, N
|
|
Q( JR, JC ) = SLARND( 3, ISEED )
|
|
Z( JR, JC ) = SLARND( 3, ISEED )
|
|
40 CONTINUE
|
|
CALL SLARFG( N+1-JC, Q( JC, JC ), Q( JC+1, JC ), 1,
|
|
$ WORK( JC ) )
|
|
WORK( 2*N+JC ) = SIGN( ONE, Q( JC, JC ) )
|
|
Q( JC, JC ) = ONE
|
|
CALL SLARFG( N+1-JC, Z( JC, JC ), Z( JC+1, JC ), 1,
|
|
$ WORK( N+JC ) )
|
|
WORK( 3*N+JC ) = SIGN( ONE, Z( JC, JC ) )
|
|
Z( JC, JC ) = ONE
|
|
50 CONTINUE
|
|
Q( N, N ) = ONE
|
|
WORK( N ) = ZERO
|
|
WORK( 3*N ) = SIGN( ONE, SLARND( 2, ISEED ) )
|
|
Z( N, N ) = ONE
|
|
WORK( 2*N ) = ZERO
|
|
WORK( 4*N ) = SIGN( ONE, SLARND( 2, ISEED ) )
|
|
*
|
|
* Apply the diagonal matrices
|
|
*
|
|
DO 70 JC = 1, N
|
|
DO 60 JR = 1, N
|
|
A( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
|
|
$ A( JR, JC )
|
|
B( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
|
|
$ B( JR, JC )
|
|
60 CONTINUE
|
|
70 CONTINUE
|
|
CALL SORM2R( 'L', 'N', N, N, N-1, Q, LDQ, WORK, A,
|
|
$ LDA, WORK( 2*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 )
|
|
$ GO TO 100
|
|
CALL SORM2R( 'R', 'T', N, N, N-1, Z, LDQ, WORK( N+1 ),
|
|
$ A, LDA, WORK( 2*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 )
|
|
$ GO TO 100
|
|
CALL SORM2R( 'L', 'N', N, N, N-1, Q, LDQ, WORK, B,
|
|
$ LDA, WORK( 2*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 )
|
|
$ GO TO 100
|
|
CALL SORM2R( 'R', 'T', N, N, N-1, Z, LDQ, WORK( N+1 ),
|
|
$ B, LDA, WORK( 2*N+1 ), IINFO )
|
|
IF( IINFO.NE.0 )
|
|
$ GO TO 100
|
|
END IF
|
|
ELSE
|
|
*
|
|
* Random matrices
|
|
*
|
|
DO 90 JC = 1, N
|
|
DO 80 JR = 1, N
|
|
A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )*
|
|
$ SLARND( 2, ISEED )
|
|
B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )*
|
|
$ SLARND( 2, ISEED )
|
|
80 CONTINUE
|
|
90 CONTINUE
|
|
END IF
|
|
*
|
|
100 CONTINUE
|
|
*
|
|
IF( IINFO.NE.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
|
|
$ IOLDSD
|
|
INFO = ABS( IINFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
110 CONTINUE
|
|
*
|
|
DO 120 I = 1, 13
|
|
RESULT( I ) = -ONE
|
|
120 CONTINUE
|
|
*
|
|
* Test with and without sorting of eigenvalues
|
|
*
|
|
DO 150 ISORT = 0, 1
|
|
IF( ISORT.EQ.0 ) THEN
|
|
SORT = 'N'
|
|
RSUB = 0
|
|
ELSE
|
|
SORT = 'S'
|
|
RSUB = 5
|
|
END IF
|
|
*
|
|
* Call SGGES to compute H, T, Q, Z, alpha, and beta.
|
|
*
|
|
CALL SLACPY( 'Full', N, N, A, LDA, S, LDA )
|
|
CALL SLACPY( 'Full', N, N, B, LDA, T, LDA )
|
|
NTEST = 1 + RSUB + ISORT
|
|
RESULT( 1+RSUB+ISORT ) = ULPINV
|
|
CALL SGGES( 'V', 'V', SORT, SLCTES, N, S, LDA, T, LDA,
|
|
$ SDIM, ALPHAR, ALPHAI, BETA, Q, LDQ, Z, LDQ,
|
|
$ WORK, LWORK, BWORK, IINFO )
|
|
IF( IINFO.NE.0 .AND. IINFO.NE.N+2 ) THEN
|
|
RESULT( 1+RSUB+ISORT ) = ULPINV
|
|
WRITE( NOUNIT, FMT = 9999 )'SGGES', IINFO, N, JTYPE,
|
|
$ IOLDSD
|
|
INFO = ABS( IINFO )
|
|
GO TO 160
|
|
END IF
|
|
*
|
|
NTEST = 4 + RSUB
|
|
*
|
|
* Do tests 1--4 (or tests 7--9 when reordering )
|
|
*
|
|
IF( ISORT.EQ.0 ) THEN
|
|
CALL SGET51( 1, N, A, LDA, S, LDA, Q, LDQ, Z, LDQ,
|
|
$ WORK, RESULT( 1 ) )
|
|
CALL SGET51( 1, N, B, LDA, T, LDA, Q, LDQ, Z, LDQ,
|
|
$ WORK, RESULT( 2 ) )
|
|
ELSE
|
|
CALL SGET54( N, A, LDA, B, LDA, S, LDA, T, LDA, Q,
|
|
$ LDQ, Z, LDQ, WORK, RESULT( 7 ) )
|
|
END IF
|
|
CALL SGET51( 3, N, A, LDA, T, LDA, Q, LDQ, Q, LDQ, WORK,
|
|
$ RESULT( 3+RSUB ) )
|
|
CALL SGET51( 3, N, B, LDA, T, LDA, Z, LDQ, Z, LDQ, WORK,
|
|
$ RESULT( 4+RSUB ) )
|
|
*
|
|
* Do test 5 and 6 (or Tests 10 and 11 when reordering):
|
|
* check Schur form of A and compare eigenvalues with
|
|
* diagonals.
|
|
*
|
|
NTEST = 6 + RSUB
|
|
TEMP1 = ZERO
|
|
*
|
|
DO 130 J = 1, N
|
|
ILABAD = .FALSE.
|
|
IF( ALPHAI( J ).EQ.ZERO ) THEN
|
|
TEMP2 = ( ABS( ALPHAR( J )-S( J, J ) ) /
|
|
$ MAX( SAFMIN, ABS( ALPHAR( J ) ), ABS( S( J,
|
|
$ J ) ) )+ABS( BETA( J )-T( J, J ) ) /
|
|
$ MAX( SAFMIN, ABS( BETA( J ) ), ABS( T( J,
|
|
$ J ) ) ) ) / ULP
|
|
*
|
|
IF( J.LT.N ) THEN
|
|
IF( S( J+1, J ).NE.ZERO ) THEN
|
|
ILABAD = .TRUE.
|
|
RESULT( 5+RSUB ) = ULPINV
|
|
END IF
|
|
END IF
|
|
IF( J.GT.1 ) THEN
|
|
IF( S( J, J-1 ).NE.ZERO ) THEN
|
|
ILABAD = .TRUE.
|
|
RESULT( 5+RSUB ) = ULPINV
|
|
END IF
|
|
END IF
|
|
*
|
|
ELSE
|
|
IF( ALPHAI( J ).GT.ZERO ) THEN
|
|
I1 = J
|
|
ELSE
|
|
I1 = J - 1
|
|
END IF
|
|
IF( I1.LE.0 .OR. I1.GE.N ) THEN
|
|
ILABAD = .TRUE.
|
|
ELSE IF( I1.LT.N-1 ) THEN
|
|
IF( S( I1+2, I1+1 ).NE.ZERO ) THEN
|
|
ILABAD = .TRUE.
|
|
RESULT( 5+RSUB ) = ULPINV
|
|
END IF
|
|
ELSE IF( I1.GT.1 ) THEN
|
|
IF( S( I1, I1-1 ).NE.ZERO ) THEN
|
|
ILABAD = .TRUE.
|
|
RESULT( 5+RSUB ) = ULPINV
|
|
END IF
|
|
END IF
|
|
IF( .NOT.ILABAD ) THEN
|
|
CALL SGET53( S( I1, I1 ), LDA, T( I1, I1 ), LDA,
|
|
$ BETA( J ), ALPHAR( J ),
|
|
$ ALPHAI( J ), TEMP2, IERR )
|
|
IF( IERR.GE.3 ) THEN
|
|
WRITE( NOUNIT, FMT = 9998 )IERR, J, N,
|
|
$ JTYPE, IOLDSD
|
|
INFO = ABS( IERR )
|
|
END IF
|
|
ELSE
|
|
TEMP2 = ULPINV
|
|
END IF
|
|
*
|
|
END IF
|
|
TEMP1 = MAX( TEMP1, TEMP2 )
|
|
IF( ILABAD ) THEN
|
|
WRITE( NOUNIT, FMT = 9997 )J, N, JTYPE, IOLDSD
|
|
END IF
|
|
130 CONTINUE
|
|
RESULT( 6+RSUB ) = TEMP1
|
|
*
|
|
IF( ISORT.GE.1 ) THEN
|
|
*
|
|
* Do test 12
|
|
*
|
|
NTEST = 12
|
|
RESULT( 12 ) = ZERO
|
|
KNTEIG = 0
|
|
DO 140 I = 1, N
|
|
IF( SLCTES( ALPHAR( I ), ALPHAI( I ),
|
|
$ BETA( I ) ) .OR. SLCTES( ALPHAR( I ),
|
|
$ -ALPHAI( I ), BETA( I ) ) ) THEN
|
|
KNTEIG = KNTEIG + 1
|
|
END IF
|
|
IF( I.LT.N ) THEN
|
|
IF( ( SLCTES( ALPHAR( I+1 ), ALPHAI( I+1 ),
|
|
$ BETA( I+1 ) ) .OR. SLCTES( ALPHAR( I+1 ),
|
|
$ -ALPHAI( I+1 ), BETA( I+1 ) ) ) .AND.
|
|
$ ( .NOT.( SLCTES( ALPHAR( I ), ALPHAI( I ),
|
|
$ BETA( I ) ) .OR. SLCTES( ALPHAR( I ),
|
|
$ -ALPHAI( I ), BETA( I ) ) ) ) .AND.
|
|
$ IINFO.NE.N+2 ) THEN
|
|
RESULT( 12 ) = ULPINV
|
|
END IF
|
|
END IF
|
|
140 CONTINUE
|
|
IF( SDIM.NE.KNTEIG ) THEN
|
|
RESULT( 12 ) = ULPINV
|
|
END IF
|
|
END IF
|
|
*
|
|
150 CONTINUE
|
|
*
|
|
* End of Loop -- Check for RESULT(j) > THRESH
|
|
*
|
|
160 CONTINUE
|
|
*
|
|
NTESTT = NTESTT + NTEST
|
|
*
|
|
* Print out tests which fail.
|
|
*
|
|
DO 170 JR = 1, NTEST
|
|
IF( RESULT( JR ).GE.THRESH ) THEN
|
|
*
|
|
* If this is the first test to fail,
|
|
* print a header to the data file.
|
|
*
|
|
IF( NERRS.EQ.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9996 )'SGS'
|
|
*
|
|
* Matrix types
|
|
*
|
|
WRITE( NOUNIT, FMT = 9995 )
|
|
WRITE( NOUNIT, FMT = 9994 )
|
|
WRITE( NOUNIT, FMT = 9993 )'Orthogonal'
|
|
*
|
|
* Tests performed
|
|
*
|
|
WRITE( NOUNIT, FMT = 9992 )'orthogonal', '''',
|
|
$ 'transpose', ( '''', J = 1, 8 )
|
|
*
|
|
END IF
|
|
NERRS = NERRS + 1
|
|
IF( RESULT( JR ).LT.10000.0 ) THEN
|
|
WRITE( NOUNIT, FMT = 9991 )N, JTYPE, IOLDSD, JR,
|
|
$ RESULT( JR )
|
|
ELSE
|
|
WRITE( NOUNIT, FMT = 9990 )N, JTYPE, IOLDSD, JR,
|
|
$ RESULT( JR )
|
|
END IF
|
|
END IF
|
|
170 CONTINUE
|
|
*
|
|
180 CONTINUE
|
|
190 CONTINUE
|
|
*
|
|
* Summary
|
|
*
|
|
CALL ALASVM( 'SGS', NOUNIT, NERRS, NTESTT, 0 )
|
|
*
|
|
WORK( 1 ) = MAXWRK
|
|
*
|
|
RETURN
|
|
*
|
|
9999 FORMAT( ' SDRGES: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
|
|
$ I6, ', JTYPE=', I6, ', ISEED=(', 4( I4, ',' ), I5, ')' )
|
|
*
|
|
9998 FORMAT( ' SDRGES: SGET53 returned INFO=', I1, ' for eigenvalue ',
|
|
$ I6, '.', / 9X, 'N=', I6, ', JTYPE=', I6, ', ISEED=(',
|
|
$ 4( I4, ',' ), I5, ')' )
|
|
*
|
|
9997 FORMAT( ' SDRGES: S not in Schur form at eigenvalue ', I6, '.',
|
|
$ / 9X, 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ),
|
|
$ I5, ')' )
|
|
*
|
|
9996 FORMAT( / 1X, A3, ' -- Real Generalized Schur form driver' )
|
|
*
|
|
9995 FORMAT( ' Matrix types (see SDRGES for details): ' )
|
|
*
|
|
9994 FORMAT( ' Special Matrices:', 23X,
|
|
$ '(J''=transposed Jordan block)',
|
|
$ / ' 1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J'',J'') ',
|
|
$ '6=(diag(J'',I), diag(I,J''))', / ' Diagonal Matrices: ( ',
|
|
$ 'D=diag(0,1,2,...) )', / ' 7=(D,I) 9=(large*D, small*I',
|
|
$ ') 11=(large*I, small*D) 13=(large*D, large*I)', /
|
|
$ ' 8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) ',
|
|
$ ' 14=(small*D, small*I)', / ' 15=(D, reversed D)' )
|
|
9993 FORMAT( ' Matrices Rotated by Random ', A, ' Matrices U, V:',
|
|
$ / ' 16=Transposed Jordan Blocks 19=geometric ',
|
|
$ 'alpha, beta=0,1', / ' 17=arithm. alpha&beta ',
|
|
$ ' 20=arithmetic alpha, beta=0,1', / ' 18=clustered ',
|
|
$ 'alpha, beta=0,1 21=random alpha, beta=0,1',
|
|
$ / ' Large & Small Matrices:', / ' 22=(large, small) ',
|
|
$ '23=(small,large) 24=(small,small) 25=(large,large)',
|
|
$ / ' 26=random O(1) matrices.' )
|
|
*
|
|
9992 FORMAT( / ' Tests performed: (S is Schur, T is triangular, ',
|
|
$ 'Q and Z are ', A, ',', / 19X,
|
|
$ 'l and r are the appropriate left and right', / 19X,
|
|
$ 'eigenvectors, resp., a is alpha, b is beta, and', / 19X, A,
|
|
$ ' means ', A, '.)', / ' Without ordering: ',
|
|
$ / ' 1 = | A - Q S Z', A,
|
|
$ ' | / ( |A| n ulp ) 2 = | B - Q T Z', A,
|
|
$ ' | / ( |B| n ulp )', / ' 3 = | I - QQ', A,
|
|
$ ' | / ( n ulp ) 4 = | I - ZZ', A,
|
|
$ ' | / ( n ulp )', / ' 5 = A is in Schur form S',
|
|
$ / ' 6 = difference between (alpha,beta)',
|
|
$ ' and diagonals of (S,T)', / ' With ordering: ',
|
|
$ / ' 7 = | (A,B) - Q (S,T) Z', A,
|
|
$ ' | / ( |(A,B)| n ulp ) ', / ' 8 = | I - QQ', A,
|
|
$ ' | / ( n ulp ) 9 = | I - ZZ', A,
|
|
$ ' | / ( n ulp )', / ' 10 = A is in Schur form S',
|
|
$ / ' 11 = difference between (alpha,beta) and diagonals',
|
|
$ ' of (S,T)', / ' 12 = SDIM is the correct number of ',
|
|
$ 'selected eigenvalues', / )
|
|
9991 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
|
|
$ 4( I4, ',' ), ' result ', I2, ' is', 0P, F8.2 )
|
|
9990 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
|
|
$ 4( I4, ',' ), ' result ', I2, ' is', 1P, E10.3 )
|
|
*
|
|
* End of SDRGES
|
|
*
|
|
END
|
|
|