You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
440 lines
14 KiB
440 lines
14 KiB
*> \brief \b SSPT21
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SSPT21( ITYPE, UPLO, N, KBAND, AP, D, E, U, LDU, VP,
|
|
* TAU, WORK, RESULT )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* CHARACTER UPLO
|
|
* INTEGER ITYPE, KBAND, LDU, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL AP( * ), D( * ), E( * ), RESULT( 2 ), TAU( * ),
|
|
* $ U( LDU, * ), VP( * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SSPT21 generally checks a decomposition of the form
|
|
*>
|
|
*> A = U S U**T
|
|
*>
|
|
*> where **T means transpose, A is symmetric (stored in packed format), U
|
|
*> is orthogonal, and S is diagonal (if KBAND=0) or symmetric
|
|
*> tridiagonal (if KBAND=1). If ITYPE=1, then U is represented as a
|
|
*> dense matrix, otherwise the U is expressed as a product of
|
|
*> Householder transformations, whose vectors are stored in the array
|
|
*> "V" and whose scaling constants are in "TAU"; we shall use the
|
|
*> letter "V" to refer to the product of Householder transformations
|
|
*> (which should be equal to U).
|
|
*>
|
|
*> Specifically, if ITYPE=1, then:
|
|
*>
|
|
*> RESULT(1) = | A - U S U**T | / ( |A| n ulp ) and
|
|
*> RESULT(2) = | I - U U**T | / ( n ulp )
|
|
*>
|
|
*> If ITYPE=2, then:
|
|
*>
|
|
*> RESULT(1) = | A - V S V**T | / ( |A| n ulp )
|
|
*>
|
|
*> If ITYPE=3, then:
|
|
*>
|
|
*> RESULT(1) = | I - V U**T | / ( n ulp )
|
|
*>
|
|
*> Packed storage means that, for example, if UPLO='U', then the columns
|
|
*> of the upper triangle of A are stored one after another, so that
|
|
*> A(1,j+1) immediately follows A(j,j) in the array AP. Similarly, if
|
|
*> UPLO='L', then the columns of the lower triangle of A are stored one
|
|
*> after another in AP, so that A(j+1,j+1) immediately follows A(n,j)
|
|
*> in the array AP. This means that A(i,j) is stored in:
|
|
*>
|
|
*> AP( i + j*(j-1)/2 ) if UPLO='U'
|
|
*>
|
|
*> AP( i + (2*n-j)*(j-1)/2 ) if UPLO='L'
|
|
*>
|
|
*> The array VP bears the same relation to the matrix V that A does to
|
|
*> AP.
|
|
*>
|
|
*> For ITYPE > 1, the transformation U is expressed as a product
|
|
*> of Householder transformations:
|
|
*>
|
|
*> If UPLO='U', then V = H(n-1)...H(1), where
|
|
*>
|
|
*> H(j) = I - tau(j) v(j) v(j)**T
|
|
*>
|
|
*> and the first j-1 elements of v(j) are stored in V(1:j-1,j+1),
|
|
*> (i.e., VP( j*(j+1)/2 + 1 : j*(j+1)/2 + j-1 ) ),
|
|
*> the j-th element is 1, and the last n-j elements are 0.
|
|
*>
|
|
*> If UPLO='L', then V = H(1)...H(n-1), where
|
|
*>
|
|
*> H(j) = I - tau(j) v(j) v(j)**T
|
|
*>
|
|
*> and the first j elements of v(j) are 0, the (j+1)-st is 1, and the
|
|
*> (j+2)-nd through n-th elements are stored in V(j+2:n,j) (i.e.,
|
|
*> in VP( (2*n-j)*(j-1)/2 + j+2 : (2*n-j)*(j-1)/2 + n ) .)
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] ITYPE
|
|
*> \verbatim
|
|
*> ITYPE is INTEGER
|
|
*> Specifies the type of tests to be performed.
|
|
*> 1: U expressed as a dense orthogonal matrix:
|
|
*> RESULT(1) = | A - U S U**T | / ( |A| n ulp ) and
|
|
*> RESULT(2) = | I - U U**T | / ( n ulp )
|
|
*>
|
|
*> 2: U expressed as a product V of Housholder transformations:
|
|
*> RESULT(1) = | A - V S V**T | / ( |A| n ulp )
|
|
*>
|
|
*> 3: U expressed both as a dense orthogonal matrix and
|
|
*> as a product of Housholder transformations:
|
|
*> RESULT(1) = | I - V U**T | / ( n ulp )
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER
|
|
*> If UPLO='U', AP and VP are considered to contain the upper
|
|
*> triangle of A and V.
|
|
*> If UPLO='L', AP and VP are considered to contain the lower
|
|
*> triangle of A and V.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The size of the matrix. If it is zero, SSPT21 does nothing.
|
|
*> It must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] KBAND
|
|
*> \verbatim
|
|
*> KBAND is INTEGER
|
|
*> The bandwidth of the matrix. It may only be zero or one.
|
|
*> If zero, then S is diagonal, and E is not referenced. If
|
|
*> one, then S is symmetric tri-diagonal.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AP
|
|
*> \verbatim
|
|
*> AP is REAL array, dimension (N*(N+1)/2)
|
|
*> The original (unfactored) matrix. It is assumed to be
|
|
*> symmetric, and contains the columns of just the upper
|
|
*> triangle (UPLO='U') or only the lower triangle (UPLO='L'),
|
|
*> packed one after another.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (N)
|
|
*> The diagonal of the (symmetric tri-) diagonal matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is REAL array, dimension (N-1)
|
|
*> The off-diagonal of the (symmetric tri-) diagonal matrix.
|
|
*> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
|
|
*> (3,2) element, etc.
|
|
*> Not referenced if KBAND=0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] U
|
|
*> \verbatim
|
|
*> U is REAL array, dimension (LDU, N)
|
|
*> If ITYPE=1 or 3, this contains the orthogonal matrix in
|
|
*> the decomposition, expressed as a dense matrix. If ITYPE=2,
|
|
*> then it is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDU
|
|
*> \verbatim
|
|
*> LDU is INTEGER
|
|
*> The leading dimension of U. LDU must be at least N and
|
|
*> at least 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] VP
|
|
*> \verbatim
|
|
*> VP is REAL array, dimension (N*(N+1)/2)
|
|
*> If ITYPE=2 or 3, the columns of this array contain the
|
|
*> Householder vectors used to describe the orthogonal matrix
|
|
*> in the decomposition, as described in purpose.
|
|
*> *NOTE* If ITYPE=2 or 3, V is modified and restored. The
|
|
*> subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U')
|
|
*> is set to one, and later reset to its original value, during
|
|
*> the course of the calculation.
|
|
*> If ITYPE=1, then it is neither referenced nor modified.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TAU
|
|
*> \verbatim
|
|
*> TAU is REAL array, dimension (N)
|
|
*> If ITYPE >= 2, then TAU(j) is the scalar factor of
|
|
*> v(j) v(j)**T in the Householder transformation H(j) of
|
|
*> the product U = H(1)...H(n-2)
|
|
*> If ITYPE < 2, then TAU is not referenced.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (N**2+N)
|
|
*> Workspace.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESULT
|
|
*> \verbatim
|
|
*> RESULT is REAL array, dimension (2)
|
|
*> The values computed by the two tests described above. The
|
|
*> values are currently limited to 1/ulp, to avoid overflow.
|
|
*> RESULT(1) is always modified. RESULT(2) is modified only
|
|
*> if ITYPE=1.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup single_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SSPT21( ITYPE, UPLO, N, KBAND, AP, D, E, U, LDU, VP,
|
|
$ TAU, WORK, RESULT )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
CHARACTER UPLO
|
|
INTEGER ITYPE, KBAND, LDU, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL AP( * ), D( * ), E( * ), RESULT( 2 ), TAU( * ),
|
|
$ U( LDU, * ), VP( * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE, TEN
|
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0, TEN = 10.0E0 )
|
|
REAL HALF
|
|
PARAMETER ( HALF = 1.0E+0 / 2.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL LOWER
|
|
CHARACTER CUPLO
|
|
INTEGER IINFO, J, JP, JP1, JR, LAP
|
|
REAL ANORM, TEMP, ULP, UNFL, VSAVE, WNORM
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
REAL SDOT, SLAMCH, SLANGE, SLANSP
|
|
EXTERNAL LSAME, SDOT, SLAMCH, SLANGE, SLANSP
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SAXPY, SCOPY, SGEMM, SLACPY, SLASET, SOPMTR,
|
|
$ SSPMV, SSPR, SSPR2
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MAX, MIN, REAL
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* 1) Constants
|
|
*
|
|
RESULT( 1 ) = ZERO
|
|
IF( ITYPE.EQ.1 )
|
|
$ RESULT( 2 ) = ZERO
|
|
IF( N.LE.0 )
|
|
$ RETURN
|
|
*
|
|
LAP = ( N*( N+1 ) ) / 2
|
|
*
|
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
|
LOWER = .FALSE.
|
|
CUPLO = 'U'
|
|
ELSE
|
|
LOWER = .TRUE.
|
|
CUPLO = 'L'
|
|
END IF
|
|
*
|
|
UNFL = SLAMCH( 'Safe minimum' )
|
|
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
|
|
*
|
|
* Some Error Checks
|
|
*
|
|
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
|
|
RESULT( 1 ) = TEN / ULP
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Do Test 1
|
|
*
|
|
* Norm of A:
|
|
*
|
|
IF( ITYPE.EQ.3 ) THEN
|
|
ANORM = ONE
|
|
ELSE
|
|
ANORM = MAX( SLANSP( '1', CUPLO, N, AP, WORK ), UNFL )
|
|
END IF
|
|
*
|
|
* Compute error matrix:
|
|
*
|
|
IF( ITYPE.EQ.1 ) THEN
|
|
*
|
|
* ITYPE=1: error = A - U S U**T
|
|
*
|
|
CALL SLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
|
|
CALL SCOPY( LAP, AP, 1, WORK, 1 )
|
|
*
|
|
DO 10 J = 1, N
|
|
CALL SSPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
|
|
10 CONTINUE
|
|
*
|
|
IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
|
|
DO 20 J = 1, N - 1
|
|
CALL SSPR2( CUPLO, N, -E( J ), U( 1, J ), 1, U( 1, J+1 ),
|
|
$ 1, WORK )
|
|
20 CONTINUE
|
|
END IF
|
|
WNORM = SLANSP( '1', CUPLO, N, WORK, WORK( N**2+1 ) )
|
|
*
|
|
ELSE IF( ITYPE.EQ.2 ) THEN
|
|
*
|
|
* ITYPE=2: error = V S V**T - A
|
|
*
|
|
CALL SLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
|
|
*
|
|
IF( LOWER ) THEN
|
|
WORK( LAP ) = D( N )
|
|
DO 40 J = N - 1, 1, -1
|
|
JP = ( ( 2*N-J )*( J-1 ) ) / 2
|
|
JP1 = JP + N - J
|
|
IF( KBAND.EQ.1 ) THEN
|
|
WORK( JP+J+1 ) = ( ONE-TAU( J ) )*E( J )
|
|
DO 30 JR = J + 2, N
|
|
WORK( JP+JR ) = -TAU( J )*E( J )*VP( JP+JR )
|
|
30 CONTINUE
|
|
END IF
|
|
*
|
|
IF( TAU( J ).NE.ZERO ) THEN
|
|
VSAVE = VP( JP+J+1 )
|
|
VP( JP+J+1 ) = ONE
|
|
CALL SSPMV( 'L', N-J, ONE, WORK( JP1+J+1 ),
|
|
$ VP( JP+J+1 ), 1, ZERO, WORK( LAP+1 ), 1 )
|
|
TEMP = -HALF*TAU( J )*SDOT( N-J, WORK( LAP+1 ), 1,
|
|
$ VP( JP+J+1 ), 1 )
|
|
CALL SAXPY( N-J, TEMP, VP( JP+J+1 ), 1, WORK( LAP+1 ),
|
|
$ 1 )
|
|
CALL SSPR2( 'L', N-J, -TAU( J ), VP( JP+J+1 ), 1,
|
|
$ WORK( LAP+1 ), 1, WORK( JP1+J+1 ) )
|
|
VP( JP+J+1 ) = VSAVE
|
|
END IF
|
|
WORK( JP+J ) = D( J )
|
|
40 CONTINUE
|
|
ELSE
|
|
WORK( 1 ) = D( 1 )
|
|
DO 60 J = 1, N - 1
|
|
JP = ( J*( J-1 ) ) / 2
|
|
JP1 = JP + J
|
|
IF( KBAND.EQ.1 ) THEN
|
|
WORK( JP1+J ) = ( ONE-TAU( J ) )*E( J )
|
|
DO 50 JR = 1, J - 1
|
|
WORK( JP1+JR ) = -TAU( J )*E( J )*VP( JP1+JR )
|
|
50 CONTINUE
|
|
END IF
|
|
*
|
|
IF( TAU( J ).NE.ZERO ) THEN
|
|
VSAVE = VP( JP1+J )
|
|
VP( JP1+J ) = ONE
|
|
CALL SSPMV( 'U', J, ONE, WORK, VP( JP1+1 ), 1, ZERO,
|
|
$ WORK( LAP+1 ), 1 )
|
|
TEMP = -HALF*TAU( J )*SDOT( J, WORK( LAP+1 ), 1,
|
|
$ VP( JP1+1 ), 1 )
|
|
CALL SAXPY( J, TEMP, VP( JP1+1 ), 1, WORK( LAP+1 ),
|
|
$ 1 )
|
|
CALL SSPR2( 'U', J, -TAU( J ), VP( JP1+1 ), 1,
|
|
$ WORK( LAP+1 ), 1, WORK )
|
|
VP( JP1+J ) = VSAVE
|
|
END IF
|
|
WORK( JP1+J+1 ) = D( J+1 )
|
|
60 CONTINUE
|
|
END IF
|
|
*
|
|
DO 70 J = 1, LAP
|
|
WORK( J ) = WORK( J ) - AP( J )
|
|
70 CONTINUE
|
|
WNORM = SLANSP( '1', CUPLO, N, WORK, WORK( LAP+1 ) )
|
|
*
|
|
ELSE IF( ITYPE.EQ.3 ) THEN
|
|
*
|
|
* ITYPE=3: error = U V**T - I
|
|
*
|
|
IF( N.LT.2 )
|
|
$ RETURN
|
|
CALL SLACPY( ' ', N, N, U, LDU, WORK, N )
|
|
CALL SOPMTR( 'R', CUPLO, 'T', N, N, VP, TAU, WORK, N,
|
|
$ WORK( N**2+1 ), IINFO )
|
|
IF( IINFO.NE.0 ) THEN
|
|
RESULT( 1 ) = TEN / ULP
|
|
RETURN
|
|
END IF
|
|
*
|
|
DO 80 J = 1, N
|
|
WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
|
|
80 CONTINUE
|
|
*
|
|
WNORM = SLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) )
|
|
END IF
|
|
*
|
|
IF( ANORM.GT.WNORM ) THEN
|
|
RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
|
|
ELSE
|
|
IF( ANORM.LT.ONE ) THEN
|
|
RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
|
|
ELSE
|
|
RESULT( 1 ) = MIN( WNORM / ANORM, REAL( N ) ) / ( N*ULP )
|
|
END IF
|
|
END IF
|
|
*
|
|
* Do Test 2
|
|
*
|
|
* Compute U U**T - I
|
|
*
|
|
IF( ITYPE.EQ.1 ) THEN
|
|
CALL SGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
|
|
$ N )
|
|
*
|
|
DO 90 J = 1, N
|
|
WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
|
|
90 CONTINUE
|
|
*
|
|
RESULT( 2 ) = MIN( SLANGE( '1', N, N, WORK, N,
|
|
$ WORK( N**2+1 ) ), REAL( N ) ) / ( N*ULP )
|
|
END IF
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SSPT21
|
|
*
|
|
END
|
|
|