Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

215 lines
5.6 KiB

*> \brief \b ZBDT05
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZBDT05( M, N, A, LDA, S, NS, U, LDU,
* VT, LDVT, WORK, RESID )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDU, LDVT, N, NS
* DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
* DOUBLE PRECISION S( * )
* COMPLEX*16 A( LDA, * ), U( * ), VT( LDVT, * ), WORK( * )
* ..
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZBDT05 reconstructs a bidiagonal matrix B from its (partial) SVD:
*> S = U' * B * V
*> where U and V are orthogonal matrices and S is diagonal.
*>
*> The test ratio to test the singular value decomposition is
*> RESID = norm( S - U' * B * V ) / ( n * norm(B) * EPS )
*> where VT = V' and EPS is the machine precision.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrices A and U.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrices A and VT.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> The m by n matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension (NS)
*> The singular values from the (partial) SVD of B, sorted in
*> decreasing order.
*> \endverbatim
*>
*> \param[in] NS
*> \verbatim
*> NS is INTEGER
*> The number of singular values/vectors from the (partial)
*> SVD of B.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is COMPLEX*16 array, dimension (LDU,NS)
*> The n by ns orthogonal matrix U in S = U' * B * V.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of the array U. LDU >= max(1,N)
*> \endverbatim
*>
*> \param[in] VT
*> \verbatim
*> VT is COMPLEX*16 array, dimension (LDVT,N)
*> The n by ns orthogonal matrix V in S = U' * B * V.
*> \endverbatim
*>
*> \param[in] LDVT
*> \verbatim
*> LDVT is INTEGER
*> The leading dimension of the array VT.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (M,N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> The test ratio: norm(S - U' * A * V) / ( n * norm(A) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE ZBDT05( M, N, A, LDA, S, NS, U, LDU,
$ VT, LDVT, WORK, RESID )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER LDA, LDU, LDVT, M, N, NS
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION S( * )
COMPLEX*16 A( LDA, * ), U( * ), VT( LDVT, * ), WORK( * )
* ..
*
* ======================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, J
DOUBLE PRECISION ANORM, EPS
* ..
* .. Local Arrays ..
DOUBLE PRECISION DUM( 1 )
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX
DOUBLE PRECISION DASUM, DZASUM, DLAMCH, ZLANGE
EXTERNAL LSAME, IDAMAX, DASUM, DZASUM, DLAMCH, ZLANGE
* ..
* .. External Subroutines ..
EXTERNAL ZGEMM
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
* Quick return if possible.
*
RESID = ZERO
IF( MIN( M, N ).LE.0 .OR. NS.LE.0 )
$ RETURN
*
EPS = DLAMCH( 'Precision' )
ANORM = ZLANGE( 'M', M, N, A, LDA, DUM )
*
* Compute U' * A * V.
*
CALL ZGEMM( 'N', 'C', M, NS, N, CONE, A, LDA, VT,
$ LDVT, CZERO, WORK( 1+NS*NS ), M )
CALL ZGEMM( 'C', 'N', NS, NS, M, -CONE, U, LDU, WORK( 1+NS*NS ),
$ M, CZERO, WORK, NS )
*
* norm(S - U' * B * V)
*
J = 0
DO 10 I = 1, NS
WORK( J+I ) = WORK( J+I ) + DCMPLX( S( I ), ZERO )
RESID = MAX( RESID, DZASUM( NS, WORK( J+1 ), 1 ) )
J = J + NS
10 CONTINUE
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
IF( ANORM.GE.RESID ) THEN
RESID = ( RESID / ANORM ) / ( DBLE( N )*EPS )
ELSE
IF( ANORM.LT.ONE ) THEN
RESID = ( MIN( RESID, DBLE( N )*ANORM ) / ANORM ) /
$ ( DBLE( N )*EPS )
ELSE
RESID = MIN( RESID / ANORM, DBLE( N ) ) /
$ ( DBLE( N )*EPS )
END IF
END IF
END IF
*
RETURN
*
* End of ZBDT05
*
END