You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
757 lines
25 KiB
757 lines
25 KiB
*> \brief \b ZDRGVX
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE ZDRGVX( NSIZE, THRESH, NIN, NOUT, A, LDA, B, AI, BI,
|
|
* ALPHA, BETA, VL, VR, ILO, IHI, LSCALE, RSCALE,
|
|
* S, DTRU, DIF, DIFTRU, WORK, LWORK, RWORK,
|
|
* IWORK, LIWORK, RESULT, BWORK, INFO )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER IHI, ILO, INFO, LDA, LIWORK, LWORK, NIN, NOUT,
|
|
* $ NSIZE
|
|
* DOUBLE PRECISION THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL BWORK( * )
|
|
* INTEGER IWORK( * )
|
|
* DOUBLE PRECISION DIF( * ), DIFTRU( * ), DTRU( * ), LSCALE( * ),
|
|
* $ RESULT( 4 ), RSCALE( * ), RWORK( * ), S( * )
|
|
* COMPLEX*16 A( LDA, * ), AI( LDA, * ), ALPHA( * ),
|
|
* $ B( LDA, * ), BETA( * ), BI( LDA, * ),
|
|
* $ VL( LDA, * ), VR( LDA, * ), WORK( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> ZDRGVX checks the nonsymmetric generalized eigenvalue problem
|
|
*> expert driver ZGGEVX.
|
|
*>
|
|
*> ZGGEVX computes the generalized eigenvalues, (optionally) the left
|
|
*> and/or right eigenvectors, (optionally) computes a balancing
|
|
*> transformation to improve the conditioning, and (optionally)
|
|
*> reciprocal condition numbers for the eigenvalues and eigenvectors.
|
|
*>
|
|
*> When ZDRGVX is called with NSIZE > 0, two types of test matrix pairs
|
|
*> are generated by the subroutine DLATM6 and test the driver ZGGEVX.
|
|
*> The test matrices have the known exact condition numbers for
|
|
*> eigenvalues. For the condition numbers of the eigenvectors
|
|
*> corresponding the first and last eigenvalues are also know
|
|
*> ``exactly'' (see ZLATM6).
|
|
*> For each matrix pair, the following tests will be performed and
|
|
*> compared with the threshold THRESH.
|
|
*>
|
|
*> (1) max over all left eigenvalue/-vector pairs (beta/alpha,l) of
|
|
*>
|
|
*> | l**H * (beta A - alpha B) | / ( ulp max( |beta A|, |alpha B| ) )
|
|
*>
|
|
*> where l**H is the conjugate transpose of l.
|
|
*>
|
|
*> (2) max over all right eigenvalue/-vector pairs (beta/alpha,r) of
|
|
*>
|
|
*> | (beta A - alpha B) r | / ( ulp max( |beta A|, |alpha B| ) )
|
|
*>
|
|
*> (3) The condition number S(i) of eigenvalues computed by ZGGEVX
|
|
*> differs less than a factor THRESH from the exact S(i) (see
|
|
*> ZLATM6).
|
|
*>
|
|
*> (4) DIF(i) computed by ZTGSNA differs less than a factor 10*THRESH
|
|
*> from the exact value (for the 1st and 5th vectors only).
|
|
*>
|
|
*> Test Matrices
|
|
*> =============
|
|
*>
|
|
*> Two kinds of test matrix pairs
|
|
*> (A, B) = inverse(YH) * (Da, Db) * inverse(X)
|
|
*> are used in the tests:
|
|
*>
|
|
*> 1: Da = 1+a 0 0 0 0 Db = 1 0 0 0 0
|
|
*> 0 2+a 0 0 0 0 1 0 0 0
|
|
*> 0 0 3+a 0 0 0 0 1 0 0
|
|
*> 0 0 0 4+a 0 0 0 0 1 0
|
|
*> 0 0 0 0 5+a , 0 0 0 0 1 , and
|
|
*>
|
|
*> 2: Da = 1 -1 0 0 0 Db = 1 0 0 0 0
|
|
*> 1 1 0 0 0 0 1 0 0 0
|
|
*> 0 0 1 0 0 0 0 1 0 0
|
|
*> 0 0 0 1+a 1+b 0 0 0 1 0
|
|
*> 0 0 0 -1-b 1+a , 0 0 0 0 1 .
|
|
*>
|
|
*> In both cases the same inverse(YH) and inverse(X) are used to compute
|
|
*> (A, B), giving the exact eigenvectors to (A,B) as (YH, X):
|
|
*>
|
|
*> YH: = 1 0 -y y -y X = 1 0 -x -x x
|
|
*> 0 1 -y y -y 0 1 x -x -x
|
|
*> 0 0 1 0 0 0 0 1 0 0
|
|
*> 0 0 0 1 0 0 0 0 1 0
|
|
*> 0 0 0 0 1, 0 0 0 0 1 , where
|
|
*>
|
|
*> a, b, x and y will have all values independently of each other from
|
|
*> { sqrt(sqrt(ULP)), 0.1, 1, 10, 1/sqrt(sqrt(ULP)) }.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] NSIZE
|
|
*> \verbatim
|
|
*> NSIZE is INTEGER
|
|
*> The number of sizes of matrices to use. NSIZE must be at
|
|
*> least zero. If it is zero, no randomly generated matrices
|
|
*> are tested, but any test matrices read from NIN will be
|
|
*> tested. If it is not zero, then N = 5.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] THRESH
|
|
*> \verbatim
|
|
*> THRESH is DOUBLE PRECISION
|
|
*> A test will count as "failed" if the "error", computed as
|
|
*> described above, exceeds THRESH. Note that the error
|
|
*> is scaled to be O(1), so THRESH should be a reasonably
|
|
*> small multiple of 1, e.g., 10 or 100. In particular,
|
|
*> it should not depend on the precision (single vs. double)
|
|
*> or the size of the matrix. It must be at least zero.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NIN
|
|
*> \verbatim
|
|
*> NIN is INTEGER
|
|
*> The FORTRAN unit number for reading in the data file of
|
|
*> problems to solve.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NOUT
|
|
*> \verbatim
|
|
*> NOUT is INTEGER
|
|
*> The FORTRAN unit number for printing out error messages
|
|
*> (e.g., if a routine returns IINFO not equal to 0.)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX*16 array, dimension (LDA, NSIZE)
|
|
*> Used to hold the matrix whose eigenvalues are to be
|
|
*> computed. On exit, A contains the last matrix actually used.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of A, B, AI, BI, Ao, and Bo.
|
|
*> It must be at least 1 and at least NSIZE.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX*16 array, dimension (LDA, NSIZE)
|
|
*> Used to hold the matrix whose eigenvalues are to be
|
|
*> computed. On exit, B contains the last matrix actually used.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] AI
|
|
*> \verbatim
|
|
*> AI is COMPLEX*16 array, dimension (LDA, NSIZE)
|
|
*> Copy of A, modified by ZGGEVX.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BI
|
|
*> \verbatim
|
|
*> BI is COMPLEX*16 array, dimension (LDA, NSIZE)
|
|
*> Copy of B, modified by ZGGEVX.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is COMPLEX*16 array, dimension (NSIZE)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BETA
|
|
*> \verbatim
|
|
*> BETA is COMPLEX*16 array, dimension (NSIZE)
|
|
*>
|
|
*> On exit, ALPHA/BETA are the eigenvalues.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] VL
|
|
*> \verbatim
|
|
*> VL is COMPLEX*16 array, dimension (LDA, NSIZE)
|
|
*> VL holds the left eigenvectors computed by ZGGEVX.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] VR
|
|
*> \verbatim
|
|
*> VR is COMPLEX*16 array, dimension (LDA, NSIZE)
|
|
*> VR holds the right eigenvectors computed by ZGGEVX.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ILO
|
|
*> \verbatim
|
|
*> ILO is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IHI
|
|
*> \verbatim
|
|
*> IHI is INTEGER
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] LSCALE
|
|
*> \verbatim
|
|
*> LSCALE is DOUBLE PRECISION array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RSCALE
|
|
*> \verbatim
|
|
*> RSCALE is DOUBLE PRECISION array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] S
|
|
*> \verbatim
|
|
*> S is DOUBLE PRECISION array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DTRU
|
|
*> \verbatim
|
|
*> DTRU is DOUBLE PRECISION array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DIF
|
|
*> \verbatim
|
|
*> DIF is DOUBLE PRECISION array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] DIFTRU
|
|
*> \verbatim
|
|
*> DIFTRU is DOUBLE PRECISION array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX*16 array, dimension (LWORK)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> Leading dimension of WORK. LWORK >= 2*N*N + 2*N
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is DOUBLE PRECISION array, dimension (6*N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (LIWORK)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LIWORK
|
|
*> \verbatim
|
|
*> LIWORK is INTEGER
|
|
*> Leading dimension of IWORK. LIWORK >= N+2.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESULT
|
|
*> \verbatim
|
|
*> RESULT is DOUBLE PRECISION array, dimension (4)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BWORK
|
|
*> \verbatim
|
|
*> BWORK is LOGICAL array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] INFO
|
|
*> \verbatim
|
|
*> INFO is INTEGER
|
|
*> = 0: successful exit
|
|
*> < 0: if INFO = -i, the i-th argument had an illegal value.
|
|
*> > 0: A routine returned an error code.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex16_eig
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE ZDRGVX( NSIZE, THRESH, NIN, NOUT, A, LDA, B, AI, BI,
|
|
$ ALPHA, BETA, VL, VR, ILO, IHI, LSCALE, RSCALE,
|
|
$ S, DTRU, DIF, DIFTRU, WORK, LWORK, RWORK,
|
|
$ IWORK, LIWORK, RESULT, BWORK, INFO )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER IHI, ILO, INFO, LDA, LIWORK, LWORK, NIN, NOUT,
|
|
$ NSIZE
|
|
DOUBLE PRECISION THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL BWORK( * )
|
|
INTEGER IWORK( * )
|
|
DOUBLE PRECISION DIF( * ), DIFTRU( * ), DTRU( * ), LSCALE( * ),
|
|
$ RESULT( 4 ), RSCALE( * ), RWORK( * ), S( * )
|
|
COMPLEX*16 A( LDA, * ), AI( LDA, * ), ALPHA( * ),
|
|
$ B( LDA, * ), BETA( * ), BI( LDA, * ),
|
|
$ VL( LDA, * ), VR( LDA, * ), WORK( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE, TEN, TNTH, HALF
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0, TEN = 1.0D+1,
|
|
$ TNTH = 1.0D-1, HALF = 0.5D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, IPTYPE, IWA, IWB, IWX, IWY, J, LINFO,
|
|
$ MAXWRK, MINWRK, N, NERRS, NMAX, NPTKNT, NTESTT
|
|
DOUBLE PRECISION ABNORM, ANORM, BNORM, RATIO1, RATIO2, THRSH2,
|
|
$ ULP, ULPINV
|
|
* ..
|
|
* .. Local Arrays ..
|
|
COMPLEX*16 WEIGHT( 5 )
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ILAENV
|
|
DOUBLE PRECISION DLAMCH, ZLANGE
|
|
EXTERNAL ILAENV, DLAMCH, ZLANGE
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ALASVM, XERBLA, ZGET52, ZGGEVX, ZLACPY, ZLATM6
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, DCMPLX, MAX, SQRT
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Check for errors
|
|
*
|
|
INFO = 0
|
|
*
|
|
NMAX = 5
|
|
*
|
|
IF( NSIZE.LT.0 ) THEN
|
|
INFO = -1
|
|
ELSE IF( THRESH.LT.ZERO ) THEN
|
|
INFO = -2
|
|
ELSE IF( NIN.LE.0 ) THEN
|
|
INFO = -3
|
|
ELSE IF( NOUT.LE.0 ) THEN
|
|
INFO = -4
|
|
ELSE IF( LDA.LT.1 .OR. LDA.LT.NMAX ) THEN
|
|
INFO = -6
|
|
ELSE IF( LIWORK.LT.NMAX+2 ) THEN
|
|
INFO = -26
|
|
END IF
|
|
*
|
|
* Compute workspace
|
|
* (Note: Comments in the code beginning "Workspace:" describe the
|
|
* minimal amount of workspace needed at that point in the code,
|
|
* as well as the preferred amount for good performance.
|
|
* NB refers to the optimal block size for the immediately
|
|
* following subroutine, as returned by ILAENV.)
|
|
*
|
|
MINWRK = 1
|
|
IF( INFO.EQ.0 .AND. LWORK.GE.1 ) THEN
|
|
MINWRK = 2*NMAX*( NMAX+1 )
|
|
MAXWRK = NMAX*( 1+ILAENV( 1, 'ZGEQRF', ' ', NMAX, 1, NMAX,
|
|
$ 0 ) )
|
|
MAXWRK = MAX( MAXWRK, 2*NMAX*( NMAX+1 ) )
|
|
WORK( 1 ) = MAXWRK
|
|
END IF
|
|
*
|
|
IF( LWORK.LT.MINWRK )
|
|
$ INFO = -23
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL XERBLA( 'ZDRGVX', -INFO )
|
|
RETURN
|
|
END IF
|
|
*
|
|
N = 5
|
|
ULP = DLAMCH( 'P' )
|
|
ULPINV = ONE / ULP
|
|
THRSH2 = TEN*THRESH
|
|
NERRS = 0
|
|
NPTKNT = 0
|
|
NTESTT = 0
|
|
*
|
|
IF( NSIZE.EQ.0 )
|
|
$ GO TO 90
|
|
*
|
|
* Parameters used for generating test matrices.
|
|
*
|
|
WEIGHT( 1 ) = DCMPLX( TNTH, ZERO )
|
|
WEIGHT( 2 ) = DCMPLX( HALF, ZERO )
|
|
WEIGHT( 3 ) = ONE
|
|
WEIGHT( 4 ) = ONE / WEIGHT( 2 )
|
|
WEIGHT( 5 ) = ONE / WEIGHT( 1 )
|
|
*
|
|
DO 80 IPTYPE = 1, 2
|
|
DO 70 IWA = 1, 5
|
|
DO 60 IWB = 1, 5
|
|
DO 50 IWX = 1, 5
|
|
DO 40 IWY = 1, 5
|
|
*
|
|
* generated a pair of test matrix
|
|
*
|
|
CALL ZLATM6( IPTYPE, 5, A, LDA, B, VR, LDA, VL,
|
|
$ LDA, WEIGHT( IWA ), WEIGHT( IWB ),
|
|
$ WEIGHT( IWX ), WEIGHT( IWY ), DTRU,
|
|
$ DIFTRU )
|
|
*
|
|
* Compute eigenvalues/eigenvectors of (A, B).
|
|
* Compute eigenvalue/eigenvector condition numbers
|
|
* using computed eigenvectors.
|
|
*
|
|
CALL ZLACPY( 'F', N, N, A, LDA, AI, LDA )
|
|
CALL ZLACPY( 'F', N, N, B, LDA, BI, LDA )
|
|
*
|
|
CALL ZGGEVX( 'N', 'V', 'V', 'B', N, AI, LDA, BI,
|
|
$ LDA, ALPHA, BETA, VL, LDA, VR, LDA,
|
|
$ ILO, IHI, LSCALE, RSCALE, ANORM,
|
|
$ BNORM, S, DIF, WORK, LWORK, RWORK,
|
|
$ IWORK, BWORK, LINFO )
|
|
IF( LINFO.NE.0 ) THEN
|
|
WRITE( NOUT, FMT = 9999 )'ZGGEVX', LINFO, N,
|
|
$ IPTYPE, IWA, IWB, IWX, IWY
|
|
GO TO 30
|
|
END IF
|
|
*
|
|
* Compute the norm(A, B)
|
|
*
|
|
CALL ZLACPY( 'Full', N, N, AI, LDA, WORK, N )
|
|
CALL ZLACPY( 'Full', N, N, BI, LDA, WORK( N*N+1 ),
|
|
$ N )
|
|
ABNORM = ZLANGE( 'Fro', N, 2*N, WORK, N, RWORK )
|
|
*
|
|
* Tests (1) and (2)
|
|
*
|
|
RESULT( 1 ) = ZERO
|
|
CALL ZGET52( .TRUE., N, A, LDA, B, LDA, VL, LDA,
|
|
$ ALPHA, BETA, WORK, RWORK,
|
|
$ RESULT( 1 ) )
|
|
IF( RESULT( 2 ).GT.THRESH ) THEN
|
|
WRITE( NOUT, FMT = 9998 )'Left', 'ZGGEVX',
|
|
$ RESULT( 2 ), N, IPTYPE, IWA, IWB, IWX, IWY
|
|
END IF
|
|
*
|
|
RESULT( 2 ) = ZERO
|
|
CALL ZGET52( .FALSE., N, A, LDA, B, LDA, VR, LDA,
|
|
$ ALPHA, BETA, WORK, RWORK,
|
|
$ RESULT( 2 ) )
|
|
IF( RESULT( 3 ).GT.THRESH ) THEN
|
|
WRITE( NOUT, FMT = 9998 )'Right', 'ZGGEVX',
|
|
$ RESULT( 3 ), N, IPTYPE, IWA, IWB, IWX, IWY
|
|
END IF
|
|
*
|
|
* Test (3)
|
|
*
|
|
RESULT( 3 ) = ZERO
|
|
DO 10 I = 1, N
|
|
IF( S( I ).EQ.ZERO ) THEN
|
|
IF( DTRU( I ).GT.ABNORM*ULP )
|
|
$ RESULT( 3 ) = ULPINV
|
|
ELSE IF( DTRU( I ).EQ.ZERO ) THEN
|
|
IF( S( I ).GT.ABNORM*ULP )
|
|
$ RESULT( 3 ) = ULPINV
|
|
ELSE
|
|
RWORK( I ) = MAX( ABS( DTRU( I ) / S( I ) ),
|
|
$ ABS( S( I ) / DTRU( I ) ) )
|
|
RESULT( 3 ) = MAX( RESULT( 3 ), RWORK( I ) )
|
|
END IF
|
|
10 CONTINUE
|
|
*
|
|
* Test (4)
|
|
*
|
|
RESULT( 4 ) = ZERO
|
|
IF( DIF( 1 ).EQ.ZERO ) THEN
|
|
IF( DIFTRU( 1 ).GT.ABNORM*ULP )
|
|
$ RESULT( 4 ) = ULPINV
|
|
ELSE IF( DIFTRU( 1 ).EQ.ZERO ) THEN
|
|
IF( DIF( 1 ).GT.ABNORM*ULP )
|
|
$ RESULT( 4 ) = ULPINV
|
|
ELSE IF( DIF( 5 ).EQ.ZERO ) THEN
|
|
IF( DIFTRU( 5 ).GT.ABNORM*ULP )
|
|
$ RESULT( 4 ) = ULPINV
|
|
ELSE IF( DIFTRU( 5 ).EQ.ZERO ) THEN
|
|
IF( DIF( 5 ).GT.ABNORM*ULP )
|
|
$ RESULT( 4 ) = ULPINV
|
|
ELSE
|
|
RATIO1 = MAX( ABS( DIFTRU( 1 ) / DIF( 1 ) ),
|
|
$ ABS( DIF( 1 ) / DIFTRU( 1 ) ) )
|
|
RATIO2 = MAX( ABS( DIFTRU( 5 ) / DIF( 5 ) ),
|
|
$ ABS( DIF( 5 ) / DIFTRU( 5 ) ) )
|
|
RESULT( 4 ) = MAX( RATIO1, RATIO2 )
|
|
END IF
|
|
*
|
|
NTESTT = NTESTT + 4
|
|
*
|
|
* Print out tests which fail.
|
|
*
|
|
DO 20 J = 1, 4
|
|
IF( ( RESULT( J ).GE.THRSH2 .AND. J.GE.4 ) .OR.
|
|
$ ( RESULT( J ).GE.THRESH .AND. J.LE.3 ) )
|
|
$ THEN
|
|
*
|
|
* If this is the first test to fail,
|
|
* print a header to the data file.
|
|
*
|
|
IF( NERRS.EQ.0 ) THEN
|
|
WRITE( NOUT, FMT = 9997 )'ZXV'
|
|
*
|
|
* Print out messages for built-in examples
|
|
*
|
|
* Matrix types
|
|
*
|
|
WRITE( NOUT, FMT = 9995 )
|
|
WRITE( NOUT, FMT = 9994 )
|
|
WRITE( NOUT, FMT = 9993 )
|
|
*
|
|
* Tests performed
|
|
*
|
|
WRITE( NOUT, FMT = 9992 )'''',
|
|
$ 'transpose', ''''
|
|
*
|
|
END IF
|
|
NERRS = NERRS + 1
|
|
IF( RESULT( J ).LT.10000.0D0 ) THEN
|
|
WRITE( NOUT, FMT = 9991 )IPTYPE, IWA,
|
|
$ IWB, IWX, IWY, J, RESULT( J )
|
|
ELSE
|
|
WRITE( NOUT, FMT = 9990 )IPTYPE, IWA,
|
|
$ IWB, IWX, IWY, J, RESULT( J )
|
|
END IF
|
|
END IF
|
|
20 CONTINUE
|
|
*
|
|
30 CONTINUE
|
|
*
|
|
40 CONTINUE
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
70 CONTINUE
|
|
80 CONTINUE
|
|
*
|
|
GO TO 150
|
|
*
|
|
90 CONTINUE
|
|
*
|
|
* Read in data from file to check accuracy of condition estimation
|
|
* Read input data until N=0
|
|
*
|
|
READ( NIN, FMT = *, END = 150 )N
|
|
IF( N.EQ.0 )
|
|
$ GO TO 150
|
|
DO 100 I = 1, N
|
|
READ( NIN, FMT = * )( A( I, J ), J = 1, N )
|
|
100 CONTINUE
|
|
DO 110 I = 1, N
|
|
READ( NIN, FMT = * )( B( I, J ), J = 1, N )
|
|
110 CONTINUE
|
|
READ( NIN, FMT = * )( DTRU( I ), I = 1, N )
|
|
READ( NIN, FMT = * )( DIFTRU( I ), I = 1, N )
|
|
*
|
|
NPTKNT = NPTKNT + 1
|
|
*
|
|
* Compute eigenvalues/eigenvectors of (A, B).
|
|
* Compute eigenvalue/eigenvector condition numbers
|
|
* using computed eigenvectors.
|
|
*
|
|
CALL ZLACPY( 'F', N, N, A, LDA, AI, LDA )
|
|
CALL ZLACPY( 'F', N, N, B, LDA, BI, LDA )
|
|
*
|
|
CALL ZGGEVX( 'N', 'V', 'V', 'B', N, AI, LDA, BI, LDA, ALPHA, BETA,
|
|
$ VL, LDA, VR, LDA, ILO, IHI, LSCALE, RSCALE, ANORM,
|
|
$ BNORM, S, DIF, WORK, LWORK, RWORK, IWORK, BWORK,
|
|
$ LINFO )
|
|
*
|
|
IF( LINFO.NE.0 ) THEN
|
|
WRITE( NOUT, FMT = 9987 )'ZGGEVX', LINFO, N, NPTKNT
|
|
GO TO 140
|
|
END IF
|
|
*
|
|
* Compute the norm(A, B)
|
|
*
|
|
CALL ZLACPY( 'Full', N, N, AI, LDA, WORK, N )
|
|
CALL ZLACPY( 'Full', N, N, BI, LDA, WORK( N*N+1 ), N )
|
|
ABNORM = ZLANGE( 'Fro', N, 2*N, WORK, N, RWORK )
|
|
*
|
|
* Tests (1) and (2)
|
|
*
|
|
RESULT( 1 ) = ZERO
|
|
CALL ZGET52( .TRUE., N, A, LDA, B, LDA, VL, LDA, ALPHA, BETA,
|
|
$ WORK, RWORK, RESULT( 1 ) )
|
|
IF( RESULT( 2 ).GT.THRESH ) THEN
|
|
WRITE( NOUT, FMT = 9986 )'Left', 'ZGGEVX', RESULT( 2 ), N,
|
|
$ NPTKNT
|
|
END IF
|
|
*
|
|
RESULT( 2 ) = ZERO
|
|
CALL ZGET52( .FALSE., N, A, LDA, B, LDA, VR, LDA, ALPHA, BETA,
|
|
$ WORK, RWORK, RESULT( 2 ) )
|
|
IF( RESULT( 3 ).GT.THRESH ) THEN
|
|
WRITE( NOUT, FMT = 9986 )'Right', 'ZGGEVX', RESULT( 3 ), N,
|
|
$ NPTKNT
|
|
END IF
|
|
*
|
|
* Test (3)
|
|
*
|
|
RESULT( 3 ) = ZERO
|
|
DO 120 I = 1, N
|
|
IF( S( I ).EQ.ZERO ) THEN
|
|
IF( DTRU( I ).GT.ABNORM*ULP )
|
|
$ RESULT( 3 ) = ULPINV
|
|
ELSE IF( DTRU( I ).EQ.ZERO ) THEN
|
|
IF( S( I ).GT.ABNORM*ULP )
|
|
$ RESULT( 3 ) = ULPINV
|
|
ELSE
|
|
RWORK( I ) = MAX( ABS( DTRU( I ) / S( I ) ),
|
|
$ ABS( S( I ) / DTRU( I ) ) )
|
|
RESULT( 3 ) = MAX( RESULT( 3 ), RWORK( I ) )
|
|
END IF
|
|
120 CONTINUE
|
|
*
|
|
* Test (4)
|
|
*
|
|
RESULT( 4 ) = ZERO
|
|
IF( DIF( 1 ).EQ.ZERO ) THEN
|
|
IF( DIFTRU( 1 ).GT.ABNORM*ULP )
|
|
$ RESULT( 4 ) = ULPINV
|
|
ELSE IF( DIFTRU( 1 ).EQ.ZERO ) THEN
|
|
IF( DIF( 1 ).GT.ABNORM*ULP )
|
|
$ RESULT( 4 ) = ULPINV
|
|
ELSE IF( DIF( 5 ).EQ.ZERO ) THEN
|
|
IF( DIFTRU( 5 ).GT.ABNORM*ULP )
|
|
$ RESULT( 4 ) = ULPINV
|
|
ELSE IF( DIFTRU( 5 ).EQ.ZERO ) THEN
|
|
IF( DIF( 5 ).GT.ABNORM*ULP )
|
|
$ RESULT( 4 ) = ULPINV
|
|
ELSE
|
|
RATIO1 = MAX( ABS( DIFTRU( 1 ) / DIF( 1 ) ),
|
|
$ ABS( DIF( 1 ) / DIFTRU( 1 ) ) )
|
|
RATIO2 = MAX( ABS( DIFTRU( 5 ) / DIF( 5 ) ),
|
|
$ ABS( DIF( 5 ) / DIFTRU( 5 ) ) )
|
|
RESULT( 4 ) = MAX( RATIO1, RATIO2 )
|
|
END IF
|
|
*
|
|
NTESTT = NTESTT + 4
|
|
*
|
|
* Print out tests which fail.
|
|
*
|
|
DO 130 J = 1, 4
|
|
IF( RESULT( J ).GE.THRSH2 ) THEN
|
|
*
|
|
* If this is the first test to fail,
|
|
* print a header to the data file.
|
|
*
|
|
IF( NERRS.EQ.0 ) THEN
|
|
WRITE( NOUT, FMT = 9997 )'ZXV'
|
|
*
|
|
* Print out messages for built-in examples
|
|
*
|
|
* Matrix types
|
|
*
|
|
WRITE( NOUT, FMT = 9996 )
|
|
*
|
|
* Tests performed
|
|
*
|
|
WRITE( NOUT, FMT = 9992 )'''', 'transpose', ''''
|
|
*
|
|
END IF
|
|
NERRS = NERRS + 1
|
|
IF( RESULT( J ).LT.10000.0D0 ) THEN
|
|
WRITE( NOUT, FMT = 9989 )NPTKNT, N, J, RESULT( J )
|
|
ELSE
|
|
WRITE( NOUT, FMT = 9988 )NPTKNT, N, J, RESULT( J )
|
|
END IF
|
|
END IF
|
|
130 CONTINUE
|
|
*
|
|
140 CONTINUE
|
|
*
|
|
GO TO 90
|
|
150 CONTINUE
|
|
*
|
|
* Summary
|
|
*
|
|
CALL ALASVM( 'ZXV', NOUT, NERRS, NTESTT, 0 )
|
|
*
|
|
WORK( 1 ) = MAXWRK
|
|
*
|
|
RETURN
|
|
*
|
|
9999 FORMAT( ' ZDRGVX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
|
|
$ I6, ', JTYPE=', I6, ')' )
|
|
*
|
|
9998 FORMAT( ' ZDRGVX: ', A, ' Eigenvectors from ', A, ' incorrectly ',
|
|
$ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
|
|
$ 'N=', I6, ', JTYPE=', I6, ', IWA=', I5, ', IWB=', I5,
|
|
$ ', IWX=', I5, ', IWY=', I5 )
|
|
*
|
|
9997 FORMAT( / 1X, A3, ' -- Complex Expert Eigenvalue/vector',
|
|
$ ' problem driver' )
|
|
*
|
|
9996 FORMAT( 'Input Example' )
|
|
*
|
|
9995 FORMAT( ' Matrix types: ', / )
|
|
*
|
|
9994 FORMAT( ' TYPE 1: Da is diagonal, Db is identity, ',
|
|
$ / ' A = Y^(-H) Da X^(-1), B = Y^(-H) Db X^(-1) ',
|
|
$ / ' YH and X are left and right eigenvectors. ', / )
|
|
*
|
|
9993 FORMAT( ' TYPE 2: Da is quasi-diagonal, Db is identity, ',
|
|
$ / ' A = Y^(-H) Da X^(-1), B = Y^(-H) Db X^(-1) ',
|
|
$ / ' YH and X are left and right eigenvectors. ', / )
|
|
*
|
|
9992 FORMAT( / ' Tests performed: ', / 4X,
|
|
$ ' a is alpha, b is beta, l is a left eigenvector, ', / 4X,
|
|
$ ' r is a right eigenvector and ', A, ' means ', A, '.',
|
|
$ / ' 1 = max | ( b A - a B )', A, ' l | / const.',
|
|
$ / ' 2 = max | ( b A - a B ) r | / const.',
|
|
$ / ' 3 = max ( Sest/Stru, Stru/Sest ) ',
|
|
$ ' over all eigenvalues', /
|
|
$ ' 4 = max( DIFest/DIFtru, DIFtru/DIFest ) ',
|
|
$ ' over the 1st and 5th eigenvectors', / )
|
|
*
|
|
9991 FORMAT( ' Type=', I2, ',', ' IWA=', I2, ', IWB=', I2, ', IWX=',
|
|
$ I2, ', IWY=', I2, ', result ', I2, ' is', 0P, F8.2 )
|
|
*
|
|
9990 FORMAT( ' Type=', I2, ',', ' IWA=', I2, ', IWB=', I2, ', IWX=',
|
|
$ I2, ', IWY=', I2, ', result ', I2, ' is', 1P, D10.3 )
|
|
*
|
|
9989 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',',
|
|
$ ' result ', I2, ' is', 0P, F8.2 )
|
|
*
|
|
9988 FORMAT( ' Input example #', I2, ', matrix order=', I4, ',',
|
|
$ ' result ', I2, ' is', 1P, D10.3 )
|
|
*
|
|
9987 FORMAT( ' ZDRGVX: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
|
|
$ I6, ', Input example #', I2, ')' )
|
|
*
|
|
9986 FORMAT( ' ZDRGVX: ', A, ' Eigenvectors from ', A, ' incorrectly ',
|
|
$ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
|
|
$ 'N=', I6, ', Input Example #', I2, ')' )
|
|
*
|
|
* End of ZDRGVX
|
|
*
|
|
END
|
|
|