Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

333 lines
9.6 KiB

*> \brief \b ZGQRTS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
* BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDB, LWORK, M, N, P
* ..
* .. Array Arguments ..
* DOUBLE PRECISION RESULT( 4 ), RWORK( * )
* COMPLEX*16 A( LDA, * ), AF( LDA, * ), B( LDB, * ),
* $ BF( LDB, * ), BWK( LDB, * ), Q( LDA, * ),
* $ R( LDA, * ), T( LDB, * ), TAUA( * ), TAUB( * ),
* $ WORK( LWORK ), Z( LDB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGQRTS tests ZGGQRF, which computes the GQR factorization of an
*> N-by-M matrix A and a N-by-P matrix B: A = Q*R and B = Q*T*Z.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of columns of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of columns of the matrix B. P >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,M)
*> The N-by-M matrix A.
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*> AF is COMPLEX*16 array, dimension (LDA,N)
*> Details of the GQR factorization of A and B, as returned
*> by ZGGQRF, see CGGQRF for further details.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is COMPLEX*16 array, dimension (LDA,N)
*> The M-by-M unitary matrix Q.
*> \endverbatim
*>
*> \param[out] R
*> \verbatim
*> R is COMPLEX*16 array, dimension (LDA,MAX(M,N))
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the arrays A, AF, R and Q.
*> LDA >= max(M,N).
*> \endverbatim
*>
*> \param[out] TAUA
*> \verbatim
*> TAUA is COMPLEX*16 array, dimension (min(M,N))
*> The scalar factors of the elementary reflectors, as returned
*> by ZGGQRF.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,P)
*> On entry, the N-by-P matrix A.
*> \endverbatim
*>
*> \param[out] BF
*> \verbatim
*> BF is COMPLEX*16 array, dimension (LDB,N)
*> Details of the GQR factorization of A and B, as returned
*> by ZGGQRF, see CGGQRF for further details.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is COMPLEX*16 array, dimension (LDB,P)
*> The P-by-P unitary matrix Z.
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is COMPLEX*16 array, dimension (LDB,max(P,N))
*> \endverbatim
*>
*> \param[out] BWK
*> \verbatim
*> BWK is COMPLEX*16 array, dimension (LDB,N)
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the arrays B, BF, Z and T.
*> LDB >= max(P,N).
*> \endverbatim
*>
*> \param[out] TAUB
*> \verbatim
*> TAUB is COMPLEX*16 array, dimension (min(P,N))
*> The scalar factors of the elementary reflectors, as returned
*> by DGGRQF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK, LWORK >= max(N,M,P)**2.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (max(N,M,P))
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (4)
*> The test ratios:
*> RESULT(1) = norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP)
*> RESULT(2) = norm( T*Z - Q'*B ) / (MAX(P,N)*norm(B)*ULP)
*> RESULT(3) = norm( I - Q'*Q ) / ( M*ULP )
*> RESULT(4) = norm( I - Z'*Z ) / ( P*ULP )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZGQRTS( N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T,
$ BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER LDA, LDB, LWORK, M, N, P
* ..
* .. Array Arguments ..
DOUBLE PRECISION RESULT( 4 ), RWORK( * )
COMPLEX*16 A( LDA, * ), AF( LDA, * ), B( LDB, * ),
$ BF( LDB, * ), BWK( LDB, * ), Q( LDA, * ),
$ R( LDA, * ), T( LDB, * ), TAUA( * ), TAUB( * ),
$ WORK( LWORK ), Z( LDB, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
COMPLEX*16 CROGUE
PARAMETER ( CROGUE = ( -1.0D+10, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER INFO
DOUBLE PRECISION ANORM, BNORM, RESID, ULP, UNFL
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHE
EXTERNAL DLAMCH, ZLANGE, ZLANHE
* ..
* .. External Subroutines ..
EXTERNAL ZGEMM, ZGGQRF, ZHERK, ZLACPY, ZLASET, ZUNGQR,
$ ZUNGRQ
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
ULP = DLAMCH( 'Precision' )
UNFL = DLAMCH( 'Safe minimum' )
*
* Copy the matrix A to the array AF.
*
CALL ZLACPY( 'Full', N, M, A, LDA, AF, LDA )
CALL ZLACPY( 'Full', N, P, B, LDB, BF, LDB )
*
ANORM = MAX( ZLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
BNORM = MAX( ZLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
*
* Factorize the matrices A and B in the arrays AF and BF.
*
CALL ZGGQRF( N, M, P, AF, LDA, TAUA, BF, LDB, TAUB, WORK, LWORK,
$ INFO )
*
* Generate the N-by-N matrix Q
*
CALL ZLASET( 'Full', N, N, CROGUE, CROGUE, Q, LDA )
CALL ZLACPY( 'Lower', N-1, M, AF( 2, 1 ), LDA, Q( 2, 1 ), LDA )
CALL ZUNGQR( N, N, MIN( N, M ), Q, LDA, TAUA, WORK, LWORK, INFO )
*
* Generate the P-by-P matrix Z
*
CALL ZLASET( 'Full', P, P, CROGUE, CROGUE, Z, LDB )
IF( N.LE.P ) THEN
IF( N.GT.0 .AND. N.LT.P )
$ CALL ZLACPY( 'Full', N, P-N, BF, LDB, Z( P-N+1, 1 ), LDB )
IF( N.GT.1 )
$ CALL ZLACPY( 'Lower', N-1, N-1, BF( 2, P-N+1 ), LDB,
$ Z( P-N+2, P-N+1 ), LDB )
ELSE
IF( P.GT.1 )
$ CALL ZLACPY( 'Lower', P-1, P-1, BF( N-P+2, 1 ), LDB,
$ Z( 2, 1 ), LDB )
END IF
CALL ZUNGRQ( P, P, MIN( N, P ), Z, LDB, TAUB, WORK, LWORK, INFO )
*
* Copy R
*
CALL ZLASET( 'Full', N, M, CZERO, CZERO, R, LDA )
CALL ZLACPY( 'Upper', N, M, AF, LDA, R, LDA )
*
* Copy T
*
CALL ZLASET( 'Full', N, P, CZERO, CZERO, T, LDB )
IF( N.LE.P ) THEN
CALL ZLACPY( 'Upper', N, N, BF( 1, P-N+1 ), LDB, T( 1, P-N+1 ),
$ LDB )
ELSE
CALL ZLACPY( 'Full', N-P, P, BF, LDB, T, LDB )
CALL ZLACPY( 'Upper', P, P, BF( N-P+1, 1 ), LDB, T( N-P+1, 1 ),
$ LDB )
END IF
*
* Compute R - Q'*A
*
CALL ZGEMM( 'Conjugate transpose', 'No transpose', N, M, N, -CONE,
$ Q, LDA, A, LDA, CONE, R, LDA )
*
* Compute norm( R - Q'*A ) / ( MAX(M,N)*norm(A)*ULP ) .
*
RESID = ZLANGE( '1', N, M, R, LDA, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, M, N ) ) ) / ANORM ) /
$ ULP
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute T*Z - Q'*B
*
CALL ZGEMM( 'No Transpose', 'No transpose', N, P, P, CONE, T, LDB,
$ Z, LDB, CZERO, BWK, LDB )
CALL ZGEMM( 'Conjugate transpose', 'No transpose', N, P, N, -CONE,
$ Q, LDA, B, LDB, CONE, BWK, LDB )
*
* Compute norm( T*Z - Q'*B ) / ( MAX(P,N)*norm(A)*ULP ) .
*
RESID = ZLANGE( '1', N, P, BWK, LDB, RWORK )
IF( BNORM.GT.ZERO ) THEN
RESULT( 2 ) = ( ( RESID / DBLE( MAX( 1, P, N ) ) ) / BNORM ) /
$ ULP
ELSE
RESULT( 2 ) = ZERO
END IF
*
* Compute I - Q'*Q
*
CALL ZLASET( 'Full', N, N, CZERO, CONE, R, LDA )
CALL ZHERK( 'Upper', 'Conjugate transpose', N, N, -ONE, Q, LDA,
$ ONE, R, LDA )
*
* Compute norm( I - Q'*Q ) / ( N * ULP ) .
*
RESID = ZLANHE( '1', 'Upper', N, R, LDA, RWORK )
RESULT( 3 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / ULP
*
* Compute I - Z'*Z
*
CALL ZLASET( 'Full', P, P, CZERO, CONE, T, LDB )
CALL ZHERK( 'Upper', 'Conjugate transpose', P, P, -ONE, Z, LDB,
$ ONE, T, LDB )
*
* Compute norm( I - Z'*Z ) / ( P*ULP ) .
*
RESID = ZLANHE( '1', 'Upper', P, T, LDB, RWORK )
RESULT( 4 ) = ( RESID / DBLE( MAX( 1, P ) ) ) / ULP
*
RETURN
*
* End of ZGQRTS
*
END