You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
839 lines
32 KiB
839 lines
32 KiB
*> \brief \b CDRVGB
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
|
|
* AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
|
|
* RWORK, IWORK, NOUT )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* LOGICAL TSTERR
|
|
* INTEGER LA, LAFB, NN, NOUT, NRHS
|
|
* REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL DOTYPE( * )
|
|
* INTEGER IWORK( * ), NVAL( * )
|
|
* REAL RWORK( * ), S( * )
|
|
* COMPLEX A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
|
|
* $ WORK( * ), X( * ), XACT( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CDRVGB tests the driver routines CGBSV and -SVX.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] DOTYPE
|
|
*> \verbatim
|
|
*> DOTYPE is LOGICAL array, dimension (NTYPES)
|
|
*> The matrix types to be used for testing. Matrices of type j
|
|
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
|
|
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NN
|
|
*> \verbatim
|
|
*> NN is INTEGER
|
|
*> The number of values of N contained in the vector NVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NVAL
|
|
*> \verbatim
|
|
*> NVAL is INTEGER array, dimension (NN)
|
|
*> The values of the matrix column dimension N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of right hand side vectors to be generated for
|
|
*> each linear system.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] THRESH
|
|
*> \verbatim
|
|
*> THRESH is REAL
|
|
*> The threshold value for the test ratios. A result is
|
|
*> included in the output file if RESULT >= THRESH. To have
|
|
*> every test ratio printed, use THRESH = 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TSTERR
|
|
*> \verbatim
|
|
*> TSTERR is LOGICAL
|
|
*> Flag that indicates whether error exits are to be tested.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LA)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LA
|
|
*> \verbatim
|
|
*> LA is INTEGER
|
|
*> The length of the array A. LA >= (2*NMAX-1)*NMAX
|
|
*> where NMAX is the largest entry in NVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] AFB
|
|
*> \verbatim
|
|
*> AFB is COMPLEX array, dimension (LAFB)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LAFB
|
|
*> \verbatim
|
|
*> LAFB is INTEGER
|
|
*> The length of the array AFB. LAFB >= (3*NMAX-2)*NMAX
|
|
*> where NMAX is the largest entry in NVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] ASAV
|
|
*> \verbatim
|
|
*> ASAV is COMPLEX array, dimension (LA)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] B
|
|
*> \verbatim
|
|
*> B is COMPLEX array, dimension (NMAX*NRHS)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] BSAV
|
|
*> \verbatim
|
|
*> BSAV is COMPLEX array, dimension (NMAX*NRHS)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] X
|
|
*> \verbatim
|
|
*> X is COMPLEX array, dimension (NMAX*NRHS)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] XACT
|
|
*> \verbatim
|
|
*> XACT is COMPLEX array, dimension (NMAX*NRHS)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] S
|
|
*> \verbatim
|
|
*> S is REAL array, dimension (2*NMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension
|
|
*> (NMAX*max(3,NRHS,NMAX))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension
|
|
*> (NMAX+2*NRHS)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] IWORK
|
|
*> \verbatim
|
|
*> IWORK is INTEGER array, dimension (NMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NOUT
|
|
*> \verbatim
|
|
*> NOUT is INTEGER
|
|
*> The unit number for output.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
|
|
$ AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
|
|
$ RWORK, IWORK, NOUT )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
LOGICAL TSTERR
|
|
INTEGER LA, LAFB, NN, NOUT, NRHS
|
|
REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL DOTYPE( * )
|
|
INTEGER IWORK( * ), NVAL( * )
|
|
REAL RWORK( * ), S( * )
|
|
COMPLEX A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
|
|
$ WORK( * ), X( * ), XACT( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, ZERO
|
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
|
INTEGER NTYPES
|
|
PARAMETER ( NTYPES = 8 )
|
|
INTEGER NTESTS
|
|
PARAMETER ( NTESTS = 7 )
|
|
INTEGER NTRAN
|
|
PARAMETER ( NTRAN = 3 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
|
|
CHARACTER DIST, EQUED, FACT, TRANS, TYPE, XTYPE
|
|
CHARACTER*3 PATH
|
|
INTEGER I, I1, I2, IEQUED, IFACT, IKL, IKU, IMAT, IN,
|
|
$ INFO, IOFF, ITRAN, IZERO, J, K, K1, KL, KU,
|
|
$ LDA, LDAFB, LDB, MODE, N, NB, NBMIN, NERRS,
|
|
$ NFACT, NFAIL, NIMAT, NKL, NKU, NRUN, NT
|
|
REAL AINVNM, AMAX, ANORM, ANORMI, ANORMO, ANRMPV,
|
|
$ CNDNUM, COLCND, RCOND, RCONDC, RCONDI, RCONDO,
|
|
$ ROLDC, ROLDI, ROLDO, ROWCND, RPVGRW
|
|
* ..
|
|
* .. Local Arrays ..
|
|
CHARACTER EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
|
|
INTEGER ISEED( 4 ), ISEEDY( 4 )
|
|
REAL RDUM( 1 ), RESULT( NTESTS )
|
|
* ..
|
|
* .. External Functions ..
|
|
LOGICAL LSAME
|
|
REAL CLANGB, CLANGE, CLANTB, SGET06, SLAMCH
|
|
EXTERNAL LSAME, CLANGB, CLANGE, CLANTB, SGET06, SLAMCH
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ALADHD, ALAERH, ALASVM, CERRVX, CGBEQU, CGBSV,
|
|
$ CGBSVX, CGBT01, CGBT02, CGBT05, CGBTRF, CGBTRS,
|
|
$ CGET04, CLACPY, CLAQGB, CLARHS, CLASET, CLATB4,
|
|
$ CLATMS, XLAENV
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, CMPLX, MAX, MIN
|
|
* ..
|
|
* .. Scalars in Common ..
|
|
LOGICAL LERR, OK
|
|
CHARACTER*32 SRNAMT
|
|
INTEGER INFOT, NUNIT
|
|
* ..
|
|
* .. Common blocks ..
|
|
COMMON / INFOC / INFOT, NUNIT, OK, LERR
|
|
COMMON / SRNAMC / SRNAMT
|
|
* ..
|
|
* .. Data statements ..
|
|
DATA ISEEDY / 1988, 1989, 1990, 1991 /
|
|
DATA TRANSS / 'N', 'T', 'C' /
|
|
DATA FACTS / 'F', 'N', 'E' /
|
|
DATA EQUEDS / 'N', 'R', 'C', 'B' /
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Initialize constants and the random number seed.
|
|
*
|
|
PATH( 1: 1 ) = 'Complex precision'
|
|
PATH( 2: 3 ) = 'GB'
|
|
NRUN = 0
|
|
NFAIL = 0
|
|
NERRS = 0
|
|
DO 10 I = 1, 4
|
|
ISEED( I ) = ISEEDY( I )
|
|
10 CONTINUE
|
|
*
|
|
* Test the error exits
|
|
*
|
|
IF( TSTERR )
|
|
$ CALL CERRVX( PATH, NOUT )
|
|
INFOT = 0
|
|
*
|
|
* Set the block size and minimum block size for testing.
|
|
*
|
|
NB = 1
|
|
NBMIN = 2
|
|
CALL XLAENV( 1, NB )
|
|
CALL XLAENV( 2, NBMIN )
|
|
*
|
|
* Do for each value of N in NVAL
|
|
*
|
|
DO 150 IN = 1, NN
|
|
N = NVAL( IN )
|
|
LDB = MAX( N, 1 )
|
|
XTYPE = 'N'
|
|
*
|
|
* Set limits on the number of loop iterations.
|
|
*
|
|
NKL = MAX( 1, MIN( N, 4 ) )
|
|
IF( N.EQ.0 )
|
|
$ NKL = 1
|
|
NKU = NKL
|
|
NIMAT = NTYPES
|
|
IF( N.LE.0 )
|
|
$ NIMAT = 1
|
|
*
|
|
DO 140 IKL = 1, NKL
|
|
*
|
|
* Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes
|
|
* it easier to skip redundant values for small values of N.
|
|
*
|
|
IF( IKL.EQ.1 ) THEN
|
|
KL = 0
|
|
ELSE IF( IKL.EQ.2 ) THEN
|
|
KL = MAX( N-1, 0 )
|
|
ELSE IF( IKL.EQ.3 ) THEN
|
|
KL = ( 3*N-1 ) / 4
|
|
ELSE IF( IKL.EQ.4 ) THEN
|
|
KL = ( N+1 ) / 4
|
|
END IF
|
|
DO 130 IKU = 1, NKU
|
|
*
|
|
* Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order
|
|
* makes it easier to skip redundant values for small
|
|
* values of N.
|
|
*
|
|
IF( IKU.EQ.1 ) THEN
|
|
KU = 0
|
|
ELSE IF( IKU.EQ.2 ) THEN
|
|
KU = MAX( N-1, 0 )
|
|
ELSE IF( IKU.EQ.3 ) THEN
|
|
KU = ( 3*N-1 ) / 4
|
|
ELSE IF( IKU.EQ.4 ) THEN
|
|
KU = ( N+1 ) / 4
|
|
END IF
|
|
*
|
|
* Check that A and AFB are big enough to generate this
|
|
* matrix.
|
|
*
|
|
LDA = KL + KU + 1
|
|
LDAFB = 2*KL + KU + 1
|
|
IF( LDA*N.GT.LA .OR. LDAFB*N.GT.LAFB ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALADHD( NOUT, PATH )
|
|
IF( LDA*N.GT.LA ) THEN
|
|
WRITE( NOUT, FMT = 9999 )LA, N, KL, KU,
|
|
$ N*( KL+KU+1 )
|
|
NERRS = NERRS + 1
|
|
END IF
|
|
IF( LDAFB*N.GT.LAFB ) THEN
|
|
WRITE( NOUT, FMT = 9998 )LAFB, N, KL, KU,
|
|
$ N*( 2*KL+KU+1 )
|
|
NERRS = NERRS + 1
|
|
END IF
|
|
GO TO 130
|
|
END IF
|
|
*
|
|
DO 120 IMAT = 1, NIMAT
|
|
*
|
|
* Do the tests only if DOTYPE( IMAT ) is true.
|
|
*
|
|
IF( .NOT.DOTYPE( IMAT ) )
|
|
$ GO TO 120
|
|
*
|
|
* Skip types 2, 3, or 4 if the matrix is too small.
|
|
*
|
|
ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
|
|
IF( ZEROT .AND. N.LT.IMAT-1 )
|
|
$ GO TO 120
|
|
*
|
|
* Set up parameters with CLATB4 and generate a
|
|
* test matrix with CLATMS.
|
|
*
|
|
CALL CLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
|
|
$ MODE, CNDNUM, DIST )
|
|
RCONDC = ONE / CNDNUM
|
|
*
|
|
SRNAMT = 'CLATMS'
|
|
CALL CLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
|
|
$ CNDNUM, ANORM, KL, KU, 'Z', A, LDA, WORK,
|
|
$ INFO )
|
|
*
|
|
* Check the error code from CLATMS.
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL ALAERH( PATH, 'CLATMS', INFO, 0, ' ', N, N,
|
|
$ KL, KU, -1, IMAT, NFAIL, NERRS, NOUT )
|
|
GO TO 120
|
|
END IF
|
|
*
|
|
* For types 2, 3, and 4, zero one or more columns of
|
|
* the matrix to test that INFO is returned correctly.
|
|
*
|
|
IZERO = 0
|
|
IF( ZEROT ) THEN
|
|
IF( IMAT.EQ.2 ) THEN
|
|
IZERO = 1
|
|
ELSE IF( IMAT.EQ.3 ) THEN
|
|
IZERO = N
|
|
ELSE
|
|
IZERO = N / 2 + 1
|
|
END IF
|
|
IOFF = ( IZERO-1 )*LDA
|
|
IF( IMAT.LT.4 ) THEN
|
|
I1 = MAX( 1, KU+2-IZERO )
|
|
I2 = MIN( KL+KU+1, KU+1+( N-IZERO ) )
|
|
DO 20 I = I1, I2
|
|
A( IOFF+I ) = ZERO
|
|
20 CONTINUE
|
|
ELSE
|
|
DO 40 J = IZERO, N
|
|
DO 30 I = MAX( 1, KU+2-J ),
|
|
$ MIN( KL+KU+1, KU+1+( N-J ) )
|
|
A( IOFF+I ) = ZERO
|
|
30 CONTINUE
|
|
IOFF = IOFF + LDA
|
|
40 CONTINUE
|
|
END IF
|
|
END IF
|
|
*
|
|
* Save a copy of the matrix A in ASAV.
|
|
*
|
|
CALL CLACPY( 'Full', KL+KU+1, N, A, LDA, ASAV, LDA )
|
|
*
|
|
DO 110 IEQUED = 1, 4
|
|
EQUED = EQUEDS( IEQUED )
|
|
IF( IEQUED.EQ.1 ) THEN
|
|
NFACT = 3
|
|
ELSE
|
|
NFACT = 1
|
|
END IF
|
|
*
|
|
DO 100 IFACT = 1, NFACT
|
|
FACT = FACTS( IFACT )
|
|
PREFAC = LSAME( FACT, 'F' )
|
|
NOFACT = LSAME( FACT, 'N' )
|
|
EQUIL = LSAME( FACT, 'E' )
|
|
*
|
|
IF( ZEROT ) THEN
|
|
IF( PREFAC )
|
|
$ GO TO 100
|
|
RCONDO = ZERO
|
|
RCONDI = ZERO
|
|
*
|
|
ELSE IF( .NOT.NOFACT ) THEN
|
|
*
|
|
* Compute the condition number for comparison
|
|
* with the value returned by SGESVX (FACT =
|
|
* 'N' reuses the condition number from the
|
|
* previous iteration with FACT = 'F').
|
|
*
|
|
CALL CLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
|
|
$ AFB( KL+1 ), LDAFB )
|
|
IF( EQUIL .OR. IEQUED.GT.1 ) THEN
|
|
*
|
|
* Compute row and column scale factors to
|
|
* equilibrate the matrix A.
|
|
*
|
|
CALL CGBEQU( N, N, KL, KU, AFB( KL+1 ),
|
|
$ LDAFB, S, S( N+1 ), ROWCND,
|
|
$ COLCND, AMAX, INFO )
|
|
IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
|
|
IF( LSAME( EQUED, 'R' ) ) THEN
|
|
ROWCND = ZERO
|
|
COLCND = ONE
|
|
ELSE IF( LSAME( EQUED, 'C' ) ) THEN
|
|
ROWCND = ONE
|
|
COLCND = ZERO
|
|
ELSE IF( LSAME( EQUED, 'B' ) ) THEN
|
|
ROWCND = ZERO
|
|
COLCND = ZERO
|
|
END IF
|
|
*
|
|
* Equilibrate the matrix.
|
|
*
|
|
CALL CLAQGB( N, N, KL, KU, AFB( KL+1 ),
|
|
$ LDAFB, S, S( N+1 ),
|
|
$ ROWCND, COLCND, AMAX,
|
|
$ EQUED )
|
|
END IF
|
|
END IF
|
|
*
|
|
* Save the condition number of the
|
|
* non-equilibrated system for use in CGET04.
|
|
*
|
|
IF( EQUIL ) THEN
|
|
ROLDO = RCONDO
|
|
ROLDI = RCONDI
|
|
END IF
|
|
*
|
|
* Compute the 1-norm and infinity-norm of A.
|
|
*
|
|
ANORMO = CLANGB( '1', N, KL, KU, AFB( KL+1 ),
|
|
$ LDAFB, RWORK )
|
|
ANORMI = CLANGB( 'I', N, KL, KU, AFB( KL+1 ),
|
|
$ LDAFB, RWORK )
|
|
*
|
|
* Factor the matrix A.
|
|
*
|
|
CALL CGBTRF( N, N, KL, KU, AFB, LDAFB, IWORK,
|
|
$ INFO )
|
|
*
|
|
* Form the inverse of A.
|
|
*
|
|
CALL CLASET( 'Full', N, N, CMPLX( ZERO ),
|
|
$ CMPLX( ONE ), WORK, LDB )
|
|
SRNAMT = 'CGBTRS'
|
|
CALL CGBTRS( 'No transpose', N, KL, KU, N,
|
|
$ AFB, LDAFB, IWORK, WORK, LDB,
|
|
$ INFO )
|
|
*
|
|
* Compute the 1-norm condition number of A.
|
|
*
|
|
AINVNM = CLANGE( '1', N, N, WORK, LDB,
|
|
$ RWORK )
|
|
IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
|
|
RCONDO = ONE
|
|
ELSE
|
|
RCONDO = ( ONE / ANORMO ) / AINVNM
|
|
END IF
|
|
*
|
|
* Compute the infinity-norm condition number
|
|
* of A.
|
|
*
|
|
AINVNM = CLANGE( 'I', N, N, WORK, LDB,
|
|
$ RWORK )
|
|
IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
|
|
RCONDI = ONE
|
|
ELSE
|
|
RCONDI = ( ONE / ANORMI ) / AINVNM
|
|
END IF
|
|
END IF
|
|
*
|
|
DO 90 ITRAN = 1, NTRAN
|
|
*
|
|
* Do for each value of TRANS.
|
|
*
|
|
TRANS = TRANSS( ITRAN )
|
|
IF( ITRAN.EQ.1 ) THEN
|
|
RCONDC = RCONDO
|
|
ELSE
|
|
RCONDC = RCONDI
|
|
END IF
|
|
*
|
|
* Restore the matrix A.
|
|
*
|
|
CALL CLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
|
|
$ A, LDA )
|
|
*
|
|
* Form an exact solution and set the right hand
|
|
* side.
|
|
*
|
|
SRNAMT = 'CLARHS'
|
|
CALL CLARHS( PATH, XTYPE, 'Full', TRANS, N,
|
|
$ N, KL, KU, NRHS, A, LDA, XACT,
|
|
$ LDB, B, LDB, ISEED, INFO )
|
|
XTYPE = 'C'
|
|
CALL CLACPY( 'Full', N, NRHS, B, LDB, BSAV,
|
|
$ LDB )
|
|
*
|
|
IF( NOFACT .AND. ITRAN.EQ.1 ) THEN
|
|
*
|
|
* --- Test CGBSV ---
|
|
*
|
|
* Compute the LU factorization of the matrix
|
|
* and solve the system.
|
|
*
|
|
CALL CLACPY( 'Full', KL+KU+1, N, A, LDA,
|
|
$ AFB( KL+1 ), LDAFB )
|
|
CALL CLACPY( 'Full', N, NRHS, B, LDB, X,
|
|
$ LDB )
|
|
*
|
|
SRNAMT = 'CGBSV '
|
|
CALL CGBSV( N, KL, KU, NRHS, AFB, LDAFB,
|
|
$ IWORK, X, LDB, INFO )
|
|
*
|
|
* Check error code from CGBSV .
|
|
*
|
|
IF( INFO.NE.IZERO )
|
|
$ CALL ALAERH( PATH, 'CGBSV ', INFO,
|
|
$ IZERO, ' ', N, N, KL, KU,
|
|
$ NRHS, IMAT, NFAIL, NERRS,
|
|
$ NOUT )
|
|
*
|
|
* Reconstruct matrix from factors and
|
|
* compute residual.
|
|
*
|
|
CALL CGBT01( N, N, KL, KU, A, LDA, AFB,
|
|
$ LDAFB, IWORK, WORK,
|
|
$ RESULT( 1 ) )
|
|
NT = 1
|
|
IF( IZERO.EQ.0 ) THEN
|
|
*
|
|
* Compute residual of the computed
|
|
* solution.
|
|
*
|
|
CALL CLACPY( 'Full', N, NRHS, B, LDB,
|
|
$ WORK, LDB )
|
|
CALL CGBT02( 'No transpose', N, N, KL,
|
|
$ KU, NRHS, A, LDA, X, LDB,
|
|
$ WORK, LDB, RWORK,
|
|
$ RESULT( 2 ) )
|
|
*
|
|
* Check solution from generated exact
|
|
* solution.
|
|
*
|
|
CALL CGET04( N, NRHS, X, LDB, XACT,
|
|
$ LDB, RCONDC, RESULT( 3 ) )
|
|
NT = 3
|
|
END IF
|
|
*
|
|
* Print information about the tests that did
|
|
* not pass the threshold.
|
|
*
|
|
DO 50 K = 1, NT
|
|
IF( RESULT( K ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALADHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9997 )'CGBSV ',
|
|
$ N, KL, KU, IMAT, K, RESULT( K )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
50 CONTINUE
|
|
NRUN = NRUN + NT
|
|
END IF
|
|
*
|
|
* --- Test CGBSVX ---
|
|
*
|
|
IF( .NOT.PREFAC )
|
|
$ CALL CLASET( 'Full', 2*KL+KU+1, N,
|
|
$ CMPLX( ZERO ), CMPLX( ZERO ),
|
|
$ AFB, LDAFB )
|
|
CALL CLASET( 'Full', N, NRHS, CMPLX( ZERO ),
|
|
$ CMPLX( ZERO ), X, LDB )
|
|
IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
|
|
*
|
|
* Equilibrate the matrix if FACT = 'F' and
|
|
* EQUED = 'R', 'C', or 'B'.
|
|
*
|
|
CALL CLAQGB( N, N, KL, KU, A, LDA, S,
|
|
$ S( N+1 ), ROWCND, COLCND,
|
|
$ AMAX, EQUED )
|
|
END IF
|
|
*
|
|
* Solve the system and compute the condition
|
|
* number and error bounds using CGBSVX.
|
|
*
|
|
SRNAMT = 'CGBSVX'
|
|
CALL CGBSVX( FACT, TRANS, N, KL, KU, NRHS, A,
|
|
$ LDA, AFB, LDAFB, IWORK, EQUED,
|
|
$ S, S( LDB+1 ), B, LDB, X, LDB,
|
|
$ RCOND, RWORK, RWORK( NRHS+1 ),
|
|
$ WORK, RWORK( 2*NRHS+1 ), INFO )
|
|
*
|
|
* Check the error code from CGBSVX.
|
|
*
|
|
IF( INFO.NE.IZERO )
|
|
$ CALL ALAERH( PATH, 'CGBSVX', INFO, IZERO,
|
|
$ FACT // TRANS, N, N, KL, KU,
|
|
$ NRHS, IMAT, NFAIL, NERRS,
|
|
$ NOUT )
|
|
* Compare RWORK(2*NRHS+1) from CGBSVX with the
|
|
* computed reciprocal pivot growth RPVGRW
|
|
*
|
|
IF( INFO.NE.0 .AND. INFO.LE.N) THEN
|
|
ANRMPV = ZERO
|
|
DO 70 J = 1, INFO
|
|
DO 60 I = MAX( KU+2-J, 1 ),
|
|
$ MIN( N+KU+1-J, KL+KU+1 )
|
|
ANRMPV = MAX( ANRMPV,
|
|
$ ABS( A( I+( J-1 )*LDA ) ) )
|
|
60 CONTINUE
|
|
70 CONTINUE
|
|
RPVGRW = CLANTB( 'M', 'U', 'N', INFO,
|
|
$ MIN( INFO-1, KL+KU ),
|
|
$ AFB( MAX( 1, KL+KU+2-INFO ) ),
|
|
$ LDAFB, RDUM )
|
|
IF( RPVGRW.EQ.ZERO ) THEN
|
|
RPVGRW = ONE
|
|
ELSE
|
|
RPVGRW = ANRMPV / RPVGRW
|
|
END IF
|
|
ELSE
|
|
RPVGRW = CLANTB( 'M', 'U', 'N', N, KL+KU,
|
|
$ AFB, LDAFB, RDUM )
|
|
IF( RPVGRW.EQ.ZERO ) THEN
|
|
RPVGRW = ONE
|
|
ELSE
|
|
RPVGRW = CLANGB( 'M', N, KL, KU, A,
|
|
$ LDA, RDUM ) / RPVGRW
|
|
END IF
|
|
END IF
|
|
RESULT( 7 ) = ABS( RPVGRW-RWORK( 2*NRHS+1 ) )
|
|
$ / MAX( RWORK( 2*NRHS+1 ),
|
|
$ RPVGRW ) / SLAMCH( 'E' )
|
|
*
|
|
IF( .NOT.PREFAC ) THEN
|
|
*
|
|
* Reconstruct matrix from factors and
|
|
* compute residual.
|
|
*
|
|
CALL CGBT01( N, N, KL, KU, A, LDA, AFB,
|
|
$ LDAFB, IWORK, WORK,
|
|
$ RESULT( 1 ) )
|
|
K1 = 1
|
|
ELSE
|
|
K1 = 2
|
|
END IF
|
|
*
|
|
IF( INFO.EQ.0 ) THEN
|
|
TRFCON = .FALSE.
|
|
*
|
|
* Compute residual of the computed solution.
|
|
*
|
|
CALL CLACPY( 'Full', N, NRHS, BSAV, LDB,
|
|
$ WORK, LDB )
|
|
CALL CGBT02( TRANS, N, N, KL, KU, NRHS,
|
|
$ ASAV, LDA, X, LDB, WORK, LDB,
|
|
$ RWORK( 2*NRHS+1 ),
|
|
$ RESULT( 2 ) )
|
|
*
|
|
* Check solution from generated exact
|
|
* solution.
|
|
*
|
|
IF( NOFACT .OR. ( PREFAC .AND.
|
|
$ LSAME( EQUED, 'N' ) ) ) THEN
|
|
CALL CGET04( N, NRHS, X, LDB, XACT,
|
|
$ LDB, RCONDC, RESULT( 3 ) )
|
|
ELSE
|
|
IF( ITRAN.EQ.1 ) THEN
|
|
ROLDC = ROLDO
|
|
ELSE
|
|
ROLDC = ROLDI
|
|
END IF
|
|
CALL CGET04( N, NRHS, X, LDB, XACT,
|
|
$ LDB, ROLDC, RESULT( 3 ) )
|
|
END IF
|
|
*
|
|
* Check the error bounds from iterative
|
|
* refinement.
|
|
*
|
|
CALL CGBT05( TRANS, N, KL, KU, NRHS, ASAV,
|
|
$ LDA, BSAV, LDB, X, LDB, XACT,
|
|
$ LDB, RWORK, RWORK( NRHS+1 ),
|
|
$ RESULT( 4 ) )
|
|
ELSE
|
|
TRFCON = .TRUE.
|
|
END IF
|
|
*
|
|
* Compare RCOND from CGBSVX with the computed
|
|
* value in RCONDC.
|
|
*
|
|
RESULT( 6 ) = SGET06( RCOND, RCONDC )
|
|
*
|
|
* Print information about the tests that did
|
|
* not pass the threshold.
|
|
*
|
|
IF( .NOT.TRFCON ) THEN
|
|
DO 80 K = K1, NTESTS
|
|
IF( RESULT( K ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALADHD( NOUT, PATH )
|
|
IF( PREFAC ) THEN
|
|
WRITE( NOUT, FMT = 9995 )
|
|
$ 'CGBSVX', FACT, TRANS, N, KL,
|
|
$ KU, EQUED, IMAT, K,
|
|
$ RESULT( K )
|
|
ELSE
|
|
WRITE( NOUT, FMT = 9996 )
|
|
$ 'CGBSVX', FACT, TRANS, N, KL,
|
|
$ KU, IMAT, K, RESULT( K )
|
|
END IF
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
80 CONTINUE
|
|
NRUN = NRUN + NTESTS - K1 + 1
|
|
ELSE
|
|
IF( RESULT( 1 ).GE.THRESH .AND. .NOT.
|
|
$ PREFAC ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALADHD( NOUT, PATH )
|
|
IF( PREFAC ) THEN
|
|
WRITE( NOUT, FMT = 9995 )'CGBSVX',
|
|
$ FACT, TRANS, N, KL, KU, EQUED,
|
|
$ IMAT, 1, RESULT( 1 )
|
|
ELSE
|
|
WRITE( NOUT, FMT = 9996 )'CGBSVX',
|
|
$ FACT, TRANS, N, KL, KU, IMAT, 1,
|
|
$ RESULT( 1 )
|
|
END IF
|
|
NFAIL = NFAIL + 1
|
|
NRUN = NRUN + 1
|
|
END IF
|
|
IF( RESULT( 6 ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALADHD( NOUT, PATH )
|
|
IF( PREFAC ) THEN
|
|
WRITE( NOUT, FMT = 9995 )'CGBSVX',
|
|
$ FACT, TRANS, N, KL, KU, EQUED,
|
|
$ IMAT, 6, RESULT( 6 )
|
|
ELSE
|
|
WRITE( NOUT, FMT = 9996 )'CGBSVX',
|
|
$ FACT, TRANS, N, KL, KU, IMAT, 6,
|
|
$ RESULT( 6 )
|
|
END IF
|
|
NFAIL = NFAIL + 1
|
|
NRUN = NRUN + 1
|
|
END IF
|
|
IF( RESULT( 7 ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALADHD( NOUT, PATH )
|
|
IF( PREFAC ) THEN
|
|
WRITE( NOUT, FMT = 9995 )'CGBSVX',
|
|
$ FACT, TRANS, N, KL, KU, EQUED,
|
|
$ IMAT, 7, RESULT( 7 )
|
|
ELSE
|
|
WRITE( NOUT, FMT = 9996 )'CGBSVX',
|
|
$ FACT, TRANS, N, KL, KU, IMAT, 7,
|
|
$ RESULT( 7 )
|
|
END IF
|
|
NFAIL = NFAIL + 1
|
|
NRUN = NRUN + 1
|
|
END IF
|
|
END IF
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
110 CONTINUE
|
|
120 CONTINUE
|
|
130 CONTINUE
|
|
140 CONTINUE
|
|
150 CONTINUE
|
|
*
|
|
* Print a summary of the results.
|
|
*
|
|
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
|
|
*
|
|
9999 FORMAT( ' *** In CDRVGB, LA=', I5, ' is too small for N=', I5,
|
|
$ ', KU=', I5, ', KL=', I5, / ' ==> Increase LA to at least ',
|
|
$ I5 )
|
|
9998 FORMAT( ' *** In CDRVGB, LAFB=', I5, ' is too small for N=', I5,
|
|
$ ', KU=', I5, ', KL=', I5, /
|
|
$ ' ==> Increase LAFB to at least ', I5 )
|
|
9997 FORMAT( 1X, A, ', N=', I5, ', KL=', I5, ', KU=', I5, ', type ',
|
|
$ I1, ', test(', I1, ')=', G12.5 )
|
|
9996 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
|
|
$ I5, ',...), type ', I1, ', test(', I1, ')=', G12.5 )
|
|
9995 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
|
|
$ I5, ',...), EQUED=''', A1, ''', type ', I1, ', test(', I1,
|
|
$ ')=', G12.5 )
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CDRVGB
|
|
*
|
|
END
|
|
|