You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
322 lines
8.5 KiB
322 lines
8.5 KiB
*> \brief \b CPST01
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE CPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
|
|
* PIV, RWORK, RESID, RANK )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* REAL RESID
|
|
* INTEGER LDA, LDAFAC, LDPERM, N, RANK
|
|
* CHARACTER UPLO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* COMPLEX A( LDA, * ), AFAC( LDAFAC, * ),
|
|
* $ PERM( LDPERM, * )
|
|
* REAL RWORK( * )
|
|
* INTEGER PIV( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CPST01 reconstructs an Hermitian positive semidefinite matrix A
|
|
*> from its L or U factors and the permutation matrix P and computes
|
|
*> the residual
|
|
*> norm( P*L*L'*P' - A ) / ( N * norm(A) * EPS ) or
|
|
*> norm( P*U'*U*P' - A ) / ( N * norm(A) * EPS ),
|
|
*> where EPS is the machine epsilon, L' is the conjugate transpose of L,
|
|
*> and U' is the conjugate transpose of U.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] UPLO
|
|
*> \verbatim
|
|
*> UPLO is CHARACTER*1
|
|
*> Specifies whether the upper or lower triangular part of the
|
|
*> Hermitian matrix A is stored:
|
|
*> = 'U': Upper triangular
|
|
*> = 'L': Lower triangular
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of rows and columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LDA,N)
|
|
*> The original Hermitian matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AFAC
|
|
*> \verbatim
|
|
*> AFAC is COMPLEX array, dimension (LDAFAC,N)
|
|
*> The factor L or U from the L*L' or U'*U
|
|
*> factorization of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAFAC
|
|
*> \verbatim
|
|
*> LDAFAC is INTEGER
|
|
*> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] PERM
|
|
*> \verbatim
|
|
*> PERM is COMPLEX array, dimension (LDPERM,N)
|
|
*> Overwritten with the reconstructed matrix, and then with the
|
|
*> difference P*L*L'*P' - A (or P*U'*U*P' - A)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDPERM
|
|
*> \verbatim
|
|
*> LDPERM is INTEGER
|
|
*> The leading dimension of the array PERM.
|
|
*> LDAPERM >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] PIV
|
|
*> \verbatim
|
|
*> PIV is INTEGER array, dimension (N)
|
|
*> PIV is such that the nonzero entries are
|
|
*> P( PIV( K ), K ) = 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESID
|
|
*> \verbatim
|
|
*> RESID is REAL
|
|
*> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
|
|
*> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] RANK
|
|
*> \verbatim
|
|
*> RANK is INTEGER
|
|
*> number of nonzero singular values of A.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE CPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
|
|
$ PIV, RWORK, RESID, RANK )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
REAL RESID
|
|
INTEGER LDA, LDAFAC, LDPERM, N, RANK
|
|
CHARACTER UPLO
|
|
* ..
|
|
* .. Array Arguments ..
|
|
COMPLEX A( LDA, * ), AFAC( LDAFAC, * ),
|
|
$ PERM( LDPERM, * )
|
|
REAL RWORK( * )
|
|
INTEGER PIV( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
|
COMPLEX CZERO
|
|
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
COMPLEX TC
|
|
REAL ANORM, EPS, TR
|
|
INTEGER I, J, K
|
|
* ..
|
|
* .. External Functions ..
|
|
COMPLEX CDOTC
|
|
REAL CLANHE, SLAMCH
|
|
LOGICAL LSAME
|
|
EXTERNAL CDOTC, CLANHE, SLAMCH, LSAME
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CHER, CSCAL, CTRMV
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC AIMAG, CONJG, REAL
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick exit if N = 0.
|
|
*
|
|
IF( N.LE.0 ) THEN
|
|
RESID = ZERO
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Exit with RESID = 1/EPS if ANORM = 0.
|
|
*
|
|
EPS = SLAMCH( 'Epsilon' )
|
|
ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
|
|
IF( ANORM.LE.ZERO ) THEN
|
|
RESID = ONE / EPS
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Check the imaginary parts of the diagonal elements and return with
|
|
* an error code if any are nonzero.
|
|
*
|
|
DO 100 J = 1, N
|
|
IF( AIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
|
|
RESID = ONE / EPS
|
|
RETURN
|
|
END IF
|
|
100 CONTINUE
|
|
*
|
|
* Compute the product U'*U, overwriting U.
|
|
*
|
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
|
*
|
|
IF( RANK.LT.N ) THEN
|
|
DO 120 J = RANK + 1, N
|
|
DO 110 I = RANK + 1, J
|
|
AFAC( I, J ) = CZERO
|
|
110 CONTINUE
|
|
120 CONTINUE
|
|
END IF
|
|
*
|
|
DO 130 K = N, 1, -1
|
|
*
|
|
* Compute the (K,K) element of the result.
|
|
*
|
|
TR = REAL( CDOTC( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 ) )
|
|
AFAC( K, K ) = TR
|
|
*
|
|
* Compute the rest of column K.
|
|
*
|
|
CALL CTRMV( 'Upper', 'Conjugate', 'Non-unit', K-1, AFAC,
|
|
$ LDAFAC, AFAC( 1, K ), 1 )
|
|
*
|
|
130 CONTINUE
|
|
*
|
|
* Compute the product L*L', overwriting L.
|
|
*
|
|
ELSE
|
|
*
|
|
IF( RANK.LT.N ) THEN
|
|
DO 150 J = RANK + 1, N
|
|
DO 140 I = J, N
|
|
AFAC( I, J ) = CZERO
|
|
140 CONTINUE
|
|
150 CONTINUE
|
|
END IF
|
|
*
|
|
DO 160 K = N, 1, -1
|
|
* Add a multiple of column K of the factor L to each of
|
|
* columns K+1 through N.
|
|
*
|
|
IF( K+1.LE.N )
|
|
$ CALL CHER( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
|
|
$ AFAC( K+1, K+1 ), LDAFAC )
|
|
*
|
|
* Scale column K by the diagonal element.
|
|
*
|
|
TC = AFAC( K, K )
|
|
CALL CSCAL( N-K+1, TC, AFAC( K, K ), 1 )
|
|
160 CONTINUE
|
|
*
|
|
END IF
|
|
*
|
|
* Form P*L*L'*P' or P*U'*U*P'
|
|
*
|
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
|
*
|
|
DO 180 J = 1, N
|
|
DO 170 I = 1, N
|
|
IF( PIV( I ).LE.PIV( J ) ) THEN
|
|
IF( I.LE.J ) THEN
|
|
PERM( PIV( I ), PIV( J ) ) = AFAC( I, J )
|
|
ELSE
|
|
PERM( PIV( I ), PIV( J ) ) = CONJG( AFAC( J, I ) )
|
|
END IF
|
|
END IF
|
|
170 CONTINUE
|
|
180 CONTINUE
|
|
*
|
|
*
|
|
ELSE
|
|
*
|
|
DO 200 J = 1, N
|
|
DO 190 I = 1, N
|
|
IF( PIV( I ).GE.PIV( J ) ) THEN
|
|
IF( I.GE.J ) THEN
|
|
PERM( PIV( I ), PIV( J ) ) = AFAC( I, J )
|
|
ELSE
|
|
PERM( PIV( I ), PIV( J ) ) = CONJG( AFAC( J, I ) )
|
|
END IF
|
|
END IF
|
|
190 CONTINUE
|
|
200 CONTINUE
|
|
*
|
|
END IF
|
|
*
|
|
* Compute the difference P*L*L'*P' - A (or P*U'*U*P' - A).
|
|
*
|
|
IF( LSAME( UPLO, 'U' ) ) THEN
|
|
DO 220 J = 1, N
|
|
DO 210 I = 1, J - 1
|
|
PERM( I, J ) = PERM( I, J ) - A( I, J )
|
|
210 CONTINUE
|
|
PERM( J, J ) = PERM( J, J ) - REAL( A( J, J ) )
|
|
220 CONTINUE
|
|
ELSE
|
|
DO 240 J = 1, N
|
|
PERM( J, J ) = PERM( J, J ) - REAL( A( J, J ) )
|
|
DO 230 I = J + 1, N
|
|
PERM( I, J ) = PERM( I, J ) - A( I, J )
|
|
230 CONTINUE
|
|
240 CONTINUE
|
|
END IF
|
|
*
|
|
* Compute norm( P*L*L'P - A ) / ( N * norm(A) * EPS ), or
|
|
* ( P*U'*U*P' - A )/ ( N * norm(A) * EPS ).
|
|
*
|
|
RESID = CLANHE( '1', UPLO, N, PERM, LDAFAC, RWORK )
|
|
*
|
|
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CPST01
|
|
*
|
|
END
|
|
|