You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
207 lines
5.4 KiB
207 lines
5.4 KiB
*> \brief \b CQPT01
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* REAL FUNCTION CQPT01( M, N, K, A, AF, LDA, TAU, JPVT,
|
|
* WORK, LWORK )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER K, LDA, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* INTEGER JPVT( * )
|
|
* COMPLEX A( LDA, * ), AF( LDA, * ), TAU( * ),
|
|
* $ WORK( LWORK )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> CQPT01 tests the QR-factorization with pivoting of a matrix A. The
|
|
*> array AF contains the (possibly partial) QR-factorization of A, where
|
|
*> the upper triangle of AF(1:k,1:k) is a partial triangular factor,
|
|
*> the entries below the diagonal in the first k columns are the
|
|
*> Householder vectors, and the rest of AF contains a partially updated
|
|
*> matrix.
|
|
*>
|
|
*> This function returns ||A*P - Q*R||/(||norm(A)||*eps*M)
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> The number of rows of the matrices A and AF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of columns of the matrices A and AF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] K
|
|
*> \verbatim
|
|
*> K is INTEGER
|
|
*> The number of columns of AF that have been reduced
|
|
*> to upper triangular form.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is COMPLEX array, dimension (LDA, N)
|
|
*> The original matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AF
|
|
*> \verbatim
|
|
*> AF is COMPLEX array, dimension (LDA,N)
|
|
*> The (possibly partial) output of CGEQPF. The upper triangle
|
|
*> of AF(1:k,1:k) is a partial triangular factor, the entries
|
|
*> below the diagonal in the first k columns are the Householder
|
|
*> vectors, and the rest of AF contains a partially updated
|
|
*> matrix.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the arrays A and AF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TAU
|
|
*> \verbatim
|
|
*> TAU is COMPLEX array, dimension (K)
|
|
*> Details of the Householder transformations as returned by
|
|
*> CGEQPF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] JPVT
|
|
*> \verbatim
|
|
*> JPVT is INTEGER array, dimension (N)
|
|
*> Pivot information as returned by CGEQPF.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is COMPLEX array, dimension (LWORK)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LWORK
|
|
*> \verbatim
|
|
*> LWORK is INTEGER
|
|
*> The length of the array WORK. LWORK >= M*N+N.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup complex_lin
|
|
*
|
|
* =====================================================================
|
|
REAL FUNCTION CQPT01( M, N, K, A, AF, LDA, TAU, JPVT,
|
|
$ WORK, LWORK )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER K, LDA, LWORK, M, N
|
|
* ..
|
|
* .. Array Arguments ..
|
|
INTEGER JPVT( * )
|
|
COMPLEX A( LDA, * ), AF( LDA, * ), TAU( * ),
|
|
$ WORK( LWORK )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, INFO, J
|
|
REAL NORMA
|
|
* ..
|
|
* .. Local Arrays ..
|
|
REAL RWORK( 1 )
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL CLANGE, SLAMCH
|
|
EXTERNAL CLANGE, SLAMCH
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL CAXPY, CCOPY, CUNMQR, XERBLA
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC CMPLX, MAX, MIN, REAL
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
CQPT01 = ZERO
|
|
*
|
|
* Test if there is enough workspace
|
|
*
|
|
IF( LWORK.LT.M*N+N ) THEN
|
|
CALL XERBLA( 'CQPT01', 10 )
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Quick return if possible
|
|
*
|
|
IF( M.LE.0 .OR. N.LE.0 )
|
|
$ RETURN
|
|
*
|
|
NORMA = CLANGE( 'One-norm', M, N, A, LDA, RWORK )
|
|
*
|
|
DO 30 J = 1, K
|
|
DO 10 I = 1, MIN( J, M )
|
|
WORK( ( J-1 )*M+I ) = AF( I, J )
|
|
10 CONTINUE
|
|
DO 20 I = J + 1, M
|
|
WORK( ( J-1 )*M+I ) = ZERO
|
|
20 CONTINUE
|
|
30 CONTINUE
|
|
DO 40 J = K + 1, N
|
|
CALL CCOPY( M, AF( 1, J ), 1, WORK( ( J-1 )*M+1 ), 1 )
|
|
40 CONTINUE
|
|
*
|
|
CALL CUNMQR( 'Left', 'No transpose', M, N, K, AF, LDA, TAU, WORK,
|
|
$ M, WORK( M*N+1 ), LWORK-M*N, INFO )
|
|
*
|
|
DO 50 J = 1, N
|
|
*
|
|
* Compare i-th column of QR and jpvt(i)-th column of A
|
|
*
|
|
CALL CAXPY( M, CMPLX( -ONE ), A( 1, JPVT( J ) ), 1,
|
|
$ WORK( ( J-1 )*M+1 ), 1 )
|
|
50 CONTINUE
|
|
*
|
|
CQPT01 = CLANGE( 'One-norm', M, N, WORK, M, RWORK ) /
|
|
$ ( REAL( MAX( M, N ) )*SLAMCH( 'Epsilon' ) )
|
|
IF( NORMA.NE.ZERO )
|
|
$ CQPT01 = CQPT01 / NORMA
|
|
*
|
|
RETURN
|
|
*
|
|
* End of CQPT01
|
|
*
|
|
END
|
|
|