You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
258 lines
7.5 KiB
258 lines
7.5 KiB
*> \brief \b DPTT05
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE DPTT05( N, NRHS, D, E, B, LDB, X, LDX, XACT, LDXACT,
|
|
* FERR, BERR, RESLTS )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER LDB, LDX, LDXACT, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), E( * ),
|
|
* $ FERR( * ), RESLTS( * ), X( LDX, * ),
|
|
* $ XACT( LDXACT, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> DPTT05 tests the error bounds from iterative refinement for the
|
|
*> computed solution to a system of equations A*X = B, where A is a
|
|
*> symmetric tridiagonal matrix of order n.
|
|
*>
|
|
*> RESLTS(1) = test of the error bound
|
|
*> = norm(X - XACT) / ( norm(X) * FERR )
|
|
*>
|
|
*> A large value is returned if this ratio is not less than one.
|
|
*>
|
|
*> RESLTS(2) = residual from the iterative refinement routine
|
|
*> = the maximum of BERR / ( NZ*EPS + (*) ), where
|
|
*> (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
|
|
*> and NZ = max. number of nonzeros in any row of A, plus 1
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of rows of the matrices X, B, and XACT, and the
|
|
*> order of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NRHS
|
|
*> \verbatim
|
|
*> NRHS is INTEGER
|
|
*> The number of columns of the matrices X, B, and XACT.
|
|
*> NRHS >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] D
|
|
*> \verbatim
|
|
*> D is DOUBLE PRECISION array, dimension (N)
|
|
*> The n diagonal elements of the tridiagonal matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] E
|
|
*> \verbatim
|
|
*> E is DOUBLE PRECISION array, dimension (N-1)
|
|
*> The (n-1) subdiagonal elements of the tridiagonal matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] B
|
|
*> \verbatim
|
|
*> B is DOUBLE PRECISION array, dimension (LDB,NRHS)
|
|
*> The right hand side vectors for the system of linear
|
|
*> equations.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of the array B. LDB >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] X
|
|
*> \verbatim
|
|
*> X is DOUBLE PRECISION array, dimension (LDX,NRHS)
|
|
*> The computed solution vectors. Each vector is stored as a
|
|
*> column of the matrix X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDX
|
|
*> \verbatim
|
|
*> LDX is INTEGER
|
|
*> The leading dimension of the array X. LDX >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] XACT
|
|
*> \verbatim
|
|
*> XACT is DOUBLE PRECISION array, dimension (LDX,NRHS)
|
|
*> The exact solution vectors. Each vector is stored as a
|
|
*> column of the matrix XACT.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDXACT
|
|
*> \verbatim
|
|
*> LDXACT is INTEGER
|
|
*> The leading dimension of the array XACT. LDXACT >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] FERR
|
|
*> \verbatim
|
|
*> FERR is DOUBLE PRECISION array, dimension (NRHS)
|
|
*> The estimated forward error bounds for each solution vector
|
|
*> X. If XTRUE is the true solution, FERR bounds the magnitude
|
|
*> of the largest entry in (X - XTRUE) divided by the magnitude
|
|
*> of the largest entry in X.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] BERR
|
|
*> \verbatim
|
|
*> BERR is DOUBLE PRECISION array, dimension (NRHS)
|
|
*> The componentwise relative backward error of each solution
|
|
*> vector (i.e., the smallest relative change in any entry of A
|
|
*> or B that makes X an exact solution).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESLTS
|
|
*> \verbatim
|
|
*> RESLTS is DOUBLE PRECISION array, dimension (2)
|
|
*> The maximum over the NRHS solution vectors of the ratios:
|
|
*> RESLTS(1) = norm(X - XACT) / ( norm(X) * FERR )
|
|
*> RESLTS(2) = BERR / ( NZ*EPS + (*) )
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup double_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE DPTT05( N, NRHS, D, E, B, LDB, X, LDX, XACT, LDXACT,
|
|
$ FERR, BERR, RESLTS )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER LDB, LDX, LDXACT, N, NRHS
|
|
* ..
|
|
* .. Array Arguments ..
|
|
DOUBLE PRECISION B( LDB, * ), BERR( * ), D( * ), E( * ),
|
|
$ FERR( * ), RESLTS( * ), X( LDX, * ),
|
|
$ XACT( LDXACT, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
DOUBLE PRECISION ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, IMAX, J, K, NZ
|
|
DOUBLE PRECISION AXBI, DIFF, EPS, ERRBND, OVFL, TMP, UNFL, XNORM
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER IDAMAX
|
|
DOUBLE PRECISION DLAMCH
|
|
EXTERNAL IDAMAX, DLAMCH
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX, MIN
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick exit if N = 0 or NRHS = 0.
|
|
*
|
|
IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
|
|
RESLTS( 1 ) = ZERO
|
|
RESLTS( 2 ) = ZERO
|
|
RETURN
|
|
END IF
|
|
*
|
|
EPS = DLAMCH( 'Epsilon' )
|
|
UNFL = DLAMCH( 'Safe minimum' )
|
|
OVFL = ONE / UNFL
|
|
NZ = 4
|
|
*
|
|
* Test 1: Compute the maximum of
|
|
* norm(X - XACT) / ( norm(X) * FERR )
|
|
* over all the vectors X and XACT using the infinity-norm.
|
|
*
|
|
ERRBND = ZERO
|
|
DO 30 J = 1, NRHS
|
|
IMAX = IDAMAX( N, X( 1, J ), 1 )
|
|
XNORM = MAX( ABS( X( IMAX, J ) ), UNFL )
|
|
DIFF = ZERO
|
|
DO 10 I = 1, N
|
|
DIFF = MAX( DIFF, ABS( X( I, J )-XACT( I, J ) ) )
|
|
10 CONTINUE
|
|
*
|
|
IF( XNORM.GT.ONE ) THEN
|
|
GO TO 20
|
|
ELSE IF( DIFF.LE.OVFL*XNORM ) THEN
|
|
GO TO 20
|
|
ELSE
|
|
ERRBND = ONE / EPS
|
|
GO TO 30
|
|
END IF
|
|
*
|
|
20 CONTINUE
|
|
IF( DIFF / XNORM.LE.FERR( J ) ) THEN
|
|
ERRBND = MAX( ERRBND, ( DIFF / XNORM ) / FERR( J ) )
|
|
ELSE
|
|
ERRBND = ONE / EPS
|
|
END IF
|
|
30 CONTINUE
|
|
RESLTS( 1 ) = ERRBND
|
|
*
|
|
* Test 2: Compute the maximum of BERR / ( NZ*EPS + (*) ), where
|
|
* (*) = NZ*UNFL / (min_i (abs(A)*abs(X) +abs(b))_i )
|
|
*
|
|
DO 50 K = 1, NRHS
|
|
IF( N.EQ.1 ) THEN
|
|
AXBI = ABS( B( 1, K ) ) + ABS( D( 1 )*X( 1, K ) )
|
|
ELSE
|
|
AXBI = ABS( B( 1, K ) ) + ABS( D( 1 )*X( 1, K ) ) +
|
|
$ ABS( E( 1 )*X( 2, K ) )
|
|
DO 40 I = 2, N - 1
|
|
TMP = ABS( B( I, K ) ) + ABS( E( I-1 )*X( I-1, K ) ) +
|
|
$ ABS( D( I )*X( I, K ) ) + ABS( E( I )*X( I+1, K ) )
|
|
AXBI = MIN( AXBI, TMP )
|
|
40 CONTINUE
|
|
TMP = ABS( B( N, K ) ) + ABS( E( N-1 )*X( N-1, K ) ) +
|
|
$ ABS( D( N )*X( N, K ) )
|
|
AXBI = MIN( AXBI, TMP )
|
|
END IF
|
|
TMP = BERR( K ) / ( NZ*EPS+NZ*UNFL / MAX( AXBI, NZ*UNFL ) )
|
|
IF( K.EQ.1 ) THEN
|
|
RESLTS( 2 ) = TMP
|
|
ELSE
|
|
RESLTS( 2 ) = MAX( RESLTS( 2 ), TMP )
|
|
END IF
|
|
50 CONTINUE
|
|
*
|
|
RETURN
|
|
*
|
|
* End of DPTT05
|
|
*
|
|
END
|
|
|