You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
532 lines
16 KiB
532 lines
16 KiB
*> \brief \b SCHKPT
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SCHKPT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
|
|
* A, D, E, B, X, XACT, WORK, RWORK, NOUT )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* LOGICAL TSTERR
|
|
* INTEGER NN, NNS, NOUT
|
|
* REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* LOGICAL DOTYPE( * )
|
|
* INTEGER NSVAL( * ), NVAL( * )
|
|
* REAL A( * ), B( * ), D( * ), E( * ), RWORK( * ),
|
|
* $ WORK( * ), X( * ), XACT( * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SCHKPT tests SPTTRF, -TRS, -RFS, and -CON
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] DOTYPE
|
|
*> \verbatim
|
|
*> DOTYPE is LOGICAL array, dimension (NTYPES)
|
|
*> The matrix types to be used for testing. Matrices of type j
|
|
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
|
|
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NN
|
|
*> \verbatim
|
|
*> NN is INTEGER
|
|
*> The number of values of N contained in the vector NVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NVAL
|
|
*> \verbatim
|
|
*> NVAL is INTEGER array, dimension (NN)
|
|
*> The values of the matrix dimension N.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NNS
|
|
*> \verbatim
|
|
*> NNS is INTEGER
|
|
*> The number of values of NRHS contained in the vector NSVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NSVAL
|
|
*> \verbatim
|
|
*> NSVAL is INTEGER array, dimension (NNS)
|
|
*> The values of the number of right hand sides NRHS.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] THRESH
|
|
*> \verbatim
|
|
*> THRESH is REAL
|
|
*> The threshold value for the test ratios. A result is
|
|
*> included in the output file if RESULT >= THRESH. To have
|
|
*> every test ratio printed, use THRESH = 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] TSTERR
|
|
*> \verbatim
|
|
*> TSTERR is LOGICAL
|
|
*> Flag that indicates whether error exits are to be tested.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (NMAX*2)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (NMAX*2)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] E
|
|
*> \verbatim
|
|
*> E is REAL array, dimension (NMAX*2)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] B
|
|
*> \verbatim
|
|
*> B is REAL array, dimension (NMAX*NSMAX)
|
|
*> where NSMAX is the largest entry in NSVAL.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] X
|
|
*> \verbatim
|
|
*> X is REAL array, dimension (NMAX*NSMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] XACT
|
|
*> \verbatim
|
|
*> XACT is REAL array, dimension (NMAX*NSMAX)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension
|
|
*> (NMAX*max(3,NSMAX))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension
|
|
*> (max(NMAX,2*NSMAX))
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] NOUT
|
|
*> \verbatim
|
|
*> NOUT is INTEGER
|
|
*> The unit number for output.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup single_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SCHKPT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
|
|
$ A, D, E, B, X, XACT, WORK, RWORK, NOUT )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
LOGICAL TSTERR
|
|
INTEGER NN, NNS, NOUT
|
|
REAL THRESH
|
|
* ..
|
|
* .. Array Arguments ..
|
|
LOGICAL DOTYPE( * )
|
|
INTEGER NSVAL( * ), NVAL( * )
|
|
REAL A( * ), B( * ), D( * ), E( * ), RWORK( * ),
|
|
$ WORK( * ), X( * ), XACT( * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, ZERO
|
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
|
|
INTEGER NTYPES
|
|
PARAMETER ( NTYPES = 12 )
|
|
INTEGER NTESTS
|
|
PARAMETER ( NTESTS = 7 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
LOGICAL ZEROT
|
|
CHARACTER DIST, TYPE
|
|
CHARACTER*3 PATH
|
|
INTEGER I, IA, IMAT, IN, INFO, IRHS, IX, IZERO, J, K,
|
|
$ KL, KU, LDA, MODE, N, NERRS, NFAIL, NIMAT,
|
|
$ NRHS, NRUN
|
|
REAL AINVNM, ANORM, COND, DMAX, RCOND, RCONDC
|
|
* ..
|
|
* .. Local Arrays ..
|
|
INTEGER ISEED( 4 ), ISEEDY( 4 )
|
|
REAL RESULT( NTESTS ), Z( 3 )
|
|
* ..
|
|
* .. External Functions ..
|
|
INTEGER ISAMAX
|
|
REAL SASUM, SGET06, SLANST
|
|
EXTERNAL ISAMAX, SASUM, SGET06, SLANST
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL ALAERH, ALAHD, ALASUM, SCOPY, SERRGT, SGET04,
|
|
$ SLACPY, SLAPTM, SLARNV, SLATB4, SLATMS, SPTCON,
|
|
$ SPTRFS, SPTT01, SPTT02, SPTT05, SPTTRF, SPTTRS,
|
|
$ SSCAL
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC ABS, MAX
|
|
* ..
|
|
* .. Scalars in Common ..
|
|
LOGICAL LERR, OK
|
|
CHARACTER*32 SRNAMT
|
|
INTEGER INFOT, NUNIT
|
|
* ..
|
|
* .. Common blocks ..
|
|
COMMON / INFOC / INFOT, NUNIT, OK, LERR
|
|
COMMON / SRNAMC / SRNAMT
|
|
* ..
|
|
* .. Data statements ..
|
|
DATA ISEEDY / 0, 0, 0, 1 /
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
PATH( 1: 1 ) = 'Single precision'
|
|
PATH( 2: 3 ) = 'PT'
|
|
NRUN = 0
|
|
NFAIL = 0
|
|
NERRS = 0
|
|
DO 10 I = 1, 4
|
|
ISEED( I ) = ISEEDY( I )
|
|
10 CONTINUE
|
|
*
|
|
* Test the error exits
|
|
*
|
|
IF( TSTERR )
|
|
$ CALL SERRGT( PATH, NOUT )
|
|
INFOT = 0
|
|
*
|
|
DO 110 IN = 1, NN
|
|
*
|
|
* Do for each value of N in NVAL.
|
|
*
|
|
N = NVAL( IN )
|
|
LDA = MAX( 1, N )
|
|
NIMAT = NTYPES
|
|
IF( N.LE.0 )
|
|
$ NIMAT = 1
|
|
*
|
|
DO 100 IMAT = 1, NIMAT
|
|
*
|
|
* Do the tests only if DOTYPE( IMAT ) is true.
|
|
*
|
|
IF( N.GT.0 .AND. .NOT.DOTYPE( IMAT ) )
|
|
$ GO TO 100
|
|
*
|
|
* Set up parameters with SLATB4.
|
|
*
|
|
CALL SLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
|
|
$ COND, DIST )
|
|
*
|
|
ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
|
|
IF( IMAT.LE.6 ) THEN
|
|
*
|
|
* Type 1-6: generate a symmetric tridiagonal matrix of
|
|
* known condition number in lower triangular band storage.
|
|
*
|
|
SRNAMT = 'SLATMS'
|
|
CALL SLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
|
|
$ ANORM, KL, KU, 'B', A, 2, WORK, INFO )
|
|
*
|
|
* Check the error code from SLATMS.
|
|
*
|
|
IF( INFO.NE.0 ) THEN
|
|
CALL ALAERH( PATH, 'SLATMS', INFO, 0, ' ', N, N, KL,
|
|
$ KU, -1, IMAT, NFAIL, NERRS, NOUT )
|
|
GO TO 100
|
|
END IF
|
|
IZERO = 0
|
|
*
|
|
* Copy the matrix to D and E.
|
|
*
|
|
IA = 1
|
|
DO 20 I = 1, N - 1
|
|
D( I ) = A( IA )
|
|
E( I ) = A( IA+1 )
|
|
IA = IA + 2
|
|
20 CONTINUE
|
|
IF( N.GT.0 )
|
|
$ D( N ) = A( IA )
|
|
ELSE
|
|
*
|
|
* Type 7-12: generate a diagonally dominant matrix with
|
|
* unknown condition number in the vectors D and E.
|
|
*
|
|
IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
|
|
*
|
|
* Let D and E have values from [-1,1].
|
|
*
|
|
CALL SLARNV( 2, ISEED, N, D )
|
|
CALL SLARNV( 2, ISEED, N-1, E )
|
|
*
|
|
* Make the tridiagonal matrix diagonally dominant.
|
|
*
|
|
IF( N.EQ.1 ) THEN
|
|
D( 1 ) = ABS( D( 1 ) )
|
|
ELSE
|
|
D( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) )
|
|
D( N ) = ABS( D( N ) ) + ABS( E( N-1 ) )
|
|
DO 30 I = 2, N - 1
|
|
D( I ) = ABS( D( I ) ) + ABS( E( I ) ) +
|
|
$ ABS( E( I-1 ) )
|
|
30 CONTINUE
|
|
END IF
|
|
*
|
|
* Scale D and E so the maximum element is ANORM.
|
|
*
|
|
IX = ISAMAX( N, D, 1 )
|
|
DMAX = D( IX )
|
|
CALL SSCAL( N, ANORM / DMAX, D, 1 )
|
|
CALL SSCAL( N-1, ANORM / DMAX, E, 1 )
|
|
*
|
|
ELSE IF( IZERO.GT.0 ) THEN
|
|
*
|
|
* Reuse the last matrix by copying back the zeroed out
|
|
* elements.
|
|
*
|
|
IF( IZERO.EQ.1 ) THEN
|
|
D( 1 ) = Z( 2 )
|
|
IF( N.GT.1 )
|
|
$ E( 1 ) = Z( 3 )
|
|
ELSE IF( IZERO.EQ.N ) THEN
|
|
E( N-1 ) = Z( 1 )
|
|
D( N ) = Z( 2 )
|
|
ELSE
|
|
E( IZERO-1 ) = Z( 1 )
|
|
D( IZERO ) = Z( 2 )
|
|
E( IZERO ) = Z( 3 )
|
|
END IF
|
|
END IF
|
|
*
|
|
* For types 8-10, set one row and column of the matrix to
|
|
* zero.
|
|
*
|
|
IZERO = 0
|
|
IF( IMAT.EQ.8 ) THEN
|
|
IZERO = 1
|
|
Z( 2 ) = D( 1 )
|
|
D( 1 ) = ZERO
|
|
IF( N.GT.1 ) THEN
|
|
Z( 3 ) = E( 1 )
|
|
E( 1 ) = ZERO
|
|
END IF
|
|
ELSE IF( IMAT.EQ.9 ) THEN
|
|
IZERO = N
|
|
IF( N.GT.1 ) THEN
|
|
Z( 1 ) = E( N-1 )
|
|
E( N-1 ) = ZERO
|
|
END IF
|
|
Z( 2 ) = D( N )
|
|
D( N ) = ZERO
|
|
ELSE IF( IMAT.EQ.10 ) THEN
|
|
IZERO = ( N+1 ) / 2
|
|
IF( IZERO.GT.1 ) THEN
|
|
Z( 1 ) = E( IZERO-1 )
|
|
E( IZERO-1 ) = ZERO
|
|
Z( 3 ) = E( IZERO )
|
|
E( IZERO ) = ZERO
|
|
END IF
|
|
Z( 2 ) = D( IZERO )
|
|
D( IZERO ) = ZERO
|
|
END IF
|
|
END IF
|
|
*
|
|
CALL SCOPY( N, D, 1, D( N+1 ), 1 )
|
|
IF( N.GT.1 )
|
|
$ CALL SCOPY( N-1, E, 1, E( N+1 ), 1 )
|
|
*
|
|
*+ TEST 1
|
|
* Factor A as L*D*L' and compute the ratio
|
|
* norm(L*D*L' - A) / (n * norm(A) * EPS )
|
|
*
|
|
CALL SPTTRF( N, D( N+1 ), E( N+1 ), INFO )
|
|
*
|
|
* Check error code from SPTTRF.
|
|
*
|
|
IF( INFO.NE.IZERO ) THEN
|
|
CALL ALAERH( PATH, 'SPTTRF', INFO, IZERO, ' ', N, N, -1,
|
|
$ -1, -1, IMAT, NFAIL, NERRS, NOUT )
|
|
GO TO 100
|
|
END IF
|
|
*
|
|
IF( INFO.GT.0 ) THEN
|
|
RCONDC = ZERO
|
|
GO TO 90
|
|
END IF
|
|
*
|
|
CALL SPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
|
|
$ RESULT( 1 ) )
|
|
*
|
|
* Print the test ratio if greater than or equal to THRESH.
|
|
*
|
|
IF( RESULT( 1 ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9999 )N, IMAT, 1, RESULT( 1 )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
NRUN = NRUN + 1
|
|
*
|
|
* Compute RCONDC = 1 / (norm(A) * norm(inv(A))
|
|
*
|
|
* Compute norm(A).
|
|
*
|
|
ANORM = SLANST( '1', N, D, E )
|
|
*
|
|
* Use SPTTRS to solve for one column at a time of inv(A),
|
|
* computing the maximum column sum as we go.
|
|
*
|
|
AINVNM = ZERO
|
|
DO 50 I = 1, N
|
|
DO 40 J = 1, N
|
|
X( J ) = ZERO
|
|
40 CONTINUE
|
|
X( I ) = ONE
|
|
CALL SPTTRS( N, 1, D( N+1 ), E( N+1 ), X, LDA, INFO )
|
|
AINVNM = MAX( AINVNM, SASUM( N, X, 1 ) )
|
|
50 CONTINUE
|
|
RCONDC = ONE / MAX( ONE, ANORM*AINVNM )
|
|
*
|
|
DO 80 IRHS = 1, NNS
|
|
NRHS = NSVAL( IRHS )
|
|
*
|
|
* Generate NRHS random solution vectors.
|
|
*
|
|
IX = 1
|
|
DO 60 J = 1, NRHS
|
|
CALL SLARNV( 2, ISEED, N, XACT( IX ) )
|
|
IX = IX + LDA
|
|
60 CONTINUE
|
|
*
|
|
* Set the right hand side.
|
|
*
|
|
CALL SLAPTM( N, NRHS, ONE, D, E, XACT, LDA, ZERO, B,
|
|
$ LDA )
|
|
*
|
|
*+ TEST 2
|
|
* Solve A*x = b and compute the residual.
|
|
*
|
|
CALL SLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
|
|
CALL SPTTRS( N, NRHS, D( N+1 ), E( N+1 ), X, LDA, INFO )
|
|
*
|
|
* Check error code from SPTTRS.
|
|
*
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'SPTTRS', INFO, 0, ' ', N, N, -1,
|
|
$ -1, NRHS, IMAT, NFAIL, NERRS, NOUT )
|
|
*
|
|
CALL SLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
|
|
CALL SPTT02( N, NRHS, D, E, X, LDA, WORK, LDA,
|
|
$ RESULT( 2 ) )
|
|
*
|
|
*+ TEST 3
|
|
* Check solution from generated exact solution.
|
|
*
|
|
CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
|
|
$ RESULT( 3 ) )
|
|
*
|
|
*+ TESTS 4, 5, and 6
|
|
* Use iterative refinement to improve the solution.
|
|
*
|
|
SRNAMT = 'SPTRFS'
|
|
CALL SPTRFS( N, NRHS, D, E, D( N+1 ), E( N+1 ), B, LDA,
|
|
$ X, LDA, RWORK, RWORK( NRHS+1 ), WORK, INFO )
|
|
*
|
|
* Check error code from SPTRFS.
|
|
*
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'SPTRFS', INFO, 0, ' ', N, N, -1,
|
|
$ -1, NRHS, IMAT, NFAIL, NERRS, NOUT )
|
|
*
|
|
CALL SGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
|
|
$ RESULT( 4 ) )
|
|
CALL SPTT05( N, NRHS, D, E, B, LDA, X, LDA, XACT, LDA,
|
|
$ RWORK, RWORK( NRHS+1 ), RESULT( 5 ) )
|
|
*
|
|
* Print information about the tests that did not pass the
|
|
* threshold.
|
|
*
|
|
DO 70 K = 2, 6
|
|
IF( RESULT( K ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9998 )N, NRHS, IMAT, K,
|
|
$ RESULT( K )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
70 CONTINUE
|
|
NRUN = NRUN + 5
|
|
80 CONTINUE
|
|
*
|
|
*+ TEST 7
|
|
* Estimate the reciprocal of the condition number of the
|
|
* matrix.
|
|
*
|
|
90 CONTINUE
|
|
SRNAMT = 'SPTCON'
|
|
CALL SPTCON( N, D( N+1 ), E( N+1 ), ANORM, RCOND, RWORK,
|
|
$ INFO )
|
|
*
|
|
* Check error code from SPTCON.
|
|
*
|
|
IF( INFO.NE.0 )
|
|
$ CALL ALAERH( PATH, 'SPTCON', INFO, 0, ' ', N, N, -1, -1,
|
|
$ -1, IMAT, NFAIL, NERRS, NOUT )
|
|
*
|
|
RESULT( 7 ) = SGET06( RCOND, RCONDC )
|
|
*
|
|
* Print the test ratio if greater than or equal to THRESH.
|
|
*
|
|
IF( RESULT( 7 ).GE.THRESH ) THEN
|
|
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
|
|
$ CALL ALAHD( NOUT, PATH )
|
|
WRITE( NOUT, FMT = 9999 )N, IMAT, 7, RESULT( 7 )
|
|
NFAIL = NFAIL + 1
|
|
END IF
|
|
NRUN = NRUN + 1
|
|
100 CONTINUE
|
|
110 CONTINUE
|
|
*
|
|
* Print a summary of the results.
|
|
*
|
|
CALL ALASUM( PATH, NOUT, NFAIL, NRUN, NERRS )
|
|
*
|
|
9999 FORMAT( ' N =', I5, ', type ', I2, ', test ', I2, ', ratio = ',
|
|
$ G12.5 )
|
|
9998 FORMAT( ' N =', I5, ', NRHS=', I3, ', type ', I2, ', test(', I2,
|
|
$ ') = ', G12.5 )
|
|
RETURN
|
|
*
|
|
* End of SCHKPT
|
|
*
|
|
END
|
|
|