You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
183 lines
4.6 KiB
183 lines
4.6 KiB
*> \brief \b SGET03
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
|
|
* RCOND, RESID )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER LDA, LDAINV, LDWORK, N
|
|
* REAL RCOND, RESID
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL A( LDA, * ), AINV( LDAINV, * ), RWORK( * ),
|
|
* $ WORK( LDWORK, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SGET03 computes the residual for a general matrix times its inverse:
|
|
*> norm( I - AINV*A ) / ( N * norm(A) * norm(AINV) * EPS ),
|
|
*> where EPS is the machine epsilon.
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> The number of rows and columns of the matrix A. N >= 0.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (LDA,N)
|
|
*> The original N x N matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of the array A. LDA >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] AINV
|
|
*> \verbatim
|
|
*> AINV is REAL array, dimension (LDAINV,N)
|
|
*> The inverse of the matrix A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDAINV
|
|
*> \verbatim
|
|
*> LDAINV is INTEGER
|
|
*> The leading dimension of the array AINV. LDAINV >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] WORK
|
|
*> \verbatim
|
|
*> WORK is REAL array, dimension (LDWORK,N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDWORK
|
|
*> \verbatim
|
|
*> LDWORK is INTEGER
|
|
*> The leading dimension of the array WORK. LDWORK >= max(1,N).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RWORK
|
|
*> \verbatim
|
|
*> RWORK is REAL array, dimension (N)
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RCOND
|
|
*> \verbatim
|
|
*> RCOND is REAL
|
|
*> The reciprocal of the condition number of A, computed as
|
|
*> ( 1/norm(A) ) / norm(AINV).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] RESID
|
|
*> \verbatim
|
|
*> RESID is REAL
|
|
*> norm(I - AINV*A) / ( N * norm(A) * norm(AINV) * EPS )
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup single_lin
|
|
*
|
|
* =====================================================================
|
|
SUBROUTINE SGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
|
|
$ RCOND, RESID )
|
|
*
|
|
* -- LAPACK test routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER LDA, LDAINV, LDWORK, N
|
|
REAL RCOND, RESID
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL A( LDA, * ), AINV( LDAINV, * ), RWORK( * ),
|
|
$ WORK( LDWORK, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ZERO, ONE
|
|
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I
|
|
REAL AINVNM, ANORM, EPS
|
|
* ..
|
|
* .. External Functions ..
|
|
REAL SLAMCH, SLANGE
|
|
EXTERNAL SLAMCH, SLANGE
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SGEMM
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC REAL
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
* Quick exit if N = 0.
|
|
*
|
|
IF( N.LE.0 ) THEN
|
|
RCOND = ONE
|
|
RESID = ZERO
|
|
RETURN
|
|
END IF
|
|
*
|
|
* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
|
|
*
|
|
EPS = SLAMCH( 'Epsilon' )
|
|
ANORM = SLANGE( '1', N, N, A, LDA, RWORK )
|
|
AINVNM = SLANGE( '1', N, N, AINV, LDAINV, RWORK )
|
|
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
|
|
RCOND = ZERO
|
|
RESID = ONE / EPS
|
|
RETURN
|
|
END IF
|
|
RCOND = ( ONE / ANORM ) / AINVNM
|
|
*
|
|
* Compute I - A * AINV
|
|
*
|
|
CALL SGEMM( 'No transpose', 'No transpose', N, N, N, -ONE,
|
|
$ AINV, LDAINV, A, LDA, ZERO, WORK, LDWORK )
|
|
DO 10 I = 1, N
|
|
WORK( I, I ) = ONE + WORK( I, I )
|
|
10 CONTINUE
|
|
*
|
|
* Compute norm(I - AINV*A) / (N * norm(A) * norm(AINV) * EPS)
|
|
*
|
|
RESID = SLANGE( '1', N, N, WORK, LDWORK, RWORK )
|
|
*
|
|
RESID = ( ( RESID*RCOND ) / EPS ) / REAL( N )
|
|
*
|
|
RETURN
|
|
*
|
|
* End of SGET03
|
|
*
|
|
END
|
|
|