Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

238 lines
6.2 KiB

*> \brief \b SPPT03
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
* RESID )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER LDWORK, N
* REAL RCOND, RESID
* ..
* .. Array Arguments ..
* REAL A( * ), AINV( * ), RWORK( * ),
* $ WORK( LDWORK, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SPPT03 computes the residual for a symmetric packed matrix times its
*> inverse:
*> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (N*(N+1)/2)
*> The original symmetric matrix A, stored as a packed
*> triangular matrix.
*> \endverbatim
*>
*> \param[in] AINV
*> \verbatim
*> AINV is REAL array, dimension (N*(N+1)/2)
*> The (symmetric) inverse of the matrix A, stored as a packed
*> triangular matrix.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (LDWORK,N)
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*> LDWORK is INTEGER
*> The leading dimension of the array WORK. LDWORK >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is REAL
*> The reciprocal of the condition number of A, computed as
*> ( 1/norm(A) ) / norm(AINV).
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
$ RESID )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDWORK, N
REAL RCOND, RESID
* ..
* .. Array Arguments ..
REAL A( * ), AINV( * ), RWORK( * ),
$ WORK( LDWORK, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, JJ
REAL AINVNM, ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANGE, SLANSP
EXTERNAL LSAME, SLAMCH, SLANGE, SLANSP
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. External Subroutines ..
EXTERNAL SCOPY, SSPMV
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RCOND = ONE
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = SLANSP( '1', UPLO, N, A, RWORK )
AINVNM = SLANSP( '1', UPLO, N, AINV, RWORK )
IF( ANORM.LE.ZERO .OR. AINVNM.EQ.ZERO ) THEN
RCOND = ZERO
RESID = ONE / EPS
RETURN
END IF
RCOND = ( ONE / ANORM ) / AINVNM
*
* UPLO = 'U':
* Copy the leading N-1 x N-1 submatrix of AINV to WORK(1:N,2:N) and
* expand it to a full matrix, then multiply by A one column at a
* time, moving the result one column to the left.
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Copy AINV
*
JJ = 1
DO 10 J = 1, N - 1
CALL SCOPY( J, AINV( JJ ), 1, WORK( 1, J+1 ), 1 )
CALL SCOPY( J-1, AINV( JJ ), 1, WORK( J, 2 ), LDWORK )
JJ = JJ + J
10 CONTINUE
JJ = ( ( N-1 )*N ) / 2 + 1
CALL SCOPY( N-1, AINV( JJ ), 1, WORK( N, 2 ), LDWORK )
*
* Multiply by A
*
DO 20 J = 1, N - 1
CALL SSPMV( 'Upper', N, -ONE, A, WORK( 1, J+1 ), 1, ZERO,
$ WORK( 1, J ), 1 )
20 CONTINUE
CALL SSPMV( 'Upper', N, -ONE, A, AINV( JJ ), 1, ZERO,
$ WORK( 1, N ), 1 )
*
* UPLO = 'L':
* Copy the trailing N-1 x N-1 submatrix of AINV to WORK(1:N,1:N-1)
* and multiply by A, moving each column to the right.
*
ELSE
*
* Copy AINV
*
CALL SCOPY( N-1, AINV( 2 ), 1, WORK( 1, 1 ), LDWORK )
JJ = N + 1
DO 30 J = 2, N
CALL SCOPY( N-J+1, AINV( JJ ), 1, WORK( J, J-1 ), 1 )
CALL SCOPY( N-J, AINV( JJ+1 ), 1, WORK( J, J ), LDWORK )
JJ = JJ + N - J + 1
30 CONTINUE
*
* Multiply by A
*
DO 40 J = N, 2, -1
CALL SSPMV( 'Lower', N, -ONE, A, WORK( 1, J-1 ), 1, ZERO,
$ WORK( 1, J ), 1 )
40 CONTINUE
CALL SSPMV( 'Lower', N, -ONE, A, AINV( 1 ), 1, ZERO,
$ WORK( 1, 1 ), 1 )
*
END IF
*
* Add the identity matrix to WORK .
*
DO 50 I = 1, N
WORK( I, I ) = WORK( I, I ) + ONE
50 CONTINUE
*
* Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
*
RESID = SLANGE( '1', N, N, WORK, LDWORK, RWORK )
*
RESID = ( ( RESID*RCOND ) / EPS ) / REAL( N )
*
RETURN
*
* End of SPPT03
*
END