Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

258 lines
7.0 KiB

*> \brief \b ZLATSY
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZLATSY( UPLO, N, X, LDX, ISEED )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER LDX, N
* ..
* .. Array Arguments ..
* INTEGER ISEED( * )
* COMPLEX*16 X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLATSY generates a special test matrix for the complex symmetric
*> (indefinite) factorization. The pivot blocks of the generated matrix
*> will be in the following order:
*> 2x2 pivot block, non diagonalizable
*> 1x1 pivot block
*> 2x2 pivot block, diagonalizable
*> (cycle repeats)
*> A row interchange is required for each non-diagonalizable 2x2 block.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER
*> Specifies whether the generated matrix is to be upper or
*> lower triangular.
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The dimension of the matrix to be generated.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (LDX,N)
*> The generated matrix, consisting of 3x3 and 2x2 diagonal
*> blocks which result in the pivot sequence given above.
*> The matrix outside of these diagonal blocks is zero.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry, the seed for the random number generator. The last
*> of the four integers must be odd. (modified on exit)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZLATSY( UPLO, N, X, LDX, ISEED )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDX, N
* ..
* .. Array Arguments ..
INTEGER ISEED( * )
COMPLEX*16 X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX*16 EYE
PARAMETER ( EYE = ( 0.0D0, 1.0D0 ) )
* ..
* .. Local Scalars ..
INTEGER I, J, N5
DOUBLE PRECISION ALPHA, ALPHA3, BETA
COMPLEX*16 A, B, C, R
* ..
* .. External Functions ..
COMPLEX*16 ZLARND
EXTERNAL ZLARND
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, SQRT
* ..
* .. Executable Statements ..
*
* Initialize constants
*
ALPHA = ( 1.D0+SQRT( 17.D0 ) ) / 8.D0
BETA = ALPHA - 1.D0 / 1000.D0
ALPHA3 = ALPHA*ALPHA*ALPHA
*
* UPLO = 'U': Upper triangular storage
*
IF( UPLO.EQ.'U' ) THEN
*
* Fill the upper triangle of the matrix with zeros.
*
DO 20 J = 1, N
DO 10 I = 1, J
X( I, J ) = 0.0D0
10 CONTINUE
20 CONTINUE
N5 = N / 5
N5 = N - 5*N5 + 1
*
DO 30 I = N, N5, -5
A = ALPHA3*ZLARND( 5, ISEED )
B = ZLARND( 5, ISEED ) / ALPHA
C = A - 2.D0*B*EYE
R = C / BETA
X( I, I ) = A
X( I-2, I ) = B
X( I-2, I-1 ) = R
X( I-2, I-2 ) = C
X( I-1, I-1 ) = ZLARND( 2, ISEED )
X( I-3, I-3 ) = ZLARND( 2, ISEED )
X( I-4, I-4 ) = ZLARND( 2, ISEED )
IF( ABS( X( I-3, I-3 ) ).GT.ABS( X( I-4, I-4 ) ) ) THEN
X( I-4, I-3 ) = 2.0D0*X( I-3, I-3 )
ELSE
X( I-4, I-3 ) = 2.0D0*X( I-4, I-4 )
END IF
30 CONTINUE
*
* Clean-up for N not a multiple of 5.
*
I = N5 - 1
IF( I.GT.2 ) THEN
A = ALPHA3*ZLARND( 5, ISEED )
B = ZLARND( 5, ISEED ) / ALPHA
C = A - 2.D0*B*EYE
R = C / BETA
X( I, I ) = A
X( I-2, I ) = B
X( I-2, I-1 ) = R
X( I-2, I-2 ) = C
X( I-1, I-1 ) = ZLARND( 2, ISEED )
I = I - 3
END IF
IF( I.GT.1 ) THEN
X( I, I ) = ZLARND( 2, ISEED )
X( I-1, I-1 ) = ZLARND( 2, ISEED )
IF( ABS( X( I, I ) ).GT.ABS( X( I-1, I-1 ) ) ) THEN
X( I-1, I ) = 2.0D0*X( I, I )
ELSE
X( I-1, I ) = 2.0D0*X( I-1, I-1 )
END IF
I = I - 2
ELSE IF( I.EQ.1 ) THEN
X( I, I ) = ZLARND( 2, ISEED )
I = I - 1
END IF
*
* UPLO = 'L': Lower triangular storage
*
ELSE
*
* Fill the lower triangle of the matrix with zeros.
*
DO 50 J = 1, N
DO 40 I = J, N
X( I, J ) = 0.0D0
40 CONTINUE
50 CONTINUE
N5 = N / 5
N5 = N5*5
*
DO 60 I = 1, N5, 5
A = ALPHA3*ZLARND( 5, ISEED )
B = ZLARND( 5, ISEED ) / ALPHA
C = A - 2.D0*B*EYE
R = C / BETA
X( I, I ) = A
X( I+2, I ) = B
X( I+2, I+1 ) = R
X( I+2, I+2 ) = C
X( I+1, I+1 ) = ZLARND( 2, ISEED )
X( I+3, I+3 ) = ZLARND( 2, ISEED )
X( I+4, I+4 ) = ZLARND( 2, ISEED )
IF( ABS( X( I+3, I+3 ) ).GT.ABS( X( I+4, I+4 ) ) ) THEN
X( I+4, I+3 ) = 2.0D0*X( I+3, I+3 )
ELSE
X( I+4, I+3 ) = 2.0D0*X( I+4, I+4 )
END IF
60 CONTINUE
*
* Clean-up for N not a multiple of 5.
*
I = N5 + 1
IF( I.LT.N-1 ) THEN
A = ALPHA3*ZLARND( 5, ISEED )
B = ZLARND( 5, ISEED ) / ALPHA
C = A - 2.D0*B*EYE
R = C / BETA
X( I, I ) = A
X( I+2, I ) = B
X( I+2, I+1 ) = R
X( I+2, I+2 ) = C
X( I+1, I+1 ) = ZLARND( 2, ISEED )
I = I + 3
END IF
IF( I.LT.N ) THEN
X( I, I ) = ZLARND( 2, ISEED )
X( I+1, I+1 ) = ZLARND( 2, ISEED )
IF( ABS( X( I, I ) ).GT.ABS( X( I+1, I+1 ) ) ) THEN
X( I+1, I ) = 2.0D0*X( I, I )
ELSE
X( I+1, I ) = 2.0D0*X( I+1, I+1 )
END IF
I = I + 2
ELSE IF( I.EQ.N ) THEN
X( I, I ) = ZLARND( 2, ISEED )
I = I + 1
END IF
END IF
*
RETURN
*
* End of ZLATSY
*
END