Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

229 lines
6.3 KiB

*> \brief \b ZLQT02
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZLQT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
* RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION RESULT( * ), RWORK( * )
* COMPLEX*16 A( LDA, * ), AF( LDA, * ), L( LDA, * ),
* $ Q( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLQT02 tests ZUNGLQ, which generates an m-by-n matrix Q with
*> orthonormal rows that is defined as the product of k elementary
*> reflectors.
*>
*> Given the LQ factorization of an m-by-n matrix A, ZLQT02 generates
*> the orthogonal matrix Q defined by the factorization of the first k
*> rows of A; it compares L(1:k,1:m) with A(1:k,1:n)*Q(1:m,1:n)', and
*> checks that the rows of Q are orthonormal.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix Q to be generated. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix Q to be generated.
*> N >= M >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of elementary reflectors whose product defines the
*> matrix Q. M >= K >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LDA,N)
*> The m-by-n matrix A which was factorized by ZLQT01.
*> \endverbatim
*>
*> \param[in] AF
*> \verbatim
*> AF is COMPLEX*16 array, dimension (LDA,N)
*> Details of the LQ factorization of A, as returned by ZGELQF.
*> See ZGELQF for further details.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is COMPLEX*16 array, dimension (LDA,N)
*> \endverbatim
*>
*> \param[out] L
*> \verbatim
*> L is COMPLEX*16 array, dimension (LDA,M)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the arrays A, AF, Q and L. LDA >= N.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is COMPLEX*16 array, dimension (M)
*> The scalar factors of the elementary reflectors corresponding
*> to the LQ factorization in AF.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (2)
*> The test ratios:
*> RESULT(1) = norm( L - A*Q' ) / ( N * norm(A) * EPS )
*> RESULT(2) = norm( I - Q*Q' ) / ( N * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZLQT02( M, N, K, A, AF, Q, L, LDA, TAU, WORK, LWORK,
$ RWORK, RESULT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
INTEGER K, LDA, LWORK, M, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION RESULT( * ), RWORK( * )
COMPLEX*16 A( LDA, * ), AF( LDA, * ), L( LDA, * ),
$ Q( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 ROGUE
PARAMETER ( ROGUE = ( -1.0D+10, -1.0D+10 ) )
* ..
* .. Local Scalars ..
INTEGER INFO
DOUBLE PRECISION ANORM, EPS, RESID
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSY
EXTERNAL DLAMCH, ZLANGE, ZLANSY
* ..
* .. External Subroutines ..
EXTERNAL ZGEMM, ZHERK, ZLACPY, ZLASET, ZUNGLQ
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCMPLX, MAX
* ..
* .. Scalars in Common ..
CHARACTER*32 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
EPS = DLAMCH( 'Epsilon' )
*
* Copy the first k rows of the factorization to the array Q
*
CALL ZLASET( 'Full', M, N, ROGUE, ROGUE, Q, LDA )
CALL ZLACPY( 'Upper', K, N-1, AF( 1, 2 ), LDA, Q( 1, 2 ), LDA )
*
* Generate the first n columns of the matrix Q
*
SRNAMT = 'ZUNGLQ'
CALL ZUNGLQ( M, N, K, Q, LDA, TAU, WORK, LWORK, INFO )
*
* Copy L(1:k,1:m)
*
CALL ZLASET( 'Full', K, M, DCMPLX( ZERO ), DCMPLX( ZERO ), L,
$ LDA )
CALL ZLACPY( 'Lower', K, M, AF, LDA, L, LDA )
*
* Compute L(1:k,1:m) - A(1:k,1:n) * Q(1:m,1:n)'
*
CALL ZGEMM( 'No transpose', 'Conjugate transpose', K, M, N,
$ DCMPLX( -ONE ), A, LDA, Q, LDA, DCMPLX( ONE ), L,
$ LDA )
*
* Compute norm( L - A*Q' ) / ( N * norm(A) * EPS ) .
*
ANORM = ZLANGE( '1', K, N, A, LDA, RWORK )
RESID = ZLANGE( '1', K, M, L, LDA, RWORK )
IF( ANORM.GT.ZERO ) THEN
RESULT( 1 ) = ( ( RESID / DBLE( MAX( 1, N ) ) ) / ANORM ) / EPS
ELSE
RESULT( 1 ) = ZERO
END IF
*
* Compute I - Q*Q'
*
CALL ZLASET( 'Full', M, M, DCMPLX( ZERO ), DCMPLX( ONE ), L, LDA )
CALL ZHERK( 'Upper', 'No transpose', M, N, -ONE, Q, LDA, ONE, L,
$ LDA )
*
* Compute norm( I - Q*Q' ) / ( N * EPS ) .
*
RESID = ZLANSY( '1', 'Upper', M, L, LDA, RWORK )
*
RESULT( 2 ) = ( RESID / DBLE( MAX( 1, N ) ) ) / EPS
*
RETURN
*
* End of ZLQT02
*
END