Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

249 lines
6.6 KiB

*> \brief \b ZPPT03
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
* RESID )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER LDWORK, N
* DOUBLE PRECISION RCOND, RESID
* ..
* .. Array Arguments ..
* DOUBLE PRECISION RWORK( * )
* COMPLEX*16 A( * ), AINV( * ), WORK( LDWORK, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZPPT03 computes the residual for a Hermitian packed matrix times its
*> inverse:
*> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> Hermitian matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (N*(N+1)/2)
*> The original Hermitian matrix A, stored as a packed
*> triangular matrix.
*> \endverbatim
*>
*> \param[in] AINV
*> \verbatim
*> AINV is COMPLEX*16 array, dimension (N*(N+1)/2)
*> The (Hermitian) inverse of the matrix A, stored as a packed
*> triangular matrix.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LDWORK,N)
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*> LDWORK is INTEGER
*> The leading dimension of the array WORK. LDWORK >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is DOUBLE PRECISION
*> The reciprocal of the condition number of A, computed as
*> ( 1/norm(A) ) / norm(AINV).
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZPPT03( UPLO, N, A, AINV, WORK, LDWORK, RWORK, RCOND,
$ RESID )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDWORK, N
DOUBLE PRECISION RCOND, RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( * ), AINV( * ), WORK( LDWORK, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, J, JJ
DOUBLE PRECISION AINVNM, ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANHP
EXTERNAL LSAME, DLAMCH, ZLANGE, ZLANHP
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, DCONJG
* ..
* .. External Subroutines ..
EXTERNAL ZCOPY, ZHPMV
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RCOND = ONE
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
EPS = DLAMCH( 'Epsilon' )
ANORM = ZLANHP( '1', UPLO, N, A, RWORK )
AINVNM = ZLANHP( '1', UPLO, N, AINV, RWORK )
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCOND = ZERO
RESID = ONE / EPS
RETURN
END IF
RCOND = ( ONE / ANORM ) / AINVNM
*
* UPLO = 'U':
* Copy the leading N-1 x N-1 submatrix of AINV to WORK(1:N,2:N) and
* expand it to a full matrix, then multiply by A one column at a
* time, moving the result one column to the left.
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Copy AINV
*
JJ = 1
DO 20 J = 1, N - 1
CALL ZCOPY( J, AINV( JJ ), 1, WORK( 1, J+1 ), 1 )
DO 10 I = 1, J - 1
WORK( J, I+1 ) = DCONJG( AINV( JJ+I-1 ) )
10 CONTINUE
JJ = JJ + J
20 CONTINUE
JJ = ( ( N-1 )*N ) / 2 + 1
DO 30 I = 1, N - 1
WORK( N, I+1 ) = DCONJG( AINV( JJ+I-1 ) )
30 CONTINUE
*
* Multiply by A
*
DO 40 J = 1, N - 1
CALL ZHPMV( 'Upper', N, -CONE, A, WORK( 1, J+1 ), 1, CZERO,
$ WORK( 1, J ), 1 )
40 CONTINUE
CALL ZHPMV( 'Upper', N, -CONE, A, AINV( JJ ), 1, CZERO,
$ WORK( 1, N ), 1 )
*
* UPLO = 'L':
* Copy the trailing N-1 x N-1 submatrix of AINV to WORK(1:N,1:N-1)
* and multiply by A, moving each column to the right.
*
ELSE
*
* Copy AINV
*
DO 50 I = 1, N - 1
WORK( 1, I ) = DCONJG( AINV( I+1 ) )
50 CONTINUE
JJ = N + 1
DO 70 J = 2, N
CALL ZCOPY( N-J+1, AINV( JJ ), 1, WORK( J, J-1 ), 1 )
DO 60 I = 1, N - J
WORK( J, J+I-1 ) = DCONJG( AINV( JJ+I ) )
60 CONTINUE
JJ = JJ + N - J + 1
70 CONTINUE
*
* Multiply by A
*
DO 80 J = N, 2, -1
CALL ZHPMV( 'Lower', N, -CONE, A, WORK( 1, J-1 ), 1, CZERO,
$ WORK( 1, J ), 1 )
80 CONTINUE
CALL ZHPMV( 'Lower', N, -CONE, A, AINV( 1 ), 1, CZERO,
$ WORK( 1, 1 ), 1 )
*
END IF
*
* Add the identity matrix to WORK .
*
DO 90 I = 1, N
WORK( I, I ) = WORK( I, I ) + CONE
90 CONTINUE
*
* Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
*
RESID = ZLANGE( '1', N, N, WORK, LDWORK, RWORK )
*
RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
*
RETURN
*
* End of ZPPT03
*
END