You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
498 lines
14 KiB
498 lines
14 KiB
*> \brief \b SLATM5
|
|
*
|
|
* =========== DOCUMENTATION ===========
|
|
*
|
|
* Online html documentation available at
|
|
* http://www.netlib.org/lapack/explore-html/
|
|
*
|
|
* Definition:
|
|
* ===========
|
|
*
|
|
* SUBROUTINE SLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
|
|
* E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA,
|
|
* QBLCKB )
|
|
*
|
|
* .. Scalar Arguments ..
|
|
* INTEGER LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N,
|
|
* $ PRTYPE, QBLCKA, QBLCKB
|
|
* REAL ALPHA
|
|
* ..
|
|
* .. Array Arguments ..
|
|
* REAL A( LDA, * ), B( LDB, * ), C( LDC, * ),
|
|
* $ D( LDD, * ), E( LDE, * ), F( LDF, * ),
|
|
* $ L( LDL, * ), R( LDR, * )
|
|
* ..
|
|
*
|
|
*
|
|
*> \par Purpose:
|
|
* =============
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> SLATM5 generates matrices involved in the Generalized Sylvester
|
|
*> equation:
|
|
*>
|
|
*> A * R - L * B = C
|
|
*> D * R - L * E = F
|
|
*>
|
|
*> They also satisfy (the diagonalization condition)
|
|
*>
|
|
*> [ I -L ] ( [ A -C ], [ D -F ] ) [ I R ] = ( [ A ], [ D ] )
|
|
*> [ I ] ( [ B ] [ E ] ) [ I ] ( [ B ] [ E ] )
|
|
*>
|
|
*> \endverbatim
|
|
*
|
|
* Arguments:
|
|
* ==========
|
|
*
|
|
*> \param[in] PRTYPE
|
|
*> \verbatim
|
|
*> PRTYPE is INTEGER
|
|
*> "Points" to a certain type of the matrices to generate
|
|
*> (see further details).
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] M
|
|
*> \verbatim
|
|
*> M is INTEGER
|
|
*> Specifies the order of A and D and the number of rows in
|
|
*> C, F, R and L.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] N
|
|
*> \verbatim
|
|
*> N is INTEGER
|
|
*> Specifies the order of B and E and the number of columns in
|
|
*> C, F, R and L.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] A
|
|
*> \verbatim
|
|
*> A is REAL array, dimension (LDA, M).
|
|
*> On exit A M-by-M is initialized according to PRTYPE.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDA
|
|
*> \verbatim
|
|
*> LDA is INTEGER
|
|
*> The leading dimension of A.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] B
|
|
*> \verbatim
|
|
*> B is REAL array, dimension (LDB, N).
|
|
*> On exit B N-by-N is initialized according to PRTYPE.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDB
|
|
*> \verbatim
|
|
*> LDB is INTEGER
|
|
*> The leading dimension of B.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] C
|
|
*> \verbatim
|
|
*> C is REAL array, dimension (LDC, N).
|
|
*> On exit C M-by-N is initialized according to PRTYPE.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDC
|
|
*> \verbatim
|
|
*> LDC is INTEGER
|
|
*> The leading dimension of C.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] D
|
|
*> \verbatim
|
|
*> D is REAL array, dimension (LDD, M).
|
|
*> On exit D M-by-M is initialized according to PRTYPE.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDD
|
|
*> \verbatim
|
|
*> LDD is INTEGER
|
|
*> The leading dimension of D.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] E
|
|
*> \verbatim
|
|
*> E is REAL array, dimension (LDE, N).
|
|
*> On exit E N-by-N is initialized according to PRTYPE.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDE
|
|
*> \verbatim
|
|
*> LDE is INTEGER
|
|
*> The leading dimension of E.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] F
|
|
*> \verbatim
|
|
*> F is REAL array, dimension (LDF, N).
|
|
*> On exit F M-by-N is initialized according to PRTYPE.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDF
|
|
*> \verbatim
|
|
*> LDF is INTEGER
|
|
*> The leading dimension of F.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] R
|
|
*> \verbatim
|
|
*> R is REAL array, dimension (LDR, N).
|
|
*> On exit R M-by-N is initialized according to PRTYPE.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDR
|
|
*> \verbatim
|
|
*> LDR is INTEGER
|
|
*> The leading dimension of R.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[out] L
|
|
*> \verbatim
|
|
*> L is REAL array, dimension (LDL, N).
|
|
*> On exit L M-by-N is initialized according to PRTYPE.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] LDL
|
|
*> \verbatim
|
|
*> LDL is INTEGER
|
|
*> The leading dimension of L.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] ALPHA
|
|
*> \verbatim
|
|
*> ALPHA is REAL
|
|
*> Parameter used in generating PRTYPE = 1 and 5 matrices.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] QBLCKA
|
|
*> \verbatim
|
|
*> QBLCKA is INTEGER
|
|
*> When PRTYPE = 3, specifies the distance between 2-by-2
|
|
*> blocks on the diagonal in A. Otherwise, QBLCKA is not
|
|
*> referenced. QBLCKA > 1.
|
|
*> \endverbatim
|
|
*>
|
|
*> \param[in] QBLCKB
|
|
*> \verbatim
|
|
*> QBLCKB is INTEGER
|
|
*> When PRTYPE = 3, specifies the distance between 2-by-2
|
|
*> blocks on the diagonal in B. Otherwise, QBLCKB is not
|
|
*> referenced. QBLCKB > 1.
|
|
*> \endverbatim
|
|
*
|
|
* Authors:
|
|
* ========
|
|
*
|
|
*> \author Univ. of Tennessee
|
|
*> \author Univ. of California Berkeley
|
|
*> \author Univ. of Colorado Denver
|
|
*> \author NAG Ltd.
|
|
*
|
|
*> \ingroup real_matgen
|
|
*
|
|
*> \par Further Details:
|
|
* =====================
|
|
*>
|
|
*> \verbatim
|
|
*>
|
|
*> PRTYPE = 1: A and B are Jordan blocks, D and E are identity matrices
|
|
*>
|
|
*> A : if (i == j) then A(i, j) = 1.0
|
|
*> if (j == i + 1) then A(i, j) = -1.0
|
|
*> else A(i, j) = 0.0, i, j = 1...M
|
|
*>
|
|
*> B : if (i == j) then B(i, j) = 1.0 - ALPHA
|
|
*> if (j == i + 1) then B(i, j) = 1.0
|
|
*> else B(i, j) = 0.0, i, j = 1...N
|
|
*>
|
|
*> D : if (i == j) then D(i, j) = 1.0
|
|
*> else D(i, j) = 0.0, i, j = 1...M
|
|
*>
|
|
*> E : if (i == j) then E(i, j) = 1.0
|
|
*> else E(i, j) = 0.0, i, j = 1...N
|
|
*>
|
|
*> L = R are chosen from [-10...10],
|
|
*> which specifies the right hand sides (C, F).
|
|
*>
|
|
*> PRTYPE = 2 or 3: Triangular and/or quasi- triangular.
|
|
*>
|
|
*> A : if (i <= j) then A(i, j) = [-1...1]
|
|
*> else A(i, j) = 0.0, i, j = 1...M
|
|
*>
|
|
*> if (PRTYPE = 3) then
|
|
*> A(k + 1, k + 1) = A(k, k)
|
|
*> A(k + 1, k) = [-1...1]
|
|
*> sign(A(k, k + 1) = -(sin(A(k + 1, k))
|
|
*> k = 1, M - 1, QBLCKA
|
|
*>
|
|
*> B : if (i <= j) then B(i, j) = [-1...1]
|
|
*> else B(i, j) = 0.0, i, j = 1...N
|
|
*>
|
|
*> if (PRTYPE = 3) then
|
|
*> B(k + 1, k + 1) = B(k, k)
|
|
*> B(k + 1, k) = [-1...1]
|
|
*> sign(B(k, k + 1) = -(sign(B(k + 1, k))
|
|
*> k = 1, N - 1, QBLCKB
|
|
*>
|
|
*> D : if (i <= j) then D(i, j) = [-1...1].
|
|
*> else D(i, j) = 0.0, i, j = 1...M
|
|
*>
|
|
*>
|
|
*> E : if (i <= j) then D(i, j) = [-1...1]
|
|
*> else E(i, j) = 0.0, i, j = 1...N
|
|
*>
|
|
*> L, R are chosen from [-10...10],
|
|
*> which specifies the right hand sides (C, F).
|
|
*>
|
|
*> PRTYPE = 4 Full
|
|
*> A(i, j) = [-10...10]
|
|
*> D(i, j) = [-1...1] i,j = 1...M
|
|
*> B(i, j) = [-10...10]
|
|
*> E(i, j) = [-1...1] i,j = 1...N
|
|
*> R(i, j) = [-10...10]
|
|
*> L(i, j) = [-1...1] i = 1..M ,j = 1...N
|
|
*>
|
|
*> L, R specifies the right hand sides (C, F).
|
|
*>
|
|
*> PRTYPE = 5 special case common and/or close eigs.
|
|
*> \endverbatim
|
|
*>
|
|
* =====================================================================
|
|
SUBROUTINE SLATM5( PRTYPE, M, N, A, LDA, B, LDB, C, LDC, D, LDD,
|
|
$ E, LDE, F, LDF, R, LDR, L, LDL, ALPHA, QBLCKA,
|
|
$ QBLCKB )
|
|
*
|
|
* -- LAPACK computational routine --
|
|
* -- LAPACK is a software package provided by Univ. of Tennessee, --
|
|
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
|
|
*
|
|
* .. Scalar Arguments ..
|
|
INTEGER LDA, LDB, LDC, LDD, LDE, LDF, LDL, LDR, M, N,
|
|
$ PRTYPE, QBLCKA, QBLCKB
|
|
REAL ALPHA
|
|
* ..
|
|
* .. Array Arguments ..
|
|
REAL A( LDA, * ), B( LDB, * ), C( LDC, * ),
|
|
$ D( LDD, * ), E( LDE, * ), F( LDF, * ),
|
|
$ L( LDL, * ), R( LDR, * )
|
|
* ..
|
|
*
|
|
* =====================================================================
|
|
*
|
|
* .. Parameters ..
|
|
REAL ONE, ZERO, TWENTY, HALF, TWO
|
|
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0, TWENTY = 2.0E+1,
|
|
$ HALF = 0.5E+0, TWO = 2.0E+0 )
|
|
* ..
|
|
* .. Local Scalars ..
|
|
INTEGER I, J, K
|
|
REAL IMEPS, REEPS
|
|
* ..
|
|
* .. Intrinsic Functions ..
|
|
INTRINSIC MOD, REAL, SIN
|
|
* ..
|
|
* .. External Subroutines ..
|
|
EXTERNAL SGEMM
|
|
* ..
|
|
* .. Executable Statements ..
|
|
*
|
|
IF( PRTYPE.EQ.1 ) THEN
|
|
DO 20 I = 1, M
|
|
DO 10 J = 1, M
|
|
IF( I.EQ.J ) THEN
|
|
A( I, J ) = ONE
|
|
D( I, J ) = ONE
|
|
ELSE IF( I.EQ.J-1 ) THEN
|
|
A( I, J ) = -ONE
|
|
D( I, J ) = ZERO
|
|
ELSE
|
|
A( I, J ) = ZERO
|
|
D( I, J ) = ZERO
|
|
END IF
|
|
10 CONTINUE
|
|
20 CONTINUE
|
|
*
|
|
DO 40 I = 1, N
|
|
DO 30 J = 1, N
|
|
IF( I.EQ.J ) THEN
|
|
B( I, J ) = ONE - ALPHA
|
|
E( I, J ) = ONE
|
|
ELSE IF( I.EQ.J-1 ) THEN
|
|
B( I, J ) = ONE
|
|
E( I, J ) = ZERO
|
|
ELSE
|
|
B( I, J ) = ZERO
|
|
E( I, J ) = ZERO
|
|
END IF
|
|
30 CONTINUE
|
|
40 CONTINUE
|
|
*
|
|
DO 60 I = 1, M
|
|
DO 50 J = 1, N
|
|
R( I, J ) = ( HALF-SIN( REAL( I / J ) ) )*TWENTY
|
|
L( I, J ) = R( I, J )
|
|
50 CONTINUE
|
|
60 CONTINUE
|
|
*
|
|
ELSE IF( PRTYPE.EQ.2 .OR. PRTYPE.EQ.3 ) THEN
|
|
DO 80 I = 1, M
|
|
DO 70 J = 1, M
|
|
IF( I.LE.J ) THEN
|
|
A( I, J ) = ( HALF-SIN( REAL( I ) ) )*TWO
|
|
D( I, J ) = ( HALF-SIN( REAL( I*J ) ) )*TWO
|
|
ELSE
|
|
A( I, J ) = ZERO
|
|
D( I, J ) = ZERO
|
|
END IF
|
|
70 CONTINUE
|
|
80 CONTINUE
|
|
*
|
|
DO 100 I = 1, N
|
|
DO 90 J = 1, N
|
|
IF( I.LE.J ) THEN
|
|
B( I, J ) = ( HALF-SIN( REAL( I+J ) ) )*TWO
|
|
E( I, J ) = ( HALF-SIN( REAL( J ) ) )*TWO
|
|
ELSE
|
|
B( I, J ) = ZERO
|
|
E( I, J ) = ZERO
|
|
END IF
|
|
90 CONTINUE
|
|
100 CONTINUE
|
|
*
|
|
DO 120 I = 1, M
|
|
DO 110 J = 1, N
|
|
R( I, J ) = ( HALF-SIN( REAL( I*J ) ) )*TWENTY
|
|
L( I, J ) = ( HALF-SIN( REAL( I+J ) ) )*TWENTY
|
|
110 CONTINUE
|
|
120 CONTINUE
|
|
*
|
|
IF( PRTYPE.EQ.3 ) THEN
|
|
IF( QBLCKA.LE.1 )
|
|
$ QBLCKA = 2
|
|
DO 130 K = 1, M - 1, QBLCKA
|
|
A( K+1, K+1 ) = A( K, K )
|
|
A( K+1, K ) = -SIN( A( K, K+1 ) )
|
|
130 CONTINUE
|
|
*
|
|
IF( QBLCKB.LE.1 )
|
|
$ QBLCKB = 2
|
|
DO 140 K = 1, N - 1, QBLCKB
|
|
B( K+1, K+1 ) = B( K, K )
|
|
B( K+1, K ) = -SIN( B( K, K+1 ) )
|
|
140 CONTINUE
|
|
END IF
|
|
*
|
|
ELSE IF( PRTYPE.EQ.4 ) THEN
|
|
DO 160 I = 1, M
|
|
DO 150 J = 1, M
|
|
A( I, J ) = ( HALF-SIN( REAL( I*J ) ) )*TWENTY
|
|
D( I, J ) = ( HALF-SIN( REAL( I+J ) ) )*TWO
|
|
150 CONTINUE
|
|
160 CONTINUE
|
|
*
|
|
DO 180 I = 1, N
|
|
DO 170 J = 1, N
|
|
B( I, J ) = ( HALF-SIN( REAL( I+J ) ) )*TWENTY
|
|
E( I, J ) = ( HALF-SIN( REAL( I*J ) ) )*TWO
|
|
170 CONTINUE
|
|
180 CONTINUE
|
|
*
|
|
DO 200 I = 1, M
|
|
DO 190 J = 1, N
|
|
R( I, J ) = ( HALF-SIN( REAL( J / I ) ) )*TWENTY
|
|
L( I, J ) = ( HALF-SIN( REAL( I*J ) ) )*TWO
|
|
190 CONTINUE
|
|
200 CONTINUE
|
|
*
|
|
ELSE IF( PRTYPE.GE.5 ) THEN
|
|
REEPS = HALF*TWO*TWENTY / ALPHA
|
|
IMEPS = ( HALF-TWO ) / ALPHA
|
|
DO 220 I = 1, M
|
|
DO 210 J = 1, N
|
|
R( I, J ) = ( HALF-SIN( REAL( I*J ) ) )*ALPHA / TWENTY
|
|
L( I, J ) = ( HALF-SIN( REAL( I+J ) ) )*ALPHA / TWENTY
|
|
210 CONTINUE
|
|
220 CONTINUE
|
|
*
|
|
DO 230 I = 1, M
|
|
D( I, I ) = ONE
|
|
230 CONTINUE
|
|
*
|
|
DO 240 I = 1, M
|
|
IF( I.LE.4 ) THEN
|
|
A( I, I ) = ONE
|
|
IF( I.GT.2 )
|
|
$ A( I, I ) = ONE + REEPS
|
|
IF( MOD( I, 2 ).NE.0 .AND. I.LT.M ) THEN
|
|
A( I, I+1 ) = IMEPS
|
|
ELSE IF( I.GT.1 ) THEN
|
|
A( I, I-1 ) = -IMEPS
|
|
END IF
|
|
ELSE IF( I.LE.8 ) THEN
|
|
IF( I.LE.6 ) THEN
|
|
A( I, I ) = REEPS
|
|
ELSE
|
|
A( I, I ) = -REEPS
|
|
END IF
|
|
IF( MOD( I, 2 ).NE.0 .AND. I.LT.M ) THEN
|
|
A( I, I+1 ) = ONE
|
|
ELSE IF( I.GT.1 ) THEN
|
|
A( I, I-1 ) = -ONE
|
|
END IF
|
|
ELSE
|
|
A( I, I ) = ONE
|
|
IF( MOD( I, 2 ).NE.0 .AND. I.LT.M ) THEN
|
|
A( I, I+1 ) = IMEPS*2
|
|
ELSE IF( I.GT.1 ) THEN
|
|
A( I, I-1 ) = -IMEPS*2
|
|
END IF
|
|
END IF
|
|
240 CONTINUE
|
|
*
|
|
DO 250 I = 1, N
|
|
E( I, I ) = ONE
|
|
IF( I.LE.4 ) THEN
|
|
B( I, I ) = -ONE
|
|
IF( I.GT.2 )
|
|
$ B( I, I ) = ONE - REEPS
|
|
IF( MOD( I, 2 ).NE.0 .AND. I.LT.N ) THEN
|
|
B( I, I+1 ) = IMEPS
|
|
ELSE IF( I.GT.1 ) THEN
|
|
B( I, I-1 ) = -IMEPS
|
|
END IF
|
|
ELSE IF( I.LE.8 ) THEN
|
|
IF( I.LE.6 ) THEN
|
|
B( I, I ) = REEPS
|
|
ELSE
|
|
B( I, I ) = -REEPS
|
|
END IF
|
|
IF( MOD( I, 2 ).NE.0 .AND. I.LT.N ) THEN
|
|
B( I, I+1 ) = ONE + IMEPS
|
|
ELSE IF( I.GT.1 ) THEN
|
|
B( I, I-1 ) = -ONE - IMEPS
|
|
END IF
|
|
ELSE
|
|
B( I, I ) = ONE - REEPS
|
|
IF( MOD( I, 2 ).NE.0 .AND. I.LT.N ) THEN
|
|
B( I, I+1 ) = IMEPS*2
|
|
ELSE IF( I.GT.1 ) THEN
|
|
B( I, I-1 ) = -IMEPS*2
|
|
END IF
|
|
END IF
|
|
250 CONTINUE
|
|
END IF
|
|
*
|
|
* Compute rhs (C, F)
|
|
*
|
|
CALL SGEMM( 'N', 'N', M, N, M, ONE, A, LDA, R, LDR, ZERO, C, LDC )
|
|
CALL SGEMM( 'N', 'N', M, N, N, -ONE, L, LDL, B, LDB, ONE, C, LDC )
|
|
CALL SGEMM( 'N', 'N', M, N, M, ONE, D, LDD, R, LDR, ZERO, F, LDF )
|
|
CALL SGEMM( 'N', 'N', M, N, N, -ONE, L, LDL, E, LDE, ONE, F, LDF )
|
|
*
|
|
* End of SLATM5
|
|
*
|
|
END
|
|
|