Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

1253 lines
44 KiB

*> \brief \b ZLATMS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZLATMS( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX,
* KL, KU, PACK, A, LDA, WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIST, PACK, SYM
* INTEGER INFO, KL, KU, LDA, M, MODE, N
* DOUBLE PRECISION COND, DMAX
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* DOUBLE PRECISION D( * )
* COMPLEX*16 A( LDA, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLATMS generates random matrices with specified singular values
*> (or hermitian with specified eigenvalues)
*> for testing LAPACK programs.
*>
*> ZLATMS operates by applying the following sequence of
*> operations:
*>
*> Set the diagonal to D, where D may be input or
*> computed according to MODE, COND, DMAX, and SYM
*> as described below.
*>
*> Generate a matrix with the appropriate band structure, by one
*> of two methods:
*>
*> Method A:
*> Generate a dense M x N matrix by multiplying D on the left
*> and the right by random unitary matrices, then:
*>
*> Reduce the bandwidth according to KL and KU, using
*> Householder transformations.
*>
*> Method B:
*> Convert the bandwidth-0 (i.e., diagonal) matrix to a
*> bandwidth-1 matrix using Givens rotations, "chasing"
*> out-of-band elements back, much as in QR; then convert
*> the bandwidth-1 to a bandwidth-2 matrix, etc. Note
*> that for reasonably small bandwidths (relative to M and
*> N) this requires less storage, as a dense matrix is not
*> generated. Also, for hermitian or symmetric matrices,
*> only one triangle is generated.
*>
*> Method A is chosen if the bandwidth is a large fraction of the
*> order of the matrix, and LDA is at least M (so a dense
*> matrix can be stored.) Method B is chosen if the bandwidth
*> is small (< 1/2 N for hermitian or symmetric, < .3 N+M for
*> non-symmetric), or LDA is less than M and not less than the
*> bandwidth.
*>
*> Pack the matrix if desired. Options specified by PACK are:
*> no packing
*> zero out upper half (if hermitian)
*> zero out lower half (if hermitian)
*> store the upper half columnwise (if hermitian or upper
*> triangular)
*> store the lower half columnwise (if hermitian or lower
*> triangular)
*> store the lower triangle in banded format (if hermitian or
*> lower triangular)
*> store the upper triangle in banded format (if hermitian or
*> upper triangular)
*> store the entire matrix in banded format
*> If Method B is chosen, and band format is specified, then the
*> matrix will be generated in the band format, so no repacking
*> will be necessary.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of A. Not modified.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of A. N must equal M if the matrix
*> is symmetric or hermitian (i.e., if SYM is not 'N')
*> Not modified.
*> \endverbatim
*>
*> \param[in] DIST
*> \verbatim
*> DIST is CHARACTER*1
*> On entry, DIST specifies the type of distribution to be used
*> to generate the random eigen-/singular values.
*> 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform )
*> 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric )
*> 'N' => NORMAL( 0, 1 ) ( 'N' for normal )
*> Not modified.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension ( 4 )
*> On entry ISEED specifies the seed of the random number
*> generator. They should lie between 0 and 4095 inclusive,
*> and ISEED(4) should be odd. The random number generator
*> uses a linear congruential sequence limited to small
*> integers, and so should produce machine independent
*> random numbers. The values of ISEED are changed on
*> exit, and can be used in the next call to ZLATMS
*> to continue the same random number sequence.
*> Changed on exit.
*> \endverbatim
*>
*> \param[in] SYM
*> \verbatim
*> SYM is CHARACTER*1
*> If SYM='H', the generated matrix is hermitian, with
*> eigenvalues specified by D, COND, MODE, and DMAX; they
*> may be positive, negative, or zero.
*> If SYM='P', the generated matrix is hermitian, with
*> eigenvalues (= singular values) specified by D, COND,
*> MODE, and DMAX; they will not be negative.
*> If SYM='N', the generated matrix is nonsymmetric, with
*> singular values specified by D, COND, MODE, and DMAX;
*> they will not be negative.
*> If SYM='S', the generated matrix is (complex) symmetric,
*> with singular values specified by D, COND, MODE, and
*> DMAX; they will not be negative.
*> Not modified.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension ( MIN( M, N ) )
*> This array is used to specify the singular values or
*> eigenvalues of A (see SYM, above.) If MODE=0, then D is
*> assumed to contain the singular/eigenvalues, otherwise
*> they will be computed according to MODE, COND, and DMAX,
*> and placed in D.
*> Modified if MODE is nonzero.
*> \endverbatim
*>
*> \param[in] MODE
*> \verbatim
*> MODE is INTEGER
*> On entry this describes how the singular/eigenvalues are to
*> be specified:
*> MODE = 0 means use D as input
*> MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
*> MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
*> MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
*> MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
*> MODE = 5 sets D to random numbers in the range
*> ( 1/COND , 1 ) such that their logarithms
*> are uniformly distributed.
*> MODE = 6 set D to random numbers from same distribution
*> as the rest of the matrix.
*> MODE < 0 has the same meaning as ABS(MODE), except that
*> the order of the elements of D is reversed.
*> Thus if MODE is positive, D has entries ranging from
*> 1 to 1/COND, if negative, from 1/COND to 1,
*> If SYM='H', and MODE is neither 0, 6, nor -6, then
*> the elements of D will also be multiplied by a random
*> sign (i.e., +1 or -1.)
*> Not modified.
*> \endverbatim
*>
*> \param[in] COND
*> \verbatim
*> COND is DOUBLE PRECISION
*> On entry, this is used as described under MODE above.
*> If used, it must be >= 1. Not modified.
*> \endverbatim
*>
*> \param[in] DMAX
*> \verbatim
*> DMAX is DOUBLE PRECISION
*> If MODE is neither -6, 0 nor 6, the contents of D, as
*> computed according to MODE and COND, will be scaled by
*> DMAX / max(abs(D(i))); thus, the maximum absolute eigen- or
*> singular value (which is to say the norm) will be abs(DMAX).
*> Note that DMAX need not be positive: if DMAX is negative
*> (or zero), D will be scaled by a negative number (or zero).
*> Not modified.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*> KL is INTEGER
*> This specifies the lower bandwidth of the matrix. For
*> example, KL=0 implies upper triangular, KL=1 implies upper
*> Hessenberg, and KL being at least M-1 means that the matrix
*> has full lower bandwidth. KL must equal KU if the matrix
*> is symmetric or hermitian.
*> Not modified.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*> KU is INTEGER
*> This specifies the upper bandwidth of the matrix. For
*> example, KU=0 implies lower triangular, KU=1 implies lower
*> Hessenberg, and KU being at least N-1 means that the matrix
*> has full upper bandwidth. KL must equal KU if the matrix
*> is symmetric or hermitian.
*> Not modified.
*> \endverbatim
*>
*> \param[in] PACK
*> \verbatim
*> PACK is CHARACTER*1
*> This specifies packing of matrix as follows:
*> 'N' => no packing
*> 'U' => zero out all subdiagonal entries (if symmetric
*> or hermitian)
*> 'L' => zero out all superdiagonal entries (if symmetric
*> or hermitian)
*> 'C' => store the upper triangle columnwise (only if the
*> matrix is symmetric, hermitian, or upper triangular)
*> 'R' => store the lower triangle columnwise (only if the
*> matrix is symmetric, hermitian, or lower triangular)
*> 'B' => store the lower triangle in band storage scheme
*> (only if the matrix is symmetric, hermitian, or
*> lower triangular)
*> 'Q' => store the upper triangle in band storage scheme
*> (only if the matrix is symmetric, hermitian, or
*> upper triangular)
*> 'Z' => store the entire matrix in band storage scheme
*> (pivoting can be provided for by using this
*> option to store A in the trailing rows of
*> the allocated storage)
*>
*> Using these options, the various LAPACK packed and banded
*> storage schemes can be obtained:
*> GB - use 'Z'
*> PB, SB, HB, or TB - use 'B' or 'Q'
*> PP, SP, HB, or TP - use 'C' or 'R'
*>
*> If two calls to ZLATMS differ only in the PACK parameter,
*> they will generate mathematically equivalent matrices.
*> Not modified.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension ( LDA, N )
*> On exit A is the desired test matrix. A is first generated
*> in full (unpacked) form, and then packed, if so specified
*> by PACK. Thus, the first M elements of the first N
*> columns will always be modified. If PACK specifies a
*> packed or banded storage scheme, all LDA elements of the
*> first N columns will be modified; the elements of the
*> array which do not correspond to elements of the generated
*> matrix are set to zero.
*> Modified.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> LDA specifies the first dimension of A as declared in the
*> calling program. If PACK='N', 'U', 'L', 'C', or 'R', then
*> LDA must be at least M. If PACK='B' or 'Q', then LDA must
*> be at least MIN( KL, M-1) (which is equal to MIN(KU,N-1)).
*> If PACK='Z', LDA must be large enough to hold the packed
*> array: MIN( KU, N-1) + MIN( KL, M-1) + 1.
*> Not modified.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension ( 3*MAX( N, M ) )
*> Workspace.
*> Modified.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> Error code. On exit, INFO will be set to one of the
*> following values:
*> 0 => normal return
*> -1 => M negative or unequal to N and SYM='S', 'H', or 'P'
*> -2 => N negative
*> -3 => DIST illegal string
*> -5 => SYM illegal string
*> -7 => MODE not in range -6 to 6
*> -8 => COND less than 1.0, and MODE neither -6, 0 nor 6
*> -10 => KL negative
*> -11 => KU negative, or SYM is not 'N' and KU is not equal to
*> KL
*> -12 => PACK illegal string, or PACK='U' or 'L', and SYM='N';
*> or PACK='C' or 'Q' and SYM='N' and KL is not zero;
*> or PACK='R' or 'B' and SYM='N' and KU is not zero;
*> or PACK='U', 'L', 'C', 'R', 'B', or 'Q', and M is not
*> N.
*> -14 => LDA is less than M, or PACK='Z' and LDA is less than
*> MIN(KU,N-1) + MIN(KL,M-1) + 1.
*> 1 => Error return from DLATM1
*> 2 => Cannot scale to DMAX (max. sing. value is 0)
*> 3 => Error return from ZLAGGE, CLAGHE or CLAGSY
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup complex16_matgen
*
* =====================================================================
SUBROUTINE ZLATMS( M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX,
$ KL, KU, PACK, A, LDA, WORK, INFO )
*
* -- LAPACK computational routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER DIST, PACK, SYM
INTEGER INFO, KL, KU, LDA, M, MODE, N
DOUBLE PRECISION COND, DMAX
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
DOUBLE PRECISION D( * )
COMPLEX*16 A( LDA, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D+0 )
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
COMPLEX*16 CZERO
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ) )
DOUBLE PRECISION TWOPI
PARAMETER ( TWOPI = 6.28318530717958647692528676655900576839D+0 )
* ..
* .. Local Scalars ..
LOGICAL GIVENS, ILEXTR, ILTEMP, TOPDWN, ZSYM
INTEGER I, IC, ICOL, IDIST, IENDCH, IINFO, IL, ILDA,
$ IOFFG, IOFFST, IPACK, IPACKG, IR, IR1, IR2,
$ IROW, IRSIGN, ISKEW, ISYM, ISYMPK, J, JC, JCH,
$ JKL, JKU, JR, K, LLB, MINLDA, MNMIN, MR, NC,
$ UUB
DOUBLE PRECISION ALPHA, ANGLE, REALC, TEMP
COMPLEX*16 C, CT, CTEMP, DUMMY, EXTRA, S, ST
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLARND
COMPLEX*16 ZLARND
EXTERNAL LSAME, DLARND, ZLARND
* ..
* .. External Subroutines ..
EXTERNAL DLATM1, DSCAL, XERBLA, ZLAGGE, ZLAGHE, ZLAGSY,
$ ZLAROT, ZLARTG, ZLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, COS, DBLE, DCMPLX, DCONJG, MAX, MIN, MOD,
$ SIN
* ..
* .. Executable Statements ..
*
* 1) Decode and Test the input parameters.
* Initialize flags & seed.
*
INFO = 0
*
* Quick return if possible
*
IF( M.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Decode DIST
*
IF( LSAME( DIST, 'U' ) ) THEN
IDIST = 1
ELSE IF( LSAME( DIST, 'S' ) ) THEN
IDIST = 2
ELSE IF( LSAME( DIST, 'N' ) ) THEN
IDIST = 3
ELSE
IDIST = -1
END IF
*
* Decode SYM
*
IF( LSAME( SYM, 'N' ) ) THEN
ISYM = 1
IRSIGN = 0
ZSYM = .FALSE.
ELSE IF( LSAME( SYM, 'P' ) ) THEN
ISYM = 2
IRSIGN = 0
ZSYM = .FALSE.
ELSE IF( LSAME( SYM, 'S' ) ) THEN
ISYM = 2
IRSIGN = 0
ZSYM = .TRUE.
ELSE IF( LSAME( SYM, 'H' ) ) THEN
ISYM = 2
IRSIGN = 1
ZSYM = .FALSE.
ELSE
ISYM = -1
END IF
*
* Decode PACK
*
ISYMPK = 0
IF( LSAME( PACK, 'N' ) ) THEN
IPACK = 0
ELSE IF( LSAME( PACK, 'U' ) ) THEN
IPACK = 1
ISYMPK = 1
ELSE IF( LSAME( PACK, 'L' ) ) THEN
IPACK = 2
ISYMPK = 1
ELSE IF( LSAME( PACK, 'C' ) ) THEN
IPACK = 3
ISYMPK = 2
ELSE IF( LSAME( PACK, 'R' ) ) THEN
IPACK = 4
ISYMPK = 3
ELSE IF( LSAME( PACK, 'B' ) ) THEN
IPACK = 5
ISYMPK = 3
ELSE IF( LSAME( PACK, 'Q' ) ) THEN
IPACK = 6
ISYMPK = 2
ELSE IF( LSAME( PACK, 'Z' ) ) THEN
IPACK = 7
ELSE
IPACK = -1
END IF
*
* Set certain internal parameters
*
MNMIN = MIN( M, N )
LLB = MIN( KL, M-1 )
UUB = MIN( KU, N-1 )
MR = MIN( M, N+LLB )
NC = MIN( N, M+UUB )
*
IF( IPACK.EQ.5 .OR. IPACK.EQ.6 ) THEN
MINLDA = UUB + 1
ELSE IF( IPACK.EQ.7 ) THEN
MINLDA = LLB + UUB + 1
ELSE
MINLDA = M
END IF
*
* Use Givens rotation method if bandwidth small enough,
* or if LDA is too small to store the matrix unpacked.
*
GIVENS = .FALSE.
IF( ISYM.EQ.1 ) THEN
IF( DBLE( LLB+UUB ).LT.0.3D0*DBLE( MAX( 1, MR+NC ) ) )
$ GIVENS = .TRUE.
ELSE
IF( 2*LLB.LT.M )
$ GIVENS = .TRUE.
END IF
IF( LDA.LT.M .AND. LDA.GE.MINLDA )
$ GIVENS = .TRUE.
*
* Set INFO if an error
*
IF( M.LT.0 ) THEN
INFO = -1
ELSE IF( M.NE.N .AND. ISYM.NE.1 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( IDIST.EQ.-1 ) THEN
INFO = -3
ELSE IF( ISYM.EQ.-1 ) THEN
INFO = -5
ELSE IF( ABS( MODE ).GT.6 ) THEN
INFO = -7
ELSE IF( ( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) .AND. COND.LT.ONE )
$ THEN
INFO = -8
ELSE IF( KL.LT.0 ) THEN
INFO = -10
ELSE IF( KU.LT.0 .OR. ( ISYM.NE.1 .AND. KL.NE.KU ) ) THEN
INFO = -11
ELSE IF( IPACK.EQ.-1 .OR. ( ISYMPK.EQ.1 .AND. ISYM.EQ.1 ) .OR.
$ ( ISYMPK.EQ.2 .AND. ISYM.EQ.1 .AND. KL.GT.0 ) .OR.
$ ( ISYMPK.EQ.3 .AND. ISYM.EQ.1 .AND. KU.GT.0 ) .OR.
$ ( ISYMPK.NE.0 .AND. M.NE.N ) ) THEN
INFO = -12
ELSE IF( LDA.LT.MAX( 1, MINLDA ) ) THEN
INFO = -14
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLATMS', -INFO )
RETURN
END IF
*
* Initialize random number generator
*
DO 10 I = 1, 4
ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 )
10 CONTINUE
*
IF( MOD( ISEED( 4 ), 2 ).NE.1 )
$ ISEED( 4 ) = ISEED( 4 ) + 1
*
* 2) Set up D if indicated.
*
* Compute D according to COND and MODE
*
CALL DLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, MNMIN, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 1
RETURN
END IF
*
* Choose Top-Down if D is (apparently) increasing,
* Bottom-Up if D is (apparently) decreasing.
*
IF( ABS( D( 1 ) ).LE.ABS( D( MNMIN ) ) ) THEN
TOPDWN = .TRUE.
ELSE
TOPDWN = .FALSE.
END IF
*
IF( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) THEN
*
* Scale by DMAX
*
TEMP = ABS( D( 1 ) )
DO 20 I = 2, MNMIN
TEMP = MAX( TEMP, ABS( D( I ) ) )
20 CONTINUE
*
IF( TEMP.GT.ZERO ) THEN
ALPHA = DMAX / TEMP
ELSE
INFO = 2
RETURN
END IF
*
CALL DSCAL( MNMIN, ALPHA, D, 1 )
*
END IF
*
CALL ZLASET( 'Full', LDA, N, CZERO, CZERO, A, LDA )
*
* 3) Generate Banded Matrix using Givens rotations.
* Also the special case of UUB=LLB=0
*
* Compute Addressing constants to cover all
* storage formats. Whether GE, HE, SY, GB, HB, or SB,
* upper or lower triangle or both,
* the (i,j)-th element is in
* A( i - ISKEW*j + IOFFST, j )
*
IF( IPACK.GT.4 ) THEN
ILDA = LDA - 1
ISKEW = 1
IF( IPACK.GT.5 ) THEN
IOFFST = UUB + 1
ELSE
IOFFST = 1
END IF
ELSE
ILDA = LDA
ISKEW = 0
IOFFST = 0
END IF
*
* IPACKG is the format that the matrix is generated in. If this is
* different from IPACK, then the matrix must be repacked at the
* end. It also signals how to compute the norm, for scaling.
*
IPACKG = 0
*
* Diagonal Matrix -- We are done, unless it
* is to be stored HP/SP/PP/TP (PACK='R' or 'C')
*
IF( LLB.EQ.0 .AND. UUB.EQ.0 ) THEN
DO 30 J = 1, MNMIN
A( ( 1-ISKEW )*J+IOFFST, J ) = DCMPLX( D( J ) )
30 CONTINUE
*
IF( IPACK.LE.2 .OR. IPACK.GE.5 )
$ IPACKG = IPACK
*
ELSE IF( GIVENS ) THEN
*
* Check whether to use Givens rotations,
* Householder transformations, or nothing.
*
IF( ISYM.EQ.1 ) THEN
*
* Non-symmetric -- A = U D V
*
IF( IPACK.GT.4 ) THEN
IPACKG = IPACK
ELSE
IPACKG = 0
END IF
*
DO 40 J = 1, MNMIN
A( ( 1-ISKEW )*J+IOFFST, J ) = DCMPLX( D( J ) )
40 CONTINUE
*
IF( TOPDWN ) THEN
JKL = 0
DO 70 JKU = 1, UUB
*
* Transform from bandwidth JKL, JKU-1 to JKL, JKU
*
* Last row actually rotated is M
* Last column actually rotated is MIN( M+JKU, N )
*
DO 60 JR = 1, MIN( M+JKU, N ) + JKL - 1
EXTRA = CZERO
ANGLE = TWOPI*DLARND( 1, ISEED )
C = COS( ANGLE )*ZLARND( 5, ISEED )
S = SIN( ANGLE )*ZLARND( 5, ISEED )
ICOL = MAX( 1, JR-JKL )
IF( JR.LT.M ) THEN
IL = MIN( N, JR+JKU ) + 1 - ICOL
CALL ZLAROT( .TRUE., JR.GT.JKL, .FALSE., IL, C,
$ S, A( JR-ISKEW*ICOL+IOFFST, ICOL ),
$ ILDA, EXTRA, DUMMY )
END IF
*
* Chase "EXTRA" back up
*
IR = JR
IC = ICOL
DO 50 JCH = JR - JKL, 1, -JKL - JKU
IF( IR.LT.M ) THEN
CALL ZLARTG( A( IR+1-ISKEW*( IC+1 )+IOFFST,
$ IC+1 ), EXTRA, REALC, S, DUMMY )
DUMMY = ZLARND( 5, ISEED )
C = DCONJG( REALC*DUMMY )
S = DCONJG( -S*DUMMY )
END IF
IROW = MAX( 1, JCH-JKU )
IL = IR + 2 - IROW
CTEMP = CZERO
ILTEMP = JCH.GT.JKU
CALL ZLAROT( .FALSE., ILTEMP, .TRUE., IL, C, S,
$ A( IROW-ISKEW*IC+IOFFST, IC ),
$ ILDA, CTEMP, EXTRA )
IF( ILTEMP ) THEN
CALL ZLARTG( A( IROW+1-ISKEW*( IC+1 )+IOFFST,
$ IC+1 ), CTEMP, REALC, S, DUMMY )
DUMMY = ZLARND( 5, ISEED )
C = DCONJG( REALC*DUMMY )
S = DCONJG( -S*DUMMY )
*
ICOL = MAX( 1, JCH-JKU-JKL )
IL = IC + 2 - ICOL
EXTRA = CZERO
CALL ZLAROT( .TRUE., JCH.GT.JKU+JKL, .TRUE.,
$ IL, C, S, A( IROW-ISKEW*ICOL+
$ IOFFST, ICOL ), ILDA, EXTRA,
$ CTEMP )
IC = ICOL
IR = IROW
END IF
50 CONTINUE
60 CONTINUE
70 CONTINUE
*
JKU = UUB
DO 100 JKL = 1, LLB
*
* Transform from bandwidth JKL-1, JKU to JKL, JKU
*
DO 90 JC = 1, MIN( N+JKL, M ) + JKU - 1
EXTRA = CZERO
ANGLE = TWOPI*DLARND( 1, ISEED )
C = COS( ANGLE )*ZLARND( 5, ISEED )
S = SIN( ANGLE )*ZLARND( 5, ISEED )
IROW = MAX( 1, JC-JKU )
IF( JC.LT.N ) THEN
IL = MIN( M, JC+JKL ) + 1 - IROW
CALL ZLAROT( .FALSE., JC.GT.JKU, .FALSE., IL, C,
$ S, A( IROW-ISKEW*JC+IOFFST, JC ),
$ ILDA, EXTRA, DUMMY )
END IF
*
* Chase "EXTRA" back up
*
IC = JC
IR = IROW
DO 80 JCH = JC - JKU, 1, -JKL - JKU
IF( IC.LT.N ) THEN
CALL ZLARTG( A( IR+1-ISKEW*( IC+1 )+IOFFST,
$ IC+1 ), EXTRA, REALC, S, DUMMY )
DUMMY = ZLARND( 5, ISEED )
C = DCONJG( REALC*DUMMY )
S = DCONJG( -S*DUMMY )
END IF
ICOL = MAX( 1, JCH-JKL )
IL = IC + 2 - ICOL
CTEMP = CZERO
ILTEMP = JCH.GT.JKL
CALL ZLAROT( .TRUE., ILTEMP, .TRUE., IL, C, S,
$ A( IR-ISKEW*ICOL+IOFFST, ICOL ),
$ ILDA, CTEMP, EXTRA )
IF( ILTEMP ) THEN
CALL ZLARTG( A( IR+1-ISKEW*( ICOL+1 )+IOFFST,
$ ICOL+1 ), CTEMP, REALC, S,
$ DUMMY )
DUMMY = ZLARND( 5, ISEED )
C = DCONJG( REALC*DUMMY )
S = DCONJG( -S*DUMMY )
IROW = MAX( 1, JCH-JKL-JKU )
IL = IR + 2 - IROW
EXTRA = CZERO
CALL ZLAROT( .FALSE., JCH.GT.JKL+JKU, .TRUE.,
$ IL, C, S, A( IROW-ISKEW*ICOL+
$ IOFFST, ICOL ), ILDA, EXTRA,
$ CTEMP )
IC = ICOL
IR = IROW
END IF
80 CONTINUE
90 CONTINUE
100 CONTINUE
*
ELSE
*
* Bottom-Up -- Start at the bottom right.
*
JKL = 0
DO 130 JKU = 1, UUB
*
* Transform from bandwidth JKL, JKU-1 to JKL, JKU
*
* First row actually rotated is M
* First column actually rotated is MIN( M+JKU, N )
*
IENDCH = MIN( M, N+JKL ) - 1
DO 120 JC = MIN( M+JKU, N ) - 1, 1 - JKL, -1
EXTRA = CZERO
ANGLE = TWOPI*DLARND( 1, ISEED )
C = COS( ANGLE )*ZLARND( 5, ISEED )
S = SIN( ANGLE )*ZLARND( 5, ISEED )
IROW = MAX( 1, JC-JKU+1 )
IF( JC.GT.0 ) THEN
IL = MIN( M, JC+JKL+1 ) + 1 - IROW
CALL ZLAROT( .FALSE., .FALSE., JC+JKL.LT.M, IL,
$ C, S, A( IROW-ISKEW*JC+IOFFST,
$ JC ), ILDA, DUMMY, EXTRA )
END IF
*
* Chase "EXTRA" back down
*
IC = JC
DO 110 JCH = JC + JKL, IENDCH, JKL + JKU
ILEXTR = IC.GT.0
IF( ILEXTR ) THEN
CALL ZLARTG( A( JCH-ISKEW*IC+IOFFST, IC ),
$ EXTRA, REALC, S, DUMMY )
DUMMY = ZLARND( 5, ISEED )
C = REALC*DUMMY
S = S*DUMMY
END IF
IC = MAX( 1, IC )
ICOL = MIN( N-1, JCH+JKU )
ILTEMP = JCH + JKU.LT.N
CTEMP = CZERO
CALL ZLAROT( .TRUE., ILEXTR, ILTEMP, ICOL+2-IC,
$ C, S, A( JCH-ISKEW*IC+IOFFST, IC ),
$ ILDA, EXTRA, CTEMP )
IF( ILTEMP ) THEN
CALL ZLARTG( A( JCH-ISKEW*ICOL+IOFFST,
$ ICOL ), CTEMP, REALC, S, DUMMY )
DUMMY = ZLARND( 5, ISEED )
C = REALC*DUMMY
S = S*DUMMY
IL = MIN( IENDCH, JCH+JKL+JKU ) + 2 - JCH
EXTRA = CZERO
CALL ZLAROT( .FALSE., .TRUE.,
$ JCH+JKL+JKU.LE.IENDCH, IL, C, S,
$ A( JCH-ISKEW*ICOL+IOFFST,
$ ICOL ), ILDA, CTEMP, EXTRA )
IC = ICOL
END IF
110 CONTINUE
120 CONTINUE
130 CONTINUE
*
JKU = UUB
DO 160 JKL = 1, LLB
*
* Transform from bandwidth JKL-1, JKU to JKL, JKU
*
* First row actually rotated is MIN( N+JKL, M )
* First column actually rotated is N
*
IENDCH = MIN( N, M+JKU ) - 1
DO 150 JR = MIN( N+JKL, M ) - 1, 1 - JKU, -1
EXTRA = CZERO
ANGLE = TWOPI*DLARND( 1, ISEED )
C = COS( ANGLE )*ZLARND( 5, ISEED )
S = SIN( ANGLE )*ZLARND( 5, ISEED )
ICOL = MAX( 1, JR-JKL+1 )
IF( JR.GT.0 ) THEN
IL = MIN( N, JR+JKU+1 ) + 1 - ICOL
CALL ZLAROT( .TRUE., .FALSE., JR+JKU.LT.N, IL,
$ C, S, A( JR-ISKEW*ICOL+IOFFST,
$ ICOL ), ILDA, DUMMY, EXTRA )
END IF
*
* Chase "EXTRA" back down
*
IR = JR
DO 140 JCH = JR + JKU, IENDCH, JKL + JKU
ILEXTR = IR.GT.0
IF( ILEXTR ) THEN
CALL ZLARTG( A( IR-ISKEW*JCH+IOFFST, JCH ),
$ EXTRA, REALC, S, DUMMY )
DUMMY = ZLARND( 5, ISEED )
C = REALC*DUMMY
S = S*DUMMY
END IF
IR = MAX( 1, IR )
IROW = MIN( M-1, JCH+JKL )
ILTEMP = JCH + JKL.LT.M
CTEMP = CZERO
CALL ZLAROT( .FALSE., ILEXTR, ILTEMP, IROW+2-IR,
$ C, S, A( IR-ISKEW*JCH+IOFFST,
$ JCH ), ILDA, EXTRA, CTEMP )
IF( ILTEMP ) THEN
CALL ZLARTG( A( IROW-ISKEW*JCH+IOFFST, JCH ),
$ CTEMP, REALC, S, DUMMY )
DUMMY = ZLARND( 5, ISEED )
C = REALC*DUMMY
S = S*DUMMY
IL = MIN( IENDCH, JCH+JKL+JKU ) + 2 - JCH
EXTRA = CZERO
CALL ZLAROT( .TRUE., .TRUE.,
$ JCH+JKL+JKU.LE.IENDCH, IL, C, S,
$ A( IROW-ISKEW*JCH+IOFFST, JCH ),
$ ILDA, CTEMP, EXTRA )
IR = IROW
END IF
140 CONTINUE
150 CONTINUE
160 CONTINUE
*
END IF
*
ELSE
*
* Symmetric -- A = U D U'
* Hermitian -- A = U D U*
*
IPACKG = IPACK
IOFFG = IOFFST
*
IF( TOPDWN ) THEN
*
* Top-Down -- Generate Upper triangle only
*
IF( IPACK.GE.5 ) THEN
IPACKG = 6
IOFFG = UUB + 1
ELSE
IPACKG = 1
END IF
*
DO 170 J = 1, MNMIN
A( ( 1-ISKEW )*J+IOFFG, J ) = DCMPLX( D( J ) )
170 CONTINUE
*
DO 200 K = 1, UUB
DO 190 JC = 1, N - 1
IROW = MAX( 1, JC-K )
IL = MIN( JC+1, K+2 )
EXTRA = CZERO
CTEMP = A( JC-ISKEW*( JC+1 )+IOFFG, JC+1 )
ANGLE = TWOPI*DLARND( 1, ISEED )
C = COS( ANGLE )*ZLARND( 5, ISEED )
S = SIN( ANGLE )*ZLARND( 5, ISEED )
IF( ZSYM ) THEN
CT = C
ST = S
ELSE
CTEMP = DCONJG( CTEMP )
CT = DCONJG( C )
ST = DCONJG( S )
END IF
CALL ZLAROT( .FALSE., JC.GT.K, .TRUE., IL, C, S,
$ A( IROW-ISKEW*JC+IOFFG, JC ), ILDA,
$ EXTRA, CTEMP )
CALL ZLAROT( .TRUE., .TRUE., .FALSE.,
$ MIN( K, N-JC )+1, CT, ST,
$ A( ( 1-ISKEW )*JC+IOFFG, JC ), ILDA,
$ CTEMP, DUMMY )
*
* Chase EXTRA back up the matrix
*
ICOL = JC
DO 180 JCH = JC - K, 1, -K
CALL ZLARTG( A( JCH+1-ISKEW*( ICOL+1 )+IOFFG,
$ ICOL+1 ), EXTRA, REALC, S, DUMMY )
DUMMY = ZLARND( 5, ISEED )
C = DCONJG( REALC*DUMMY )
S = DCONJG( -S*DUMMY )
CTEMP = A( JCH-ISKEW*( JCH+1 )+IOFFG, JCH+1 )
IF( ZSYM ) THEN
CT = C
ST = S
ELSE
CTEMP = DCONJG( CTEMP )
CT = DCONJG( C )
ST = DCONJG( S )
END IF
CALL ZLAROT( .TRUE., .TRUE., .TRUE., K+2, C, S,
$ A( ( 1-ISKEW )*JCH+IOFFG, JCH ),
$ ILDA, CTEMP, EXTRA )
IROW = MAX( 1, JCH-K )
IL = MIN( JCH+1, K+2 )
EXTRA = CZERO
CALL ZLAROT( .FALSE., JCH.GT.K, .TRUE., IL, CT,
$ ST, A( IROW-ISKEW*JCH+IOFFG, JCH ),
$ ILDA, EXTRA, CTEMP )
ICOL = JCH
180 CONTINUE
190 CONTINUE
200 CONTINUE
*
* If we need lower triangle, copy from upper. Note that
* the order of copying is chosen to work for 'q' -> 'b'
*
IF( IPACK.NE.IPACKG .AND. IPACK.NE.3 ) THEN
DO 230 JC = 1, N
IROW = IOFFST - ISKEW*JC
IF( ZSYM ) THEN
DO 210 JR = JC, MIN( N, JC+UUB )
A( JR+IROW, JC ) = A( JC-ISKEW*JR+IOFFG, JR )
210 CONTINUE
ELSE
DO 220 JR = JC, MIN( N, JC+UUB )
A( JR+IROW, JC ) = DCONJG( A( JC-ISKEW*JR+
$ IOFFG, JR ) )
220 CONTINUE
END IF
230 CONTINUE
IF( IPACK.EQ.5 ) THEN
DO 250 JC = N - UUB + 1, N
DO 240 JR = N + 2 - JC, UUB + 1
A( JR, JC ) = CZERO
240 CONTINUE
250 CONTINUE
END IF
IF( IPACKG.EQ.6 ) THEN
IPACKG = IPACK
ELSE
IPACKG = 0
END IF
END IF
ELSE
*
* Bottom-Up -- Generate Lower triangle only
*
IF( IPACK.GE.5 ) THEN
IPACKG = 5
IF( IPACK.EQ.6 )
$ IOFFG = 1
ELSE
IPACKG = 2
END IF
*
DO 260 J = 1, MNMIN
A( ( 1-ISKEW )*J+IOFFG, J ) = DCMPLX( D( J ) )
260 CONTINUE
*
DO 290 K = 1, UUB
DO 280 JC = N - 1, 1, -1
IL = MIN( N+1-JC, K+2 )
EXTRA = CZERO
CTEMP = A( 1+( 1-ISKEW )*JC+IOFFG, JC )
ANGLE = TWOPI*DLARND( 1, ISEED )
C = COS( ANGLE )*ZLARND( 5, ISEED )
S = SIN( ANGLE )*ZLARND( 5, ISEED )
IF( ZSYM ) THEN
CT = C
ST = S
ELSE
CTEMP = DCONJG( CTEMP )
CT = DCONJG( C )
ST = DCONJG( S )
END IF
CALL ZLAROT( .FALSE., .TRUE., N-JC.GT.K, IL, C, S,
$ A( ( 1-ISKEW )*JC+IOFFG, JC ), ILDA,
$ CTEMP, EXTRA )
ICOL = MAX( 1, JC-K+1 )
CALL ZLAROT( .TRUE., .FALSE., .TRUE., JC+2-ICOL,
$ CT, ST, A( JC-ISKEW*ICOL+IOFFG,
$ ICOL ), ILDA, DUMMY, CTEMP )
*
* Chase EXTRA back down the matrix
*
ICOL = JC
DO 270 JCH = JC + K, N - 1, K
CALL ZLARTG( A( JCH-ISKEW*ICOL+IOFFG, ICOL ),
$ EXTRA, REALC, S, DUMMY )
DUMMY = ZLARND( 5, ISEED )
C = REALC*DUMMY
S = S*DUMMY
CTEMP = A( 1+( 1-ISKEW )*JCH+IOFFG, JCH )
IF( ZSYM ) THEN
CT = C
ST = S
ELSE
CTEMP = DCONJG( CTEMP )
CT = DCONJG( C )
ST = DCONJG( S )
END IF
CALL ZLAROT( .TRUE., .TRUE., .TRUE., K+2, C, S,
$ A( JCH-ISKEW*ICOL+IOFFG, ICOL ),
$ ILDA, EXTRA, CTEMP )
IL = MIN( N+1-JCH, K+2 )
EXTRA = CZERO
CALL ZLAROT( .FALSE., .TRUE., N-JCH.GT.K, IL,
$ CT, ST, A( ( 1-ISKEW )*JCH+IOFFG,
$ JCH ), ILDA, CTEMP, EXTRA )
ICOL = JCH
270 CONTINUE
280 CONTINUE
290 CONTINUE
*
* If we need upper triangle, copy from lower. Note that
* the order of copying is chosen to work for 'b' -> 'q'
*
IF( IPACK.NE.IPACKG .AND. IPACK.NE.4 ) THEN
DO 320 JC = N, 1, -1
IROW = IOFFST - ISKEW*JC
IF( ZSYM ) THEN
DO 300 JR = JC, MAX( 1, JC-UUB ), -1
A( JR+IROW, JC ) = A( JC-ISKEW*JR+IOFFG, JR )
300 CONTINUE
ELSE
DO 310 JR = JC, MAX( 1, JC-UUB ), -1
A( JR+IROW, JC ) = DCONJG( A( JC-ISKEW*JR+
$ IOFFG, JR ) )
310 CONTINUE
END IF
320 CONTINUE
IF( IPACK.EQ.6 ) THEN
DO 340 JC = 1, UUB
DO 330 JR = 1, UUB + 1 - JC
A( JR, JC ) = CZERO
330 CONTINUE
340 CONTINUE
END IF
IF( IPACKG.EQ.5 ) THEN
IPACKG = IPACK
ELSE
IPACKG = 0
END IF
END IF
END IF
*
* Ensure that the diagonal is real if Hermitian
*
IF( .NOT.ZSYM ) THEN
DO 350 JC = 1, N
IROW = IOFFST + ( 1-ISKEW )*JC
A( IROW, JC ) = DCMPLX( DBLE( A( IROW, JC ) ) )
350 CONTINUE
END IF
*
END IF
*
ELSE
*
* 4) Generate Banded Matrix by first
* Rotating by random Unitary matrices,
* then reducing the bandwidth using Householder
* transformations.
*
* Note: we should get here only if LDA .ge. N
*
IF( ISYM.EQ.1 ) THEN
*
* Non-symmetric -- A = U D V
*
CALL ZLAGGE( MR, NC, LLB, UUB, D, A, LDA, ISEED, WORK,
$ IINFO )
ELSE
*
* Symmetric -- A = U D U' or
* Hermitian -- A = U D U*
*
IF( ZSYM ) THEN
CALL ZLAGSY( M, LLB, D, A, LDA, ISEED, WORK, IINFO )
ELSE
CALL ZLAGHE( M, LLB, D, A, LDA, ISEED, WORK, IINFO )
END IF
END IF
*
IF( IINFO.NE.0 ) THEN
INFO = 3
RETURN
END IF
END IF
*
* 5) Pack the matrix
*
IF( IPACK.NE.IPACKG ) THEN
IF( IPACK.EQ.1 ) THEN
*
* 'U' -- Upper triangular, not packed
*
DO 370 J = 1, M
DO 360 I = J + 1, M
A( I, J ) = CZERO
360 CONTINUE
370 CONTINUE
*
ELSE IF( IPACK.EQ.2 ) THEN
*
* 'L' -- Lower triangular, not packed
*
DO 390 J = 2, M
DO 380 I = 1, J - 1
A( I, J ) = CZERO
380 CONTINUE
390 CONTINUE
*
ELSE IF( IPACK.EQ.3 ) THEN
*
* 'C' -- Upper triangle packed Columnwise.
*
ICOL = 1
IROW = 0
DO 410 J = 1, M
DO 400 I = 1, J
IROW = IROW + 1
IF( IROW.GT.LDA ) THEN
IROW = 1
ICOL = ICOL + 1
END IF
A( IROW, ICOL ) = A( I, J )
400 CONTINUE
410 CONTINUE
*
ELSE IF( IPACK.EQ.4 ) THEN
*
* 'R' -- Lower triangle packed Columnwise.
*
ICOL = 1
IROW = 0
DO 430 J = 1, M
DO 420 I = J, M
IROW = IROW + 1
IF( IROW.GT.LDA ) THEN
IROW = 1
ICOL = ICOL + 1
END IF
A( IROW, ICOL ) = A( I, J )
420 CONTINUE
430 CONTINUE
*
ELSE IF( IPACK.GE.5 ) THEN
*
* 'B' -- The lower triangle is packed as a band matrix.
* 'Q' -- The upper triangle is packed as a band matrix.
* 'Z' -- The whole matrix is packed as a band matrix.
*
IF( IPACK.EQ.5 )
$ UUB = 0
IF( IPACK.EQ.6 )
$ LLB = 0
*
DO 450 J = 1, UUB
DO 440 I = MIN( J+LLB, M ), 1, -1
A( I-J+UUB+1, J ) = A( I, J )
440 CONTINUE
450 CONTINUE
*
DO 470 J = UUB + 2, N
DO 460 I = J - UUB, MIN( J+LLB, M )
A( I-J+UUB+1, J ) = A( I, J )
460 CONTINUE
470 CONTINUE
END IF
*
* If packed, zero out extraneous elements.
*
* Symmetric/Triangular Packed --
* zero out everything after A(IROW,ICOL)
*
IF( IPACK.EQ.3 .OR. IPACK.EQ.4 ) THEN
DO 490 JC = ICOL, M
DO 480 JR = IROW + 1, LDA
A( JR, JC ) = CZERO
480 CONTINUE
IROW = 0
490 CONTINUE
*
ELSE IF( IPACK.GE.5 ) THEN
*
* Packed Band --
* 1st row is now in A( UUB+2-j, j), zero above it
* m-th row is now in A( M+UUB-j,j), zero below it
* last non-zero diagonal is now in A( UUB+LLB+1,j ),
* zero below it, too.
*
IR1 = UUB + LLB + 2
IR2 = UUB + M + 2
DO 520 JC = 1, N
DO 500 JR = 1, UUB + 1 - JC
A( JR, JC ) = CZERO
500 CONTINUE
DO 510 JR = MAX( 1, MIN( IR1, IR2-JC ) ), LDA
A( JR, JC ) = CZERO
510 CONTINUE
520 CONTINUE
END IF
END IF
*
RETURN
*
* End of ZLATMS
*
END