Cloned library LAPACK-3.11.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

242 lines
6.9 KiB

*> \brief \b DERRGT
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DERRGT( PATH, NUNIT )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* INTEGER NUNIT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DERRGT tests the error exits for the DOUBLE PRECISION tridiagonal
*> routines.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name for the routines to be tested.
*> \endverbatim
*>
*> \param[in] NUNIT
*> \verbatim
*> NUNIT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DERRGT( PATH, NUNIT )
*
* -- LAPACK test routine --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER NUNIT
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 2 )
* ..
* .. Local Scalars ..
CHARACTER*2 C2
INTEGER INFO
DOUBLE PRECISION ANORM, RCOND
* ..
* .. Local Arrays ..
INTEGER IP( NMAX ), IW( NMAX )
DOUBLE PRECISION B( NMAX ), C( NMAX ), CF( NMAX ), D( NMAX ),
$ DF( NMAX ), E( NMAX ), EF( NMAX ), F( NMAX ),
$ R1( NMAX ), R2( NMAX ), W( NMAX ), X( NMAX )
* ..
* .. External Functions ..
LOGICAL LSAMEN
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, DGTCON, DGTRFS, DGTTRF, DGTTRS,
$ DPTCON, DPTRFS, DPTTRF, DPTTRS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NOUT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NOUT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
NOUT = NUNIT
WRITE( NOUT, FMT = * )
C2 = PATH( 2: 3 )
D( 1 ) = 1.D0
D( 2 ) = 2.D0
DF( 1 ) = 1.D0
DF( 2 ) = 2.D0
E( 1 ) = 3.D0
E( 2 ) = 4.D0
EF( 1 ) = 3.D0
EF( 2 ) = 4.D0
ANORM = 1.0D0
OK = .TRUE.
*
IF( LSAMEN( 2, C2, 'GT' ) ) THEN
*
* Test error exits for the general tridiagonal routines.
*
* DGTTRF
*
SRNAMT = 'DGTTRF'
INFOT = 1
CALL DGTTRF( -1, C, D, E, F, IP, INFO )
CALL CHKXER( 'DGTTRF', INFOT, NOUT, LERR, OK )
*
* DGTTRS
*
SRNAMT = 'DGTTRS'
INFOT = 1
CALL DGTTRS( '/', 0, 0, C, D, E, F, IP, X, 1, INFO )
CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DGTTRS( 'N', -1, 0, C, D, E, F, IP, X, 1, INFO )
CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DGTTRS( 'N', 0, -1, C, D, E, F, IP, X, 1, INFO )
CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DGTTRS( 'N', 2, 1, C, D, E, F, IP, X, 1, INFO )
CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK )
*
* DGTRFS
*
SRNAMT = 'DGTRFS'
INFOT = 1
CALL DGTRFS( '/', 0, 0, C, D, E, CF, DF, EF, F, IP, B, 1, X, 1,
$ R1, R2, W, IW, INFO )
CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DGTRFS( 'N', -1, 0, C, D, E, CF, DF, EF, F, IP, B, 1, X,
$ 1, R1, R2, W, IW, INFO )
CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DGTRFS( 'N', 0, -1, C, D, E, CF, DF, EF, F, IP, B, 1, X,
$ 1, R1, R2, W, IW, INFO )
CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 13
CALL DGTRFS( 'N', 2, 1, C, D, E, CF, DF, EF, F, IP, B, 1, X, 2,
$ R1, R2, W, IW, INFO )
CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 15
CALL DGTRFS( 'N', 2, 1, C, D, E, CF, DF, EF, F, IP, B, 2, X, 1,
$ R1, R2, W, IW, INFO )
CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
*
* DGTCON
*
SRNAMT = 'DGTCON'
INFOT = 1
CALL DGTCON( '/', 0, C, D, E, F, IP, ANORM, RCOND, W, IW,
$ INFO )
CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DGTCON( 'I', -1, C, D, E, F, IP, ANORM, RCOND, W, IW,
$ INFO )
CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DGTCON( 'I', 0, C, D, E, F, IP, -ANORM, RCOND, W, IW,
$ INFO )
CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN
*
* Test error exits for the positive definite tridiagonal
* routines.
*
* DPTTRF
*
SRNAMT = 'DPTTRF'
INFOT = 1
CALL DPTTRF( -1, D, E, INFO )
CALL CHKXER( 'DPTTRF', INFOT, NOUT, LERR, OK )
*
* DPTTRS
*
SRNAMT = 'DPTTRS'
INFOT = 1
CALL DPTTRS( -1, 0, D, E, X, 1, INFO )
CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPTTRS( 0, -1, D, E, X, 1, INFO )
CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DPTTRS( 2, 1, D, E, X, 1, INFO )
CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK )
*
* DPTRFS
*
SRNAMT = 'DPTRFS'
INFOT = 1
CALL DPTRFS( -1, 0, D, E, DF, EF, B, 1, X, 1, R1, R2, W, INFO )
CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPTRFS( 0, -1, D, E, DF, EF, B, 1, X, 1, R1, R2, W, INFO )
CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DPTRFS( 2, 1, D, E, DF, EF, B, 1, X, 2, R1, R2, W, INFO )
CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DPTRFS( 2, 1, D, E, DF, EF, B, 2, X, 1, R1, R2, W, INFO )
CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK )
*
* DPTCON
*
SRNAMT = 'DPTCON'
INFOT = 1
CALL DPTCON( -1, D, E, ANORM, RCOND, W, INFO )
CALL CHKXER( 'DPTCON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DPTCON( 0, D, E, -ANORM, RCOND, W, INFO )
CALL CHKXER( 'DPTCON', INFOT, NOUT, LERR, OK )
END IF
*
* Print a summary line.
*
CALL ALAESM( PATH, OK, NOUT )
*
RETURN
*
* End of DERRGT
*
END