You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
177 lines
4.7 KiB
177 lines
4.7 KiB
2 years ago
|
/*
|
||
|
* Copyright 1997, Regents of the University of Minnesota
|
||
|
*
|
||
|
* separator.c
|
||
|
*
|
||
|
* This file contains code for separator extraction
|
||
|
*
|
||
|
* Started 8/1/97
|
||
|
* George
|
||
|
*
|
||
|
* $Id: separator.c 10481 2011-07-05 18:01:23Z karypis $
|
||
|
*
|
||
|
*/
|
||
|
|
||
|
#include "metislib.h"
|
||
|
|
||
|
/*************************************************************************
|
||
|
* This function takes a bisection and constructs a minimum weight vertex
|
||
|
* separator out of it. It uses the node-based separator refinement for it.
|
||
|
**************************************************************************/
|
||
|
void ConstructSeparator(ctrl_t *ctrl, graph_t *graph)
|
||
|
{
|
||
|
idx_t i, j, k, nvtxs, nbnd;
|
||
|
idx_t *xadj, *where, *bndind;
|
||
|
|
||
|
WCOREPUSH;
|
||
|
|
||
|
nvtxs = graph->nvtxs;
|
||
|
xadj = graph->xadj;
|
||
|
nbnd = graph->nbnd;
|
||
|
bndind = graph->bndind;
|
||
|
|
||
|
where = icopy(nvtxs, graph->where, iwspacemalloc(ctrl, nvtxs));
|
||
|
|
||
|
/* Put the nodes in the boundary into the separator */
|
||
|
for (i=0; i<nbnd; i++) {
|
||
|
j = bndind[i];
|
||
|
if (xadj[j+1]-xadj[j] > 0) /* Ignore islands */
|
||
|
where[j] = 2;
|
||
|
}
|
||
|
|
||
|
FreeRData(graph);
|
||
|
|
||
|
Allocate2WayNodePartitionMemory(ctrl, graph);
|
||
|
icopy(nvtxs, where, graph->where);
|
||
|
|
||
|
WCOREPOP;
|
||
|
|
||
|
ASSERT(IsSeparable(graph));
|
||
|
|
||
|
Compute2WayNodePartitionParams(ctrl, graph);
|
||
|
|
||
|
ASSERT(CheckNodePartitionParams(graph));
|
||
|
|
||
|
FM_2WayNodeRefine2Sided(ctrl, graph, 1);
|
||
|
FM_2WayNodeRefine1Sided(ctrl, graph, 4);
|
||
|
|
||
|
ASSERT(IsSeparable(graph));
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/*************************************************************************
|
||
|
* This function takes a bisection and constructs a minimum weight vertex
|
||
|
* separator out of it. It uses an unweighted minimum-cover algorithm
|
||
|
* followed by node-based separator refinement.
|
||
|
**************************************************************************/
|
||
|
void ConstructMinCoverSeparator(ctrl_t *ctrl, graph_t *graph)
|
||
|
{
|
||
|
idx_t i, ii, j, jj, k, l, nvtxs, nbnd, bnvtxs[3], bnedges[2], csize;
|
||
|
idx_t *xadj, *adjncy, *bxadj, *badjncy;
|
||
|
idx_t *where, *bndind, *bndptr, *vmap, *ivmap, *cover;
|
||
|
|
||
|
WCOREPUSH;
|
||
|
|
||
|
nvtxs = graph->nvtxs;
|
||
|
xadj = graph->xadj;
|
||
|
adjncy = graph->adjncy;
|
||
|
|
||
|
nbnd = graph->nbnd;
|
||
|
bndind = graph->bndind;
|
||
|
bndptr = graph->bndptr;
|
||
|
where = graph->where;
|
||
|
|
||
|
vmap = iwspacemalloc(ctrl, nvtxs);
|
||
|
ivmap = iwspacemalloc(ctrl, nbnd);
|
||
|
cover = iwspacemalloc(ctrl, nbnd);
|
||
|
|
||
|
if (nbnd > 0) {
|
||
|
/* Go through the boundary and determine the sizes of the bipartite graph */
|
||
|
bnvtxs[0] = bnvtxs[1] = bnedges[0] = bnedges[1] = 0;
|
||
|
for (i=0; i<nbnd; i++) {
|
||
|
j = bndind[i];
|
||
|
k = where[j];
|
||
|
if (xadj[j+1]-xadj[j] > 0) {
|
||
|
bnvtxs[k]++;
|
||
|
bnedges[k] += xadj[j+1]-xadj[j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bnvtxs[2] = bnvtxs[0]+bnvtxs[1];
|
||
|
bnvtxs[1] = bnvtxs[0];
|
||
|
bnvtxs[0] = 0;
|
||
|
|
||
|
bxadj = iwspacemalloc(ctrl, bnvtxs[2]+1);
|
||
|
badjncy = iwspacemalloc(ctrl, bnedges[0]+bnedges[1]+1);
|
||
|
|
||
|
/* Construct the ivmap and vmap */
|
||
|
ASSERT(iset(nvtxs, -1, vmap) == vmap);
|
||
|
for (i=0; i<nbnd; i++) {
|
||
|
j = bndind[i];
|
||
|
k = where[j];
|
||
|
if (xadj[j+1]-xadj[j] > 0) {
|
||
|
vmap[j] = bnvtxs[k];
|
||
|
ivmap[bnvtxs[k]++] = j;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* OK, go through and put the vertices of each part starting from 0 */
|
||
|
bnvtxs[1] = bnvtxs[0];
|
||
|
bnvtxs[0] = 0;
|
||
|
bxadj[0] = l = 0;
|
||
|
for (k=0; k<2; k++) {
|
||
|
for (ii=0; ii<nbnd; ii++) {
|
||
|
i = bndind[ii];
|
||
|
if (where[i] == k && xadj[i] < xadj[i+1]) {
|
||
|
for (j=xadj[i]; j<xadj[i+1]; j++) {
|
||
|
jj = adjncy[j];
|
||
|
if (where[jj] != k) {
|
||
|
ASSERT(bndptr[jj] != -1);
|
||
|
ASSERTP(vmap[jj] != -1, ("%"PRIDX" %"PRIDX" %"PRIDX"\n", jj, vmap[jj], graph->bndptr[jj]));
|
||
|
badjncy[l++] = vmap[jj];
|
||
|
}
|
||
|
}
|
||
|
bxadj[++bnvtxs[k]] = l;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
ASSERT(l <= bnedges[0]+bnedges[1]);
|
||
|
|
||
|
MinCover(bxadj, badjncy, bnvtxs[0], bnvtxs[1], cover, &csize);
|
||
|
|
||
|
IFSET(ctrl->dbglvl, METIS_DBG_SEPINFO,
|
||
|
printf("Nvtxs: %6"PRIDX", [%5"PRIDX" %5"PRIDX"], Cut: %6"PRIDX", SS: [%6"PRIDX" %6"PRIDX"], Cover: %6"PRIDX"\n", nvtxs, graph->pwgts[0], graph->pwgts[1], graph->mincut, bnvtxs[0], bnvtxs[1]-bnvtxs[0], csize));
|
||
|
|
||
|
for (i=0; i<csize; i++) {
|
||
|
j = ivmap[cover[i]];
|
||
|
where[j] = 2;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
IFSET(ctrl->dbglvl, METIS_DBG_SEPINFO,
|
||
|
printf("Nvtxs: %6"PRIDX", [%5"PRIDX" %5"PRIDX"], Cut: %6"PRIDX", SS: [%6"PRIDX" %6"PRIDX"], Cover: %6"PRIDX"\n", nvtxs, graph->pwgts[0], graph->pwgts[1], graph->mincut, (idx_t)0, (idx_t)0, (idx_t)0));
|
||
|
}
|
||
|
|
||
|
/* Prepare to refine the vertex separator */
|
||
|
icopy(nvtxs, graph->where, vmap);
|
||
|
|
||
|
FreeRData(graph);
|
||
|
|
||
|
Allocate2WayNodePartitionMemory(ctrl, graph);
|
||
|
icopy(nvtxs, vmap, graph->where);
|
||
|
|
||
|
WCOREPOP;
|
||
|
|
||
|
Compute2WayNodePartitionParams(ctrl, graph);
|
||
|
|
||
|
ASSERT(CheckNodePartitionParams(graph));
|
||
|
|
||
|
FM_2WayNodeRefine1Sided(ctrl, graph, ctrl->niter);
|
||
|
|
||
|
ASSERT(IsSeparable(graph));
|
||
|
}
|
||
|
|