/* * Copyright 1997, Regents of the University of Minnesota * * debug.c * * This file contains code that performs self debugging * * Started 7/24/97 * George * */ #include "metislib.h" /*************************************************************************/ /*! This function computes the total edgecut */ /*************************************************************************/ idx_t ComputeCut(graph_t *graph, idx_t *where) { idx_t i, j, cut; if (graph->adjwgt == NULL) { for (cut=0, i=0; invtxs; i++) { for (j=graph->xadj[i]; jxadj[i+1]; j++) if (where[i] != where[graph->adjncy[j]]) cut++; } } else { for (cut=0, i=0; invtxs; i++) { for (j=graph->xadj[i]; jxadj[i+1]; j++) if (where[i] != where[graph->adjncy[j]]) cut += graph->adjwgt[j]; } } return cut/2; } /*************************************************************************/ /*! This function computes the total volume */ /*************************************************************************/ idx_t ComputeVolume(graph_t *graph, idx_t *where) { idx_t i, j, k, me, nvtxs, nparts, totalv; idx_t *xadj, *adjncy, *vsize, *marker; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; vsize = graph->vsize; nparts = where[iargmax(nvtxs, where,1)]+1; marker = ismalloc(nparts, -1, "ComputeVolume: marker"); totalv = 0; for (i=0; iadjwgt == NULL) { for (i=0; invtxs; i++) { for (j=graph->xadj[i]; jxadj[i+1]; j++) if (where[i] != where[graph->adjncy[j]]) cuts[where[i]]++; } } else { for (i=0; invtxs; i++) { for (j=graph->xadj[i]; jxadj[i+1]; j++) if (where[i] != where[graph->adjncy[j]]) cuts[where[i]] += graph->adjwgt[j]; } } maxcut = cuts[iargmax(nparts, cuts,1)]; printf("%zu => %"PRIDX"\n", iargmax(nparts, cuts,1), maxcut); gk_free((void **)&cuts, LTERM); return maxcut; } /*************************************************************************/ /*! This function checks whether or not the boundary information is correct */ /*************************************************************************/ idx_t CheckBnd(graph_t *graph) { idx_t i, j, nvtxs, nbnd; idx_t *xadj, *adjncy, *where, *bndptr, *bndind; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; where = graph->where; bndptr = graph->bndptr; bndind = graph->bndind; for (nbnd=0, i=0; inbnd, ("%"PRIDX" %"PRIDX"\n", nbnd, graph->nbnd)); return 1; } /*************************************************************************/ /*! This function checks whether or not the boundary information is correct */ /*************************************************************************/ idx_t CheckBnd2(graph_t *graph) { idx_t i, j, nvtxs, nbnd, id, ed; idx_t *xadj, *adjncy, *where, *bndptr, *bndind; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; where = graph->where; bndptr = graph->bndptr; bndind = graph->bndind; for (nbnd=0, i=0; iadjwgt[j]; else id += graph->adjwgt[j]; } if (ed - id >= 0 && xadj[i] < xadj[i+1]) { nbnd++; ASSERTP(bndptr[i] != -1, ("%"PRIDX" %"PRIDX" %"PRIDX"\n", i, id, ed)); ASSERT(bndind[bndptr[i]] == i); } } ASSERTP(nbnd == graph->nbnd, ("%"PRIDX" %"PRIDX"\n", nbnd, graph->nbnd)); return 1; } /*************************************************************************/ /*! This function checks whether or not the boundary information is correct */ /*************************************************************************/ idx_t CheckNodeBnd(graph_t *graph, idx_t onbnd) { idx_t i, j, nvtxs, nbnd; idx_t *xadj, *adjncy, *where, *bndptr, *bndind; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; where = graph->where; bndptr = graph->bndptr; bndind = graph->bndind; for (nbnd=0, i=0; inbrpoolcpos >= 0); ASSERT(rinfo->nnbrs < ctrl->nparts); nbrs = ctrl->cnbrpool + rinfo->inbr; for (i=0; innbrs; i++) { for (j=i+1; jnnbrs; j++) ASSERTP(nbrs[i].pid != nbrs[j].pid, ("%"PRIDX" %"PRIDX" %"PRIDX" %"PRIDX"\n", i, j, nbrs[i].pid, nbrs[j].pid)); } return 1; } /*************************************************************************/ /*! This function checks the correctness of the NodeFM data structures */ /*************************************************************************/ idx_t CheckNodePartitionParams(graph_t *graph) { idx_t i, j, k, l, nvtxs, me, other; idx_t *xadj, *adjncy, *adjwgt, *vwgt, *where; idx_t edegrees[2], pwgts[3]; nvtxs = graph->nvtxs; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; where = graph->where; /*------------------------------------------------------------ / Compute now the separator external degrees /------------------------------------------------------------*/ pwgts[0] = pwgts[1] = pwgts[2] = 0; for (i=0; inrinfo[i].edegrees[0] || edegrees[1] != graph->nrinfo[i].edegrees[1]) { printf("Something wrong with edegrees: %"PRIDX" %"PRIDX" %"PRIDX" %"PRIDX" %"PRIDX"\n", i, edegrees[0], edegrees[1], graph->nrinfo[i].edegrees[0], graph->nrinfo[i].edegrees[1]); return 0; } } } if (pwgts[0] != graph->pwgts[0] || pwgts[1] != graph->pwgts[1] || pwgts[2] != graph->pwgts[2]) { printf("Something wrong with part-weights: %"PRIDX" %"PRIDX" %"PRIDX" %"PRIDX" %"PRIDX" %"PRIDX"\n", pwgts[0], pwgts[1], pwgts[2], graph->pwgts[0], graph->pwgts[1], graph->pwgts[2]); return 0; } return 1; } /*************************************************************************/ /*! This function checks if the separator is indeed a separator */ /*************************************************************************/ idx_t IsSeparable(graph_t *graph) { idx_t i, j, nvtxs, other; idx_t *xadj, *adjncy, *where; nvtxs = graph->nvtxs; xadj = graph->xadj; adjncy = graph->adjncy; where = graph->where; for (i=0; ivrinfo structure */ /*************************************************************************/ void CheckKWayVolPartitionParams(ctrl_t *ctrl, graph_t *graph) { idx_t i, ii, j, k, kk, l, nvtxs, nbnd, mincut, minvol, me, other, pid; idx_t *xadj, *vsize, *adjncy, *pwgts, *where, *bndind, *bndptr; vkrinfo_t *rinfo, *myrinfo, *orinfo, tmprinfo; vnbr_t *mynbrs, *onbrs, *tmpnbrs; WCOREPUSH; nvtxs = graph->nvtxs; xadj = graph->xadj; vsize = graph->vsize; adjncy = graph->adjncy; where = graph->where; rinfo = graph->vkrinfo; tmpnbrs = (vnbr_t *)wspacemalloc(ctrl, ctrl->nparts*sizeof(vnbr_t)); /*------------------------------------------------------------ / Compute now the iv/ev degrees /------------------------------------------------------------*/ for (i=0; ivnbrpool + myrinfo->inbr; for (k=0; knnbrs; k++) tmpnbrs[k] = mynbrs[k]; tmprinfo.nnbrs = myrinfo->nnbrs; tmprinfo.nid = myrinfo->nid; tmprinfo.ned = myrinfo->ned; myrinfo = &tmprinfo; mynbrs = tmpnbrs; for (k=0; knnbrs; k++) mynbrs[k].gv = 0; for (j=xadj[i]; jvnbrpool + orinfo->inbr; if (me == other) { /* Find which domains 'i' is connected and 'ii' is not and update their gain */ for (k=0; knnbrs; k++) { pid = mynbrs[k].pid; for (kk=0; kknnbrs; kk++) { if (onbrs[kk].pid == pid) break; } if (kk == orinfo->nnbrs) mynbrs[k].gv -= vsize[ii]; } } else { /* Find the orinfo[me].ed and see if I'm the only connection */ for (k=0; knnbrs; k++) { if (onbrs[k].pid == me) break; } if (onbrs[k].ned == 1) { /* I'm the only connection of 'ii' in 'me' */ for (k=0; knnbrs; k++) { if (mynbrs[k].pid == other) { mynbrs[k].gv += vsize[ii]; break; } } /* Increase the gains for all the common domains between 'i' and 'ii' */ for (k=0; knnbrs; k++) { if ((pid = mynbrs[k].pid) == other) continue; for (kk=0; kknnbrs; kk++) { if (onbrs[kk].pid == pid) { mynbrs[k].gv += vsize[ii]; break; } } } } else { /* Find which domains 'i' is connected and 'ii' is not and update their gain */ for (k=0; knnbrs; k++) { if ((pid = mynbrs[k].pid) == other) continue; for (kk=0; kknnbrs; kk++) { if (onbrs[kk].pid == pid) break; } if (kk == orinfo->nnbrs) mynbrs[k].gv -= vsize[ii]; } } } } myrinfo = rinfo+i; mynbrs = ctrl->vnbrpool + myrinfo->inbr; for (k=0; knnbrs; k++) { pid = mynbrs[k].pid; for (kk=0; kk