/** \file \brief This file contains the top level routines for the multilevel recursive bisection algorithm PMETIS. \date Started 7/24/1997 \author George \author Copyright 1997-2009, Regents of the University of Minnesota \version\verbatim $Id: pmetis.c 10513 2011-07-07 22:06:03Z karypis $ \endverbatim */ #include "metislib.h" /*************************************************************************/ /*! \ingroup api \brief Recursive partitioning routine. This function computes a partitioning of a graph based on multilevel recursive bisection. It can be used to partition a graph into \e k parts. The objective of the partitioning is to minimize the edgecut subject to one or more balancing constraints. \param[in] nvtxs is the number of vertices in the graph. \param[in] ncon is the number of balancing constraints. For the standard partitioning problem in which each vertex is either unweighted or has a single weight, ncon should be 1. \param[in] xadj is an array of size nvtxs+1 used to specify the starting positions of the adjacency structure of the vertices in the adjncy array. \param[in] adjncy is an array of size to the sum of the degrees of the graph that stores for each vertex the set of vertices that is adjacent to. \param[in] vwgt is an array of size nvtxs*ncon that stores the weights of the vertices for each constraint. The ncon weights for the ith vertex are stored in the ncon consecutive locations starting at vwgt[i*ncon]. When ncon==1, a NULL value can be passed indicating that all the vertices in the graph have the same weight. \param[in] adjwgt is an array of size equal to adjncy, specifying the weight for each edge (i.e., adjwgt[j] corresponds to the weight of the edge stored in adjncy[j]). A NULL value can be passed indicating that all the edges in the graph have the same weight. \param[in] nparts is the number of desired partitions. \param[in] tpwgts is an array of size nparts*ncon that specifies the desired weight for each part and constraint. The \e{target partition weight} for the ith part and jth constraint is specified at tpwgts[i*ncon+j] (the numbering of i and j starts from 0). For each constraint, the sum of the tpwgts[] entries must be 1.0 (i.e., \f$ \sum_i tpwgts[i*ncon+j] = 1.0 \f$). A NULL value can be passed indicating that the graph should be equally divided among the parts. \param[in] ubvec is an array of size ncon that specifies the allowed load imbalance tolerance for each constraint. For the ith part and jth constraint the allowed weight is the ubvec[j]*tpwgts[i*ncon+j] fraction of the jth's constraint total weight. The load imbalances must be greater than 1.0. A NULL value can be passed indicating that the load imbalance tolerance for each constraint should be 1.001 (for ncon==1) or 1.01 (for ncon>1). \params[in] options is the array for passing additional parameters in order to customize the behaviour of the partitioning algorithm. \params[out] edgecut stores the cut of the partitioning. \params[out] part is an array of size nvtxs used to store the computed partitioning. The partition number for the ith vertex is stored in part[i]. Based on the numflag parameter, the numbering of the parts starts from either 0 or 1. \returns \retval METIS_OK indicates that the function returned normally. \retval METIS_ERROR_INPUT indicates an input error. \retval METIS_ERROR_MEMORY indicates that it could not allocate the required memory. */ /*************************************************************************/ int METIS_PartGraphRecursive(idx_t *nvtxs, idx_t *ncon, idx_t *xadj, idx_t *adjncy, idx_t *vwgt, idx_t *vsize, idx_t *adjwgt, idx_t *nparts, real_t *tpwgts, real_t *ubvec, idx_t *options, idx_t *objval, idx_t *part) { int sigrval=0, renumber=0; graph_t *graph; ctrl_t *ctrl; /* set up malloc cleaning code and signal catchers */ if (!gk_malloc_init()) return METIS_ERROR_MEMORY; gk_sigtrap(); if ((sigrval = gk_sigcatch()) != 0) goto SIGTHROW; /* set up the run parameters */ ctrl = SetupCtrl(METIS_OP_PMETIS, options, *ncon, *nparts, tpwgts, ubvec); if (!ctrl) { gk_siguntrap(); return METIS_ERROR_INPUT; } /* if required, change the numbering to 0 */ if (ctrl->numflag == 1) { Change2CNumbering(*nvtxs, xadj, adjncy); renumber = 1; } /* set up the graph */ graph = SetupGraph(ctrl, *nvtxs, *ncon, xadj, adjncy, vwgt, vsize, adjwgt); /* allocate workspace memory */ AllocateWorkSpace(ctrl, graph); /* start the partitioning */ IFSET(ctrl->dbglvl, METIS_DBG_TIME, InitTimers(ctrl)); IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_startcputimer(ctrl->TotalTmr)); iset(*nvtxs, 0, part); *objval = (*nparts == 1 ? 0 : MlevelRecursiveBisection(ctrl, graph, *nparts, part, ctrl->tpwgts, 0)); IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_stopcputimer(ctrl->TotalTmr)); IFSET(ctrl->dbglvl, METIS_DBG_TIME, PrintTimers(ctrl)); /* clean up */ FreeCtrl(&ctrl); SIGTHROW: /* if required, change the numbering back to 1 */ if (renumber) Change2FNumbering(*nvtxs, xadj, adjncy, part); gk_siguntrap(); gk_malloc_cleanup(0); return metis_rcode(sigrval); } /*************************************************************************/ /*! This function is the top-level driver of the recursive bisection routine. */ /*************************************************************************/ idx_t MlevelRecursiveBisection(ctrl_t *ctrl, graph_t *graph, idx_t nparts, idx_t *part, real_t *tpwgts, idx_t fpart) { idx_t i, j, nvtxs, ncon, objval; idx_t *label, *where; graph_t *lgraph, *rgraph; real_t wsum, *tpwgts2; if ((nvtxs = graph->nvtxs) == 0) { printf("\t***Cannot bisect a graph with 0 vertices!\n" "\t***You are trying to partition a graph into too many parts!\n"); return 0; } ncon = graph->ncon; /* determine the weights of the two partitions as a function of the weight of the target partition weights */ WCOREPUSH; tpwgts2 = rwspacemalloc(ctrl, 2*ncon); for (i=0; i>1), tpwgts+i, ncon); tpwgts2[ncon+i] = 1.0 - tpwgts2[i]; } /* perform the bisection */ objval = MultilevelBisect(ctrl, graph, tpwgts2); WCOREPOP; label = graph->label; where = graph->where; for (i=0; i 2) SplitGraphPart(ctrl, graph, &lgraph, &rgraph); /* Free the memory of the top level graph */ FreeGraph(&graph); /* Scale the fractions in the tpwgts according to the true weight */ for (i=0; i>1), tpwgts+i, ncon); rscale((nparts>>1), 1.0/wsum, tpwgts+i, ncon); rscale(nparts-(nparts>>1), 1.0/(1.0-wsum), tpwgts+(nparts>>1)*ncon+i, ncon); } /* Do the recursive call */ if (nparts > 3) { objval += MlevelRecursiveBisection(ctrl, lgraph, (nparts>>1), part, tpwgts, fpart); objval += MlevelRecursiveBisection(ctrl, rgraph, nparts-(nparts>>1), part, tpwgts+(nparts>>1)*ncon, fpart+(nparts>>1)); } else if (nparts == 3) { FreeGraph(&lgraph); objval += MlevelRecursiveBisection(ctrl, rgraph, nparts-(nparts>>1), part, tpwgts+(nparts>>1)*ncon, fpart+(nparts>>1)); } return objval; } /*************************************************************************/ /*! This function performs a multilevel bisection */ /*************************************************************************/ idx_t MultilevelBisect(ctrl_t *ctrl, graph_t *graph, real_t *tpwgts) { idx_t i, niparts, bestobj=0, curobj=0, *bestwhere=NULL; graph_t *cgraph; real_t bestbal=0.0, curbal=0.0; Setup2WayBalMultipliers(ctrl, graph, tpwgts); WCOREPUSH; if (ctrl->ncuts > 1) bestwhere = iwspacemalloc(ctrl, graph->nvtxs); for (i=0; incuts; i++) { cgraph = CoarsenGraph(ctrl, graph); niparts = (cgraph->nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS); Init2WayPartition(ctrl, cgraph, tpwgts, niparts); Refine2Way(ctrl, graph, cgraph, tpwgts); curobj = graph->mincut; curbal = ComputeLoadImbalanceDiff(graph, 2, ctrl->pijbm, ctrl->ubfactors); if (i == 0 || (curbal <= 0.0005 && bestobj > curobj) || (bestbal > 0.0005 && curbal < bestbal)) { bestobj = curobj; bestbal = curbal; if (i < ctrl->ncuts-1) icopy(graph->nvtxs, graph->where, bestwhere); } if (bestobj == 0) break; if (i < ctrl->ncuts-1) FreeRData(graph); } if (bestobj != curobj) { icopy(graph->nvtxs, bestwhere, graph->where); Compute2WayPartitionParams(ctrl, graph); } WCOREPOP; return bestobj; } /*************************************************************************/ /*! This function splits a graph into two based on its bisection */ /*************************************************************************/ void SplitGraphPart(ctrl_t *ctrl, graph_t *graph, graph_t **r_lgraph, graph_t **r_rgraph) { idx_t i, j, k, l, istart, iend, mypart, nvtxs, ncon, snvtxs[2], snedges[2]; idx_t *xadj, *vwgt, *adjncy, *adjwgt, *label, *where, *bndptr; idx_t *sxadj[2], *svwgt[2], *sadjncy[2], *sadjwgt[2], *slabel[2]; idx_t *rename; idx_t *auxadjncy, *auxadjwgt; graph_t *lgraph, *rgraph; WCOREPUSH; IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_startcputimer(ctrl->SplitTmr)); nvtxs = graph->nvtxs; ncon = graph->ncon; xadj = graph->xadj; vwgt = graph->vwgt; adjncy = graph->adjncy; adjwgt = graph->adjwgt; label = graph->label; where = graph->where; bndptr = graph->bndptr; ASSERT(bndptr != NULL); rename = iwspacemalloc(ctrl, nvtxs); snvtxs[0] = snvtxs[1] = snedges[0] = snedges[1] = 0; for (i=0; ixadj; svwgt[0] = lgraph->vwgt; sadjncy[0] = lgraph->adjncy; sadjwgt[0] = lgraph->adjwgt; slabel[0] = lgraph->label; rgraph = SetupSplitGraph(graph, snvtxs[1], snedges[1]); sxadj[1] = rgraph->xadj; svwgt[1] = rgraph->vwgt; sadjncy[1] = rgraph->adjncy; sadjwgt[1] = rgraph->adjwgt; slabel[1] = rgraph->label; snvtxs[0] = snvtxs[1] = snedges[0] = snedges[1] = 0; sxadj[0][0] = sxadj[1][0] = 0; for (i=0; inedges = snedges[0]; rgraph->nedges = snedges[1]; SetupGraph_tvwgt(lgraph); SetupGraph_tvwgt(rgraph); IFSET(ctrl->dbglvl, METIS_DBG_TIME, gk_stopcputimer(ctrl->SplitTmr)); *r_lgraph = lgraph; *r_rgraph = rgraph; WCOREPOP; }