|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// TetGen //
|
|
|
|
// //
|
|
|
|
// A Quality Tetrahedral Mesh Generator and A 3D Delaunay Triangulator //
|
|
|
|
// //
|
|
|
|
// Version 1.5 //
|
|
|
|
// August 18, 2018 //
|
|
|
|
// //
|
|
|
|
// Copyright (C) 2002--2018 //
|
|
|
|
// //
|
|
|
|
// TetGen is freely available through the website: http://www.tetgen.org. //
|
|
|
|
// It may be copied, modified, and redistributed for non-commercial use. //
|
|
|
|
// Please consult the file LICENSE for the detailed copyright notices. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
#ifndef tetgenH
|
|
|
|
#define tetgenH
|
|
|
|
|
|
|
|
// To compile TetGen as a library instead of an executable program, define
|
|
|
|
// the TETLIBRARY symbol.
|
|
|
|
|
|
|
|
#define TETLIBRARY
|
|
|
|
|
|
|
|
// TetGen default uses the double precision (64 bit) for a real number.
|
|
|
|
// Alternatively, one can use the single precision (32 bit) 'float' if the
|
|
|
|
// memory is limited.
|
|
|
|
|
|
|
|
#define REAL double // #define REAL float
|
|
|
|
|
|
|
|
// Maximum number of characters in a file name (including the null).
|
|
|
|
|
|
|
|
#define FILENAMESIZE 1024
|
|
|
|
|
|
|
|
// Maximum number of chars in a line read from a file (including the null).
|
|
|
|
|
|
|
|
#define INPUTLINESIZE 2048
|
|
|
|
|
|
|
|
// TetGen only uses the C standard library.
|
|
|
|
|
|
|
|
#include <math.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <time.h>
|
|
|
|
|
|
|
|
// The types 'intptr_t' and 'uintptr_t' are signed and unsigned integer types,
|
|
|
|
// respectively. They are guaranteed to be the same width as a pointer.
|
|
|
|
// They are defined in <stdint.h> by the C99 Standard. However, Microsoft
|
|
|
|
// Visual C++ 2003 -- 2008 (Visual C++ 7.1 - 9) doesn't ship with this header
|
|
|
|
// file. In such case, we can define them by ourself.
|
|
|
|
// Update (learned from Stack Overflow): Visual Studio 2010 and Visual C++ 2010
|
|
|
|
// Express both have stdint.h
|
|
|
|
|
|
|
|
// The following piece of code was provided by Steven Johnson (MIT). Define the
|
|
|
|
// symbol _MSC_VER if you are using Microsoft Visual C++. Moreover, define
|
|
|
|
// the _WIN64 symbol if you are running TetGen on Win64 systems.
|
|
|
|
|
|
|
|
#ifdef _MSC_VER // Microsoft Visual C++
|
|
|
|
#ifdef _WIN64
|
|
|
|
typedef __int64 intptr_t;
|
|
|
|
typedef unsigned __int64 uintptr_t;
|
|
|
|
#else // not _WIN64
|
|
|
|
typedef int intptr_t;
|
|
|
|
typedef unsigned int uintptr_t;
|
|
|
|
#endif
|
|
|
|
#else // not Visual C++
|
|
|
|
#include <stdint.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// tetgenio //
|
|
|
|
// //
|
|
|
|
// A structure for transferring data into and out of TetGen's mesh structure,//
|
|
|
|
// 'tetgenmesh' (declared below). //
|
|
|
|
// //
|
|
|
|
// The input of TetGen is either a 3D point set, or a 3D piecewise linear //
|
|
|
|
// complex (PLC), or a tetrahedral mesh. Depending on the input object and //
|
|
|
|
// the specified options, the output of TetGen is either a Delaunay (or wei- //
|
|
|
|
// ghted Delaunay) tetrahedralization, or a constrained (Delaunay) tetrahed- //
|
|
|
|
// ralization, or a quality tetrahedral mesh. //
|
|
|
|
// //
|
|
|
|
// A piecewise linear complex (PLC) represents a 3D polyhedral domain with //
|
|
|
|
// possibly internal boundaries(subdomains). It is introduced in [Miller et //
|
|
|
|
// al, 1996]. Basically it is a set of "cells", i.e., vertices, edges, poly- //
|
|
|
|
// gons, and polyhedra, and the intersection of any two of its cells is the //
|
|
|
|
// union of other cells of it. //
|
|
|
|
// //
|
|
|
|
// TetGen uses a set of files to describe the inputs and outputs. Each file //
|
|
|
|
// is identified from its file extension (.node, .ele, .face, .edge, etc). //
|
|
|
|
// //
|
|
|
|
// The 'tetgenio' structure is a collection of arrays of data, i.e., points, //
|
|
|
|
// facets, tetrahedra, and so forth. It contains functions to read and write //
|
|
|
|
// (input and output) files of TetGen as well as other supported mesh files. //
|
|
|
|
// //
|
|
|
|
// Once an object of tetgenio is declared, no array is created. One has to //
|
|
|
|
// allocate enough memory for them. On deletion of this object, the memory //
|
|
|
|
// occupied by these arrays needs to be freed. The routine deinitialize() //
|
|
|
|
// will be automatically called. It frees the memory for an array if it is //
|
|
|
|
// not a NULL. Note that it assumes that the memory is allocated by the C++ //
|
|
|
|
// "new" operator. Otherwise, the user is responsible to free them and all //
|
|
|
|
// pointers must be NULL before the call of the destructor. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
class tetgenio {
|
|
|
|
|
|
|
|
public:
|
|
|
|
// A "polygon" describes a simple polygon (no holes). It is not necessarily
|
|
|
|
// convex. Each polygon contains a number of corners (points) and the same
|
|
|
|
// number of sides (edges). The points of the polygon must be given in
|
|
|
|
// either counterclockwise or clockwise order and they form a ring, so
|
|
|
|
// every two consecutive points forms an edge of the polygon.
|
|
|
|
typedef struct {
|
|
|
|
int* vertexlist;
|
|
|
|
int numberofvertices;
|
|
|
|
} polygon;
|
|
|
|
|
|
|
|
// A "facet" describes a polygonal region possibly with holes, edges, and
|
|
|
|
// points floating in it. Each facet consists of a list of polygons and
|
|
|
|
// a list of hole points (which lie strictly inside holes).
|
|
|
|
typedef struct {
|
|
|
|
polygon* polygonlist;
|
|
|
|
int numberofpolygons;
|
|
|
|
REAL* holelist;
|
|
|
|
int numberofholes;
|
|
|
|
} facet;
|
|
|
|
|
|
|
|
// A "voroedge" is an edge of the Voronoi diagram. It corresponds to a
|
|
|
|
// Delaunay face. Each voroedge is either a line segment connecting
|
|
|
|
// two Voronoi vertices or a ray starting from a Voronoi vertex to an
|
|
|
|
// "infinite vertex". 'v1' and 'v2' are two indices pointing to the
|
|
|
|
// list of Voronoi vertices. 'v1' must be non-negative, while 'v2' may
|
|
|
|
// be -1 if it is a ray, in this case, the unit normal of this ray is
|
|
|
|
// given in 'vnormal'.
|
|
|
|
typedef struct {
|
|
|
|
int v1, v2;
|
|
|
|
REAL vnormal[3];
|
|
|
|
} voroedge;
|
|
|
|
|
|
|
|
// A "vorofacet" is an facet of the Voronoi diagram. It corresponds to a
|
|
|
|
// Delaunay edge. Each Voronoi facet is a convex polygon formed by a
|
|
|
|
// list of Voronoi edges, it may not be closed. 'c1' and 'c2' are two
|
|
|
|
// indices pointing into the list of Voronoi cells, i.e., the two cells
|
|
|
|
// share this facet. 'elist' is an array of indices pointing into the
|
|
|
|
// list of Voronoi edges, 'elist[0]' saves the number of Voronoi edges
|
|
|
|
// (including rays) of this facet.
|
|
|
|
typedef struct {
|
|
|
|
int c1, c2;
|
|
|
|
int* elist;
|
|
|
|
} vorofacet;
|
|
|
|
|
|
|
|
// Additional parameters associated with an input (or mesh) vertex.
|
|
|
|
// These informations are provided by CAD libraries.
|
|
|
|
typedef struct {
|
|
|
|
REAL uv[2];
|
|
|
|
int tag;
|
|
|
|
int type; // 0, 1, or 2.
|
|
|
|
} pointparam;
|
|
|
|
|
|
|
|
// Callback functions for meshing PSCs.
|
|
|
|
typedef REAL (*GetVertexParamOnEdge)(void*, int, int);
|
|
|
|
typedef void (*GetSteinerOnEdge)(void*, int, REAL, REAL*);
|
|
|
|
typedef void (*GetVertexParamOnFace)(void*, int, int, REAL*);
|
|
|
|
typedef void (*GetEdgeSteinerParamOnFace)(void*, int, REAL, int, REAL*);
|
|
|
|
typedef void (*GetSteinerOnFace)(void*, int, REAL*, REAL*);
|
|
|
|
|
|
|
|
// A callback function for mesh refinement.
|
|
|
|
typedef bool (*TetSizeFunc)(REAL*, REAL*, REAL*, REAL*, REAL*, REAL);
|
|
|
|
|
|
|
|
// Items are numbered starting from 'firstnumber' (0 or 1), default is 0.
|
|
|
|
int firstnumber;
|
|
|
|
|
|
|
|
// Dimension of the mesh (2 or 3), default is 3.
|
|
|
|
int mesh_dim;
|
|
|
|
|
|
|
|
// Does the lines in .node file contain index or not, default is 1.
|
|
|
|
int useindex;
|
|
|
|
|
|
|
|
// 'pointlist': An array of point coordinates. The first point's x
|
|
|
|
// coordinate is at index [0] and its y coordinate at index [1], its
|
|
|
|
// z coordinate is at index [2], followed by the coordinates of the
|
|
|
|
// remaining points. Each point occupies three REALs.
|
|
|
|
// 'pointattributelist': An array of point attributes. Each point's
|
|
|
|
// attributes occupy 'numberofpointattributes' REALs.
|
|
|
|
// 'pointmtrlist': An array of metric tensors at points. Each point's
|
|
|
|
// tensor occupies 'numberofpointmtr' REALs.
|
|
|
|
// 'pointmarkerlist': An array of point markers; one integer per point.
|
|
|
|
// 'point2tetlist': An array of tetrahedra indices; one integer per point.
|
|
|
|
REAL* pointlist;
|
|
|
|
REAL* pointattributelist;
|
|
|
|
REAL* pointmtrlist;
|
|
|
|
int* pointmarkerlist;
|
|
|
|
int* point2tetlist;
|
|
|
|
pointparam* pointparamlist;
|
|
|
|
int numberofpoints;
|
|
|
|
int numberofpointattributes;
|
|
|
|
int numberofpointmtrs;
|
|
|
|
|
|
|
|
// 'tetrahedronlist': An array of tetrahedron corners. The first
|
|
|
|
// tetrahedron's first corner is at index [0], followed by its other
|
|
|
|
// corners, followed by six nodes on the edges of the tetrahedron if the
|
|
|
|
// second order option (-o2) is applied. Each tetrahedron occupies
|
|
|
|
// 'numberofcorners' ints. The second order nodes are ouput only.
|
|
|
|
// 'tetrahedronattributelist': An array of tetrahedron attributes. Each
|
|
|
|
// tetrahedron's attributes occupy 'numberoftetrahedronattributes' REALs.
|
|
|
|
// 'tetrahedronvolumelist': An array of constraints, i.e. tetrahedron's
|
|
|
|
// volume; one REAL per element. Input only.
|
|
|
|
// 'neighborlist': An array of tetrahedron neighbors; 4 ints per element.
|
|
|
|
// 'tet2facelist': An array of tetrahedron face indices; 4 ints per element.
|
|
|
|
// 'tet2edgelist': An array of tetrahedron edge indices; 6 ints per element.
|
|
|
|
int* tetrahedronlist;
|
|
|
|
REAL* tetrahedronattributelist;
|
|
|
|
REAL* tetrahedronvolumelist;
|
|
|
|
int* neighborlist;
|
|
|
|
int* tet2facelist;
|
|
|
|
int* tet2edgelist;
|
|
|
|
int numberoftetrahedra;
|
|
|
|
int numberofcorners;
|
|
|
|
int numberoftetrahedronattributes;
|
|
|
|
|
|
|
|
// 'facetlist': An array of facets. Each entry is a structure of facet.
|
|
|
|
// 'facetmarkerlist': An array of facet markers; one int per facet.
|
|
|
|
facet* facetlist;
|
|
|
|
int* facetmarkerlist;
|
|
|
|
int numberoffacets;
|
|
|
|
|
|
|
|
// 'holelist': An array of holes (in volume). Each hole is given by a
|
|
|
|
// seed (point) which lies strictly inside it. The first seed's x, y and z
|
|
|
|
// coordinates are at indices [0], [1] and [2], followed by the
|
|
|
|
// remaining seeds. Three REALs per hole.
|
|
|
|
REAL* holelist;
|
|
|
|
int numberofholes;
|
|
|
|
|
|
|
|
// 'regionlist': An array of regions (subdomains). Each region is given by
|
|
|
|
// a seed (point) which lies strictly inside it. The first seed's x, y and
|
|
|
|
// z coordinates are at indices [0], [1] and [2], followed by the regional
|
|
|
|
// attribute at index [3], followed by the maximum volume at index [4].
|
|
|
|
// Five REALs per region.
|
|
|
|
// Note that each regional attribute is used only if you select the 'A'
|
|
|
|
// switch, and each volume constraint is used only if you select the
|
|
|
|
// 'a' switch (with no number following).
|
|
|
|
REAL* regionlist;
|
|
|
|
int numberofregions;
|
|
|
|
|
|
|
|
// 'facetconstraintlist': An array of facet constraints. Each constraint
|
|
|
|
// specifies a maximum area bound on the subfaces of that facet. The
|
|
|
|
// first facet constraint is given by a facet marker at index [0] and its
|
|
|
|
// maximum area bound at index [1], followed by the remaining facet con-
|
|
|
|
// straints. Two REALs per facet constraint. Note: the facet marker is
|
|
|
|
// actually an integer.
|
|
|
|
REAL* facetconstraintlist;
|
|
|
|
int numberoffacetconstraints;
|
|
|
|
|
|
|
|
// 'segmentconstraintlist': An array of segment constraints. Each constraint
|
|
|
|
// specifies a maximum length bound on the subsegments of that segment.
|
|
|
|
// The first constraint is given by the two endpoints of the segment at
|
|
|
|
// index [0] and [1], and the maximum length bound at index [2], followed
|
|
|
|
// by the remaining segment constraints. Three REALs per constraint.
|
|
|
|
// Note the segment endpoints are actually integers.
|
|
|
|
REAL* segmentconstraintlist;
|
|
|
|
int numberofsegmentconstraints;
|
|
|
|
|
|
|
|
// 'trifacelist': An array of face (triangle) corners. The first face's
|
|
|
|
// three corners are at indices [0], [1] and [2], followed by the remaining
|
|
|
|
// faces. Three ints per face.
|
|
|
|
// 'trifacemarkerlist': An array of face markers; one int per face.
|
|
|
|
// 'o2facelist': An array of second order nodes (on the edges) of the face.
|
|
|
|
// It is output only if the second order option (-o2) is applied. The
|
|
|
|
// first face's three second order nodes are at [0], [1], and [2],
|
|
|
|
// followed by the remaining faces. Three ints per face.
|
|
|
|
// 'face2tetlist': An array of tetrahedra indices; 2 ints per face.
|
|
|
|
// 'face2edgelist': An array of edge indices; 3 ints per face.
|
|
|
|
int* trifacelist;
|
|
|
|
int* trifacemarkerlist;
|
|
|
|
int* o2facelist;
|
|
|
|
int* face2tetlist;
|
|
|
|
int* face2edgelist;
|
|
|
|
int numberoftrifaces;
|
|
|
|
|
|
|
|
// 'edgelist': An array of edge endpoints. The first edge's endpoints
|
|
|
|
// are at indices [0] and [1], followed by the remaining edges.
|
|
|
|
// Two ints per edge.
|
|
|
|
// 'edgemarkerlist': An array of edge markers; one int per edge.
|
|
|
|
// 'o2edgelist': An array of midpoints of edges. It is output only if the
|
|
|
|
// second order option (-o2) is applied. One int per edge.
|
|
|
|
// 'edge2tetlist': An array of tetrahedra indices. One int per edge.
|
|
|
|
int* edgelist;
|
|
|
|
int* edgemarkerlist;
|
|
|
|
int* o2edgelist;
|
|
|
|
int* edge2tetlist;
|
|
|
|
int numberofedges;
|
|
|
|
|
|
|
|
// 'vpointlist': An array of Voronoi vertex coordinates (like pointlist).
|
|
|
|
// 'vedgelist': An array of Voronoi edges. Each entry is a 'voroedge'.
|
|
|
|
// 'vfacetlist': An array of Voronoi facets. Each entry is a 'vorofacet'.
|
|
|
|
// 'vcelllist': An array of Voronoi cells. Each entry is an array of
|
|
|
|
// indices pointing into 'vfacetlist'. The 0th entry is used to store
|
|
|
|
// the length of this array.
|
|
|
|
REAL* vpointlist;
|
|
|
|
voroedge* vedgelist;
|
|
|
|
vorofacet* vfacetlist;
|
|
|
|
int** vcelllist;
|
|
|
|
int numberofvpoints;
|
|
|
|
int numberofvedges;
|
|
|
|
int numberofvfacets;
|
|
|
|
int numberofvcells;
|
|
|
|
|
|
|
|
// Variable (and callback functions) for meshing PSCs.
|
|
|
|
void* geomhandle;
|
|
|
|
GetVertexParamOnEdge getvertexparamonedge;
|
|
|
|
GetSteinerOnEdge getsteineronedge;
|
|
|
|
GetVertexParamOnFace getvertexparamonface;
|
|
|
|
GetEdgeSteinerParamOnFace getedgesteinerparamonface;
|
|
|
|
GetSteinerOnFace getsteineronface;
|
|
|
|
|
|
|
|
// A callback function.
|
|
|
|
TetSizeFunc tetunsuitable;
|
|
|
|
|
|
|
|
// Input & output routines.
|
|
|
|
bool load_node_call(FILE* infile, int markers, int uvflag, char*);
|
|
|
|
bool load_node(char*);
|
|
|
|
bool load_edge(char*);
|
|
|
|
bool load_face(char*);
|
|
|
|
bool load_tet(char*);
|
|
|
|
bool load_vol(char*);
|
|
|
|
bool load_var(char*);
|
|
|
|
bool load_mtr(char*);
|
|
|
|
bool load_pbc(char*);
|
|
|
|
bool load_poly(char*);
|
|
|
|
bool load_off(char*);
|
|
|
|
bool load_ply(char*);
|
|
|
|
bool load_stl(char*);
|
|
|
|
bool load_vtk(char*);
|
|
|
|
bool load_medit(char*, int);
|
|
|
|
bool load_neumesh(char*, int);
|
|
|
|
bool load_plc(char*, int);
|
|
|
|
bool load_tetmesh(char*, int);
|
|
|
|
void save_nodes(char*);
|
|
|
|
void save_elements(char*);
|
|
|
|
void save_faces(char*);
|
|
|
|
void save_edges(char*);
|
|
|
|
void save_neighbors(char*);
|
|
|
|
void save_poly(char*);
|
|
|
|
void save_faces2smesh(char*);
|
|
|
|
|
|
|
|
// Read line and parse string functions.
|
|
|
|
char* readline(char* string, FILE* infile, int* linenumber);
|
|
|
|
char* findnextfield(char* string);
|
|
|
|
char* readnumberline(char* string, FILE* infile, char* infilename);
|
|
|
|
char* findnextnumber(char* string);
|
|
|
|
|
|
|
|
static void init(polygon* p) {
|
|
|
|
p->vertexlist = (int*)NULL;
|
|
|
|
p->numberofvertices = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void init(facet* f) {
|
|
|
|
f->polygonlist = (polygon*)NULL;
|
|
|
|
f->numberofpolygons = 0;
|
|
|
|
f->holelist = (REAL*)NULL;
|
|
|
|
f->numberofholes = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Initialize routine.
|
|
|
|
void initialize() {
|
|
|
|
firstnumber = 0;
|
|
|
|
mesh_dim = 3;
|
|
|
|
useindex = 1;
|
|
|
|
|
|
|
|
pointlist = (REAL*)NULL;
|
|
|
|
pointattributelist = (REAL*)NULL;
|
|
|
|
pointmtrlist = (REAL*)NULL;
|
|
|
|
pointmarkerlist = (int*)NULL;
|
|
|
|
point2tetlist = (int*)NULL;
|
|
|
|
pointparamlist = (pointparam*)NULL;
|
|
|
|
numberofpoints = 0;
|
|
|
|
numberofpointattributes = 0;
|
|
|
|
numberofpointmtrs = 0;
|
|
|
|
|
|
|
|
tetrahedronlist = (int*)NULL;
|
|
|
|
tetrahedronattributelist = (REAL*)NULL;
|
|
|
|
tetrahedronvolumelist = (REAL*)NULL;
|
|
|
|
neighborlist = (int*)NULL;
|
|
|
|
tet2facelist = (int*)NULL;
|
|
|
|
tet2edgelist = (int*)NULL;
|
|
|
|
numberoftetrahedra = 0;
|
|
|
|
numberofcorners = 4;
|
|
|
|
numberoftetrahedronattributes = 0;
|
|
|
|
|
|
|
|
trifacelist = (int*)NULL;
|
|
|
|
trifacemarkerlist = (int*)NULL;
|
|
|
|
o2facelist = (int*)NULL;
|
|
|
|
face2tetlist = (int*)NULL;
|
|
|
|
face2edgelist = (int*)NULL;
|
|
|
|
numberoftrifaces = 0;
|
|
|
|
|
|
|
|
edgelist = (int*)NULL;
|
|
|
|
edgemarkerlist = (int*)NULL;
|
|
|
|
o2edgelist = (int*)NULL;
|
|
|
|
edge2tetlist = (int*)NULL;
|
|
|
|
numberofedges = 0;
|
|
|
|
|
|
|
|
facetlist = (facet*)NULL;
|
|
|
|
facetmarkerlist = (int*)NULL;
|
|
|
|
numberoffacets = 0;
|
|
|
|
|
|
|
|
holelist = (REAL*)NULL;
|
|
|
|
numberofholes = 0;
|
|
|
|
|
|
|
|
regionlist = (REAL*)NULL;
|
|
|
|
numberofregions = 0;
|
|
|
|
|
|
|
|
facetconstraintlist = (REAL*)NULL;
|
|
|
|
numberoffacetconstraints = 0;
|
|
|
|
segmentconstraintlist = (REAL*)NULL;
|
|
|
|
numberofsegmentconstraints = 0;
|
|
|
|
|
|
|
|
vpointlist = (REAL*)NULL;
|
|
|
|
vedgelist = (voroedge*)NULL;
|
|
|
|
vfacetlist = (vorofacet*)NULL;
|
|
|
|
vcelllist = (int**)NULL;
|
|
|
|
numberofvpoints = 0;
|
|
|
|
numberofvedges = 0;
|
|
|
|
numberofvfacets = 0;
|
|
|
|
numberofvcells = 0;
|
|
|
|
|
|
|
|
tetunsuitable = NULL;
|
|
|
|
|
|
|
|
geomhandle = NULL;
|
|
|
|
getvertexparamonedge = NULL;
|
|
|
|
getsteineronedge = NULL;
|
|
|
|
getvertexparamonface = NULL;
|
|
|
|
getedgesteinerparamonface = NULL;
|
|
|
|
getsteineronface = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Free the memory allocated in 'tetgenio'. Note that it assumes that the
|
|
|
|
// memory was allocated by the "new" operator (C++).
|
|
|
|
void deinitialize() {
|
|
|
|
int i, j;
|
|
|
|
|
|
|
|
if (pointlist != (REAL*)NULL) {
|
|
|
|
delete[] pointlist;
|
|
|
|
}
|
|
|
|
if (pointattributelist != (REAL*)NULL) {
|
|
|
|
delete[] pointattributelist;
|
|
|
|
}
|
|
|
|
if (pointmtrlist != (REAL*)NULL) {
|
|
|
|
delete[] pointmtrlist;
|
|
|
|
}
|
|
|
|
if (pointmarkerlist != (int*)NULL) {
|
|
|
|
delete[] pointmarkerlist;
|
|
|
|
}
|
|
|
|
if (point2tetlist != (int*)NULL) {
|
|
|
|
delete[] point2tetlist;
|
|
|
|
}
|
|
|
|
if (pointparamlist != (pointparam*)NULL) {
|
|
|
|
delete[] pointparamlist;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tetrahedronlist != (int*)NULL) {
|
|
|
|
delete[] tetrahedronlist;
|
|
|
|
}
|
|
|
|
if (tetrahedronattributelist != (REAL*)NULL) {
|
|
|
|
delete[] tetrahedronattributelist;
|
|
|
|
}
|
|
|
|
if (tetrahedronvolumelist != (REAL*)NULL) {
|
|
|
|
delete[] tetrahedronvolumelist;
|
|
|
|
}
|
|
|
|
if (neighborlist != (int*)NULL) {
|
|
|
|
delete[] neighborlist;
|
|
|
|
}
|
|
|
|
if (tet2facelist != (int*)NULL) {
|
|
|
|
delete[] tet2facelist;
|
|
|
|
}
|
|
|
|
if (tet2edgelist != (int*)NULL) {
|
|
|
|
delete[] tet2edgelist;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (trifacelist != (int*)NULL) {
|
|
|
|
delete[] trifacelist;
|
|
|
|
}
|
|
|
|
if (trifacemarkerlist != (int*)NULL) {
|
|
|
|
delete[] trifacemarkerlist;
|
|
|
|
}
|
|
|
|
if (o2facelist != (int*)NULL) {
|
|
|
|
delete[] o2facelist;
|
|
|
|
}
|
|
|
|
if (face2tetlist != (int*)NULL) {
|
|
|
|
delete[] face2tetlist;
|
|
|
|
}
|
|
|
|
if (face2edgelist != (int*)NULL) {
|
|
|
|
delete[] face2edgelist;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (edgelist != (int*)NULL) {
|
|
|
|
delete[] edgelist;
|
|
|
|
}
|
|
|
|
if (edgemarkerlist != (int*)NULL) {
|
|
|
|
delete[] edgemarkerlist;
|
|
|
|
}
|
|
|
|
if (o2edgelist != (int*)NULL) {
|
|
|
|
delete[] o2edgelist;
|
|
|
|
}
|
|
|
|
if (edge2tetlist != (int*)NULL) {
|
|
|
|
delete[] edge2tetlist;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (facetlist != (facet*)NULL) {
|
|
|
|
facet* f;
|
|
|
|
polygon* p;
|
|
|
|
for (i = 0; i < numberoffacets; i++) {
|
|
|
|
f = &facetlist[i];
|
|
|
|
for (j = 0; j < f->numberofpolygons; j++) {
|
|
|
|
p = &f->polygonlist[j];
|
|
|
|
delete[] p->vertexlist;
|
|
|
|
}
|
|
|
|
delete[] f->polygonlist;
|
|
|
|
if (f->holelist != (REAL*)NULL) {
|
|
|
|
delete[] f->holelist;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
delete[] facetlist;
|
|
|
|
}
|
|
|
|
if (facetmarkerlist != (int*)NULL) {
|
|
|
|
delete[] facetmarkerlist;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (holelist != (REAL*)NULL) {
|
|
|
|
delete[] holelist;
|
|
|
|
}
|
|
|
|
if (regionlist != (REAL*)NULL) {
|
|
|
|
delete[] regionlist;
|
|
|
|
}
|
|
|
|
if (facetconstraintlist != (REAL*)NULL) {
|
|
|
|
delete[] facetconstraintlist;
|
|
|
|
}
|
|
|
|
if (segmentconstraintlist != (REAL*)NULL) {
|
|
|
|
delete[] segmentconstraintlist;
|
|
|
|
}
|
|
|
|
if (vpointlist != (REAL*)NULL) {
|
|
|
|
delete[] vpointlist;
|
|
|
|
}
|
|
|
|
if (vedgelist != (voroedge*)NULL) {
|
|
|
|
delete[] vedgelist;
|
|
|
|
}
|
|
|
|
if (vfacetlist != (vorofacet*)NULL) {
|
|
|
|
for (i = 0; i < numberofvfacets; i++) {
|
|
|
|
delete[] vfacetlist[i].elist;
|
|
|
|
}
|
|
|
|
delete[] vfacetlist;
|
|
|
|
}
|
|
|
|
if (vcelllist != (int**)NULL) {
|
|
|
|
for (i = 0; i < numberofvcells; i++) {
|
|
|
|
delete[] vcelllist[i];
|
|
|
|
}
|
|
|
|
delete[] vcelllist;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Constructor & destructor.
|
|
|
|
tetgenio() { initialize(); }
|
|
|
|
~tetgenio() { deinitialize(); }
|
|
|
|
|
|
|
|
}; // class tetgenio
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// tetgenbehavior //
|
|
|
|
// //
|
|
|
|
// A structure for maintaining the switches and parameters used by TetGen's //
|
|
|
|
// mesh data structure and algorithms. //
|
|
|
|
// //
|
|
|
|
// All switches and parameters are initialized with default values. They can //
|
|
|
|
// be set by the command line arguments (a list of strings) of TetGen. //
|
|
|
|
// //
|
|
|
|
// NOTE: Some of the switches are incompatible. While some may depend on //
|
|
|
|
// other switches. The routine parse_commandline() sets the switches from //
|
|
|
|
// the command line (a list of strings) and checks the consistency of the //
|
|
|
|
// applied switches. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
class tetgenbehavior {
|
|
|
|
|
|
|
|
public:
|
|
|
|
// Switches of TetGen.
|
|
|
|
int plc; // '-p', 0.
|
|
|
|
int psc; // '-s', 0.
|
|
|
|
int refine; // '-r', 0.
|
|
|
|
int quality; // '-q', 0.
|
|
|
|
int nobisect; // '-Y', 0.
|
|
|
|
int coarsen; // '-R', 0.
|
|
|
|
int weighted; // '-w', 0.
|
|
|
|
int brio_hilbert; // '-b', 1.
|
|
|
|
int incrflip; // '-l', 0.
|
|
|
|
int flipinsert; // '-L', 0.
|
|
|
|
int metric; // '-m', 0.
|
|
|
|
int varvolume; // '-a', 0.
|
|
|
|
int fixedvolume; // '-a', 0.
|
|
|
|
int regionattrib; // '-A', 0.
|
|
|
|
int cdtrefine; // '-D', 0.
|
|
|
|
int use_equatorial_lens; // '-Dl', 0.
|
|
|
|
int insertaddpoints; // '-i', 0.
|
|
|
|
int diagnose; // '-d', 0.
|
|
|
|
int convex; // '-c', 0.
|
|
|
|
int nomergefacet; // '-M', 0.
|
|
|
|
int nomergevertex; // '-M', 0.
|
|
|
|
int noexact; // '-X', 0.
|
|
|
|
int nostaticfilter; // '-X', 0.
|
|
|
|
int zeroindex; // '-z', 0.
|
|
|
|
int facesout; // '-f', 0.
|
|
|
|
int edgesout; // '-e', 0.
|
|
|
|
int neighout; // '-n', 0.
|
|
|
|
int voroout; // '-v', 0.
|
|
|
|
int meditview; // '-g', 0.
|
|
|
|
int vtkview; // '-k', 0.
|
|
|
|
int nobound; // '-B', 0.
|
|
|
|
int nonodewritten; // '-N', 0.
|
|
|
|
int noelewritten; // '-E', 0.
|
|
|
|
int nofacewritten; // '-F', 0.
|
|
|
|
int noiterationnum; // '-I', 0.
|
|
|
|
int nojettison; // '-J', 0.
|
|
|
|
int docheck; // '-C', 0.
|
|
|
|
int quiet; // '-Q', 0.
|
|
|
|
int verbose; // '-V', 0.
|
|
|
|
|
|
|
|
// Parameters of TetGen.
|
|
|
|
int vertexperblock; // '-x', 4092.
|
|
|
|
int tetrahedraperblock; // '-x', 8188.
|
|
|
|
int shellfaceperblock; // '-x', 2044.
|
|
|
|
int nobisect_nomerge; // '-Y', 1.
|
|
|
|
int supsteiner_level; // '-Y/', 2.
|
|
|
|
int addsteiner_algo; // '-Y//', 1.
|
|
|
|
int coarsen_param; // '-R', 0.
|
|
|
|
int weighted_param; // '-w', 0.
|
|
|
|
int fliplinklevel; // -1.
|
|
|
|
int flipstarsize; // -1.
|
|
|
|
int fliplinklevelinc; // 1.
|
|
|
|
int reflevel; // '-D', 3.
|
|
|
|
int optlevel; // '-O', 2.
|
|
|
|
int optscheme; // '-O', 7.
|
|
|
|
int delmaxfliplevel; // 1.
|
|
|
|
int order; // '-o', 1.
|
|
|
|
int reversetetori; // '-o/', 0.
|
|
|
|
int steinerleft; // '-S', 0.
|
|
|
|
int no_sort; // 0.
|
|
|
|
int hilbert_order; // '-b///', 52.
|
|
|
|
int hilbert_limit; // '-b//' 8.
|
|
|
|
int brio_threshold; // '-b' 64.
|
|
|
|
REAL brio_ratio; // '-b/' 0.125.
|
|
|
|
REAL facet_separate_ang_tol; // '-p', 179.9.
|
|
|
|
REAL facet_overlap_ang_tol; // '-p/', 0.1.
|
|
|
|
REAL facet_small_ang_tol; // '-p//', 15.0.
|
|
|
|
REAL maxvolume; // '-a', -1.0.
|
|
|
|
REAL minratio; // '-q', 0.0.
|
|
|
|
REAL mindihedral; // '-q', 5.0.
|
|
|
|
REAL optmaxdihedral; // 165.0.
|
|
|
|
REAL optminsmtdihed; // 179.0.
|
|
|
|
REAL optminslidihed; // 179.0.
|
|
|
|
REAL epsilon; // '-T', 1.0e-8.
|
|
|
|
REAL coarsen_percent; // -R1/#, 1.0.
|
|
|
|
|
|
|
|
// Strings of command line arguments and input/output file names.
|
|
|
|
char commandline[1024];
|
|
|
|
char infilename[1024];
|
|
|
|
char outfilename[1024];
|
|
|
|
char addinfilename[1024];
|
|
|
|
char bgmeshfilename[1024];
|
|
|
|
|
|
|
|
// Read an additional tetrahedral mesh and treat it as holes [2018-07-30].
|
|
|
|
int hole_mesh; // '-H', 0.
|
|
|
|
char hole_mesh_filename[1024];
|
|
|
|
int apply_flow_bc; // '-K', 0.
|
|
|
|
|
|
|
|
// The input object of TetGen. They are recognized by either the input
|
|
|
|
// file extensions or by the specified options.
|
|
|
|
// Currently the following objects are supported:
|
|
|
|
// - NODES, a list of nodes (.node);
|
|
|
|
// - POLY, a piecewise linear complex (.poly or .smesh);
|
|
|
|
// - OFF, a polyhedron (.off, Geomview's file format);
|
|
|
|
// - PLY, a polyhedron (.ply, file format from gatech, only ASCII);
|
|
|
|
// - STL, a surface mesh (.stl, stereolithography format);
|
|
|
|
// - MEDIT, a surface mesh (.mesh, Medit's file format);
|
|
|
|
// - MESH, a tetrahedral mesh (.ele).
|
|
|
|
// If no extension is available, the imposed command line switch
|
|
|
|
// (-p or -r) implies the object.
|
|
|
|
enum objecttype { NODES, POLY, OFF, PLY, STL, MEDIT, VTK, MESH, NEU_MESH } object;
|
|
|
|
|
|
|
|
void syntax();
|
|
|
|
void usage();
|
|
|
|
|
|
|
|
// Command line parse routine.
|
|
|
|
bool parse_commandline(int argc, char** argv);
|
|
|
|
bool parse_commandline(char* switches) { return parse_commandline(0, &switches); }
|
|
|
|
|
|
|
|
// Initialize all variables.
|
|
|
|
tetgenbehavior() {
|
|
|
|
plc = 0;
|
|
|
|
psc = 0;
|
|
|
|
refine = 0;
|
|
|
|
quality = 0;
|
|
|
|
nobisect = 0;
|
|
|
|
coarsen = 0;
|
|
|
|
metric = 0;
|
|
|
|
weighted = 0;
|
|
|
|
brio_hilbert = 1;
|
|
|
|
incrflip = 0;
|
|
|
|
flipinsert = 0;
|
|
|
|
varvolume = 0;
|
|
|
|
fixedvolume = 0;
|
|
|
|
noexact = 0;
|
|
|
|
nostaticfilter = 0;
|
|
|
|
insertaddpoints = 0;
|
|
|
|
regionattrib = 0;
|
|
|
|
cdtrefine = 0;
|
|
|
|
use_equatorial_lens = 0; // -Dl
|
|
|
|
diagnose = 0;
|
|
|
|
convex = 0;
|
|
|
|
zeroindex = 0;
|
|
|
|
facesout = 0;
|
|
|
|
edgesout = 0;
|
|
|
|
neighout = 0;
|
|
|
|
voroout = 0;
|
|
|
|
meditview = 0;
|
|
|
|
vtkview = 0;
|
|
|
|
nobound = 0;
|
|
|
|
nonodewritten = 0;
|
|
|
|
noelewritten = 0;
|
|
|
|
nofacewritten = 0;
|
|
|
|
noiterationnum = 0;
|
|
|
|
nomergefacet = 0;
|
|
|
|
nomergevertex = 0;
|
|
|
|
nojettison = 0;
|
|
|
|
docheck = 0;
|
|
|
|
quiet = 0;
|
|
|
|
verbose = 0;
|
|
|
|
|
|
|
|
vertexperblock = 4092;
|
|
|
|
tetrahedraperblock = 8188;
|
|
|
|
shellfaceperblock = 4092;
|
|
|
|
nobisect_nomerge = 1;
|
|
|
|
supsteiner_level = 2;
|
|
|
|
addsteiner_algo = 1;
|
|
|
|
coarsen_param = 0;
|
|
|
|
weighted_param = 0;
|
|
|
|
fliplinklevel = -1;
|
|
|
|
flipstarsize = -1;
|
|
|
|
fliplinklevelinc = 1;
|
|
|
|
reflevel = 3;
|
|
|
|
optscheme = 7;
|
|
|
|
optlevel = 2;
|
|
|
|
delmaxfliplevel = 1;
|
|
|
|
order = 1;
|
|
|
|
reversetetori = 0;
|
|
|
|
steinerleft = -1;
|
|
|
|
no_sort = 0;
|
|
|
|
hilbert_order = 52; //-1;
|
|
|
|
hilbert_limit = 8;
|
|
|
|
brio_threshold = 64;
|
|
|
|
brio_ratio = 0.125;
|
|
|
|
facet_separate_ang_tol = 179.9;
|
|
|
|
facet_overlap_ang_tol = 0.1;
|
|
|
|
facet_small_ang_tol = 15.0;
|
|
|
|
maxvolume = -1.0;
|
|
|
|
minratio = 2.0;
|
|
|
|
mindihedral = 0.0;
|
|
|
|
optmaxdihedral = 165.00;
|
|
|
|
optminsmtdihed = 179.00;
|
|
|
|
optminslidihed = 179.00;
|
|
|
|
epsilon = 1.0e-8;
|
|
|
|
coarsen_percent = 1.0;
|
|
|
|
object = NODES;
|
|
|
|
|
|
|
|
commandline[0] = '\0';
|
|
|
|
infilename[0] = '\0';
|
|
|
|
outfilename[0] = '\0';
|
|
|
|
addinfilename[0] = '\0';
|
|
|
|
bgmeshfilename[0] = '\0';
|
|
|
|
|
|
|
|
hole_mesh = 0;
|
|
|
|
hole_mesh_filename[0] = '\0';
|
|
|
|
apply_flow_bc = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
}; // class tetgenbehavior
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Robust Geometric predicates //
|
|
|
|
// //
|
|
|
|
// Geometric predicates are simple tests of spatial relations of a set of d- //
|
|
|
|
// dimensional points, such as the orientation test and the point-in-sphere //
|
|
|
|
// test. Each of these tests is performed by evaluating the sign of a deter- //
|
|
|
|
// minant of a matrix whose entries are the coordinates of these points. If //
|
|
|
|
// the computation is performed by using the floating-point numbers, e.g., //
|
|
|
|
// the single or double precision numbers in C/C++, roundoff error may cause //
|
|
|
|
// an incorrect result. This may either lead to a wrong result or eventually //
|
|
|
|
// lead to a failure of the program. Computing the predicates exactly will //
|
|
|
|
// avoid the error and make the program robust. //
|
|
|
|
// //
|
|
|
|
// The following routines are the robust geometric predicates for 3D orient- //
|
|
|
|
// ation test and point-in-sphere test. They were implemented by Shewchuk. //
|
|
|
|
// The source code are generously provided by him in the public domain, //
|
|
|
|
// http://www.cs.cmu.edu/~quake/robust.html. predicates.cxx is a C++ version //
|
|
|
|
// of the original C code. //
|
|
|
|
// //
|
|
|
|
// The original predicates of Shewchuk only use "dynamic filters", i.e., it //
|
|
|
|
// computes the error at run time step by step. TetGen first adds a "static //
|
|
|
|
// filter" in each predicate. It estimates the maximal possible error in all //
|
|
|
|
// cases. So it can safely and quickly answer many easy cases. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void exactinit(int, int, int, REAL, REAL, REAL);
|
|
|
|
REAL orient3d(REAL* pa, REAL* pb, REAL* pc, REAL* pd);
|
|
|
|
REAL insphere(REAL* pa, REAL* pb, REAL* pc, REAL* pd, REAL* pe);
|
|
|
|
REAL orient4d(REAL* pa, REAL* pb, REAL* pc, REAL* pd, REAL* pe, REAL ah, REAL bh, REAL ch, REAL dh,
|
|
|
|
REAL eh);
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// tetgenmesh //
|
|
|
|
// //
|
|
|
|
// A structure for creating and updating tetrahedral meshes. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
class tetgenmesh {
|
|
|
|
|
|
|
|
public:
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Mesh data structure //
|
|
|
|
// //
|
|
|
|
// A tetrahedral mesh T of a 3D piecewise linear complex (PLC) X is a 3D //
|
|
|
|
// simplicial complex whose underlying space is equal to the space of X. T //
|
|
|
|
// contains a 2D subcomplex S which is a triangular mesh of the boundary of //
|
|
|
|
// X. S contains a 1D subcomplex L which is a linear mesh of the boundary of //
|
|
|
|
// S. Faces and edges in S and L are respectively called subfaces and segme- //
|
|
|
|
// nts to distinguish them from others in T. //
|
|
|
|
// //
|
|
|
|
// TetGen stores the tetrahedra and vertices of T. The basic structure of a //
|
|
|
|
// tetrahedron contains pointers to its vertices and adjacent tetrahedra. A //
|
|
|
|
// vertex stores its x-, y-, and z-coordinates, and a pointer to a tetrahed- //
|
|
|
|
// ron containing it. Both tetrahedra and vertices may contain user data. //
|
|
|
|
// //
|
|
|
|
// Each face of T belongs to either two tetrahedra or one tetrahedron. In //
|
|
|
|
// the latter case, the face is an exterior boundary face of T. TetGen adds //
|
|
|
|
// fictitious tetrahedra (one-to-one) at such faces, and connects them to an //
|
|
|
|
// "infinite vertex" (which has no geometric coordinates). One can imagine //
|
|
|
|
// such a vertex lies in 4D space and is visible by all exterior boundary //
|
|
|
|
// faces. The extended set of tetrahedra (including the infinite vertex) is //
|
|
|
|
// a tetrahedralization of a 3-pseudomanifold without boundary. It has the //
|
|
|
|
// property that every face is shared by exactly two tetrahedra. //
|
|
|
|
// //
|
|
|
|
// The current version of TetGen stores explicitly the subfaces and segments //
|
|
|
|
// (which are in surface mesh S and the linear mesh L), respectively. Extra //
|
|
|
|
// pointers are allocated in tetrahedra and subfaces to point each others. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// The tetrahedron data structure. It includes the following fields:
|
|
|
|
// - a list of four adjoining tetrahedra;
|
|
|
|
// - a list of four vertices;
|
|
|
|
// - a pointer to a list of four subfaces (optional, for -p switch);
|
|
|
|
// - a pointer to a list of six segments (optional, for -p switch);
|
|
|
|
// - a list of user-defined floating-point attributes (optional);
|
|
|
|
// - a volume constraint (optional, for -a switch);
|
|
|
|
// - an integer of element marker (and flags);
|
|
|
|
// The structure of a tetrahedron is an array of pointers. Its actual size
|
|
|
|
// (the length of the array) is determined at runtime.
|
|
|
|
|
|
|
|
typedef REAL** tetrahedron;
|
|
|
|
|
|
|
|
// The subface data structure. It includes the following fields:
|
|
|
|
// - a list of three adjoining subfaces;
|
|
|
|
// - a list of three vertices;
|
|
|
|
// - a list of three adjoining segments;
|
|
|
|
// - two adjoining tetrahedra;
|
|
|
|
// - an area constraint (optional, for -q switch);
|
|
|
|
// - an integer for boundary marker;
|
|
|
|
// - an integer for type, flags, etc.
|
|
|
|
|
|
|
|
typedef REAL** shellface;
|
|
|
|
|
|
|
|
// The point data structure. It includes the following fields:
|
|
|
|
// - x, y and z coordinates;
|
|
|
|
// - a list of user-defined point attributes (optional);
|
|
|
|
// - u, v coordinates (optional, for -s switch);
|
|
|
|
// - a metric tensor (optional, for -q or -m switch);
|
|
|
|
// - a pointer to an adjacent tetrahedron;
|
|
|
|
// - a pointer to a parent (or a duplicate) point;
|
|
|
|
// - a pointer to an adjacent subface or segment (optional, -p switch);
|
|
|
|
// - a pointer to a tet in background mesh (optional, for -m switch);
|
|
|
|
// - an integer for boundary marker (point index);
|
|
|
|
// - an integer for point type (and flags).
|
|
|
|
// - an integer for geometry tag (optional, for -s switch).
|
|
|
|
// The structure of a point is an array of REALs. Its acutal size is
|
|
|
|
// determined at the runtime.
|
|
|
|
|
|
|
|
typedef REAL* point;
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Handles //
|
|
|
|
// //
|
|
|
|
// Navigation and manipulation in a tetrahedralization are accomplished by //
|
|
|
|
// operating on structures referred as ``handles". A handle is a pair (t,v), //
|
|
|
|
// where t is a pointer to a tetrahedron, and v is a 4-bit integer, in the //
|
|
|
|
// range from 0 to 11. v is called the ``version'' of a tetrahedron, it rep- //
|
|
|
|
// resents a directed edge of a specific face of the tetrahedron. //
|
|
|
|
// //
|
|
|
|
// There are 12 even permutations of the four vertices, each of them corres- //
|
|
|
|
// ponds to a directed edge (a version) of the tetrahedron. The 12 versions //
|
|
|
|
// can be grouped into 4 distinct ``edge rings'' in 4 ``oriented faces'' of //
|
|
|
|
// this tetrahedron. One can encode each version (a directed edge) into a //
|
|
|
|
// 4-bit integer such that the two upper bits encode the index (from 0 to 2) //
|
|
|
|
// of this edge in the edge ring, and the two lower bits encode the index ( //
|
|
|
|
// from 0 to 3) of the oriented face which contains this edge. //
|
|
|
|
// //
|
|
|
|
// The four vertices of a tetrahedron are indexed from 0 to 3 (according to //
|
|
|
|
// their storage in the data structure). Give each face the same index as //
|
|
|
|
// the node opposite it in the tetrahedron. Denote the edge connecting face //
|
|
|
|
// i to face j as i/j. We number the twelve versions as follows: //
|
|
|
|
// //
|
|
|
|
// | edge 0 edge 1 edge 2 //
|
|
|
|
// --------|-------------------------------- //
|
|
|
|
// face 0 | 0 (0/1) 4 (0/3) 8 (0/2) //
|
|
|
|
// face 1 | 1 (1/2) 5 (1/3) 9 (1/0) //
|
|
|
|
// face 2 | 2 (2/3) 6 (2/1) 10 (2/0) //
|
|
|
|
// face 3 | 3 (3/0) 7 (3/1) 11 (3/2) //
|
|
|
|
// //
|
|
|
|
// Similarly, navigation and manipulation in a (boundary) triangulation are //
|
|
|
|
// done by using handles of triangles. Each handle is a pair (s, v), where s //
|
|
|
|
// is a pointer to a triangle, and v is a version in the range from 0 to 5. //
|
|
|
|
// Each version corresponds to a directed edge of this triangle. //
|
|
|
|
// //
|
|
|
|
// Number the three vertices of a triangle from 0 to 2 (according to their //
|
|
|
|
// storage in the data structure). Give each edge the same index as the node //
|
|
|
|
// opposite it in the triangle. The six versions of a triangle are: //
|
|
|
|
// //
|
|
|
|
// | edge 0 edge 1 edge 2 //
|
|
|
|
// ---------------|-------------------------- //
|
|
|
|
// ccw orieation | 0 2 4 //
|
|
|
|
// cw orieation | 1 3 5 //
|
|
|
|
// //
|
|
|
|
// In the following, a 'triface' is a handle of tetrahedron, and a 'face' is //
|
|
|
|
// a handle of a triangle. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
class triface {
|
|
|
|
public:
|
|
|
|
tetrahedron* tet;
|
|
|
|
int ver; // Range from 0 to 11.
|
|
|
|
triface() : tet(0), ver(0) {}
|
|
|
|
triface& operator=(const triface& t) {
|
|
|
|
tet = t.tet;
|
|
|
|
ver = t.ver;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class face {
|
|
|
|
public:
|
|
|
|
shellface* sh;
|
|
|
|
int shver; // Range from 0 to 5.
|
|
|
|
face() : sh(0), shver(0) {}
|
|
|
|
face& operator=(const face& s) {
|
|
|
|
sh = s.sh;
|
|
|
|
shver = s.shver;
|
|
|
|
return *this;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Arraypool //
|
|
|
|
// //
|
|
|
|
// A dynamic linear array. (It is written by J. Shewchuk) //
|
|
|
|
// //
|
|
|
|
// Each arraypool contains an array of pointers to a number of blocks. Each //
|
|
|
|
// block contains the same fixed number of objects. Each index of the array //
|
|
|
|
// addresses a particular object in the pool. The most significant bits add- //
|
|
|
|
// ress the index of the block containing the object. The less significant //
|
|
|
|
// bits address this object within the block. //
|
|
|
|
// //
|
|
|
|
// 'objectbytes' is the size of one object in blocks; 'log2objectsperblock' //
|
|
|
|
// is the base-2 logarithm of 'objectsperblock'; 'objects' counts the number //
|
|
|
|
// of allocated objects; 'totalmemory' is the total memory in bytes. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
class arraypool {
|
|
|
|
|
|
|
|
public:
|
|
|
|
int objectbytes;
|
|
|
|
int objectsperblock;
|
|
|
|
int log2objectsperblock;
|
|
|
|
int objectsperblockmark;
|
|
|
|
int toparraylen;
|
|
|
|
char** toparray;
|
|
|
|
long objects;
|
|
|
|
unsigned long totalmemory;
|
|
|
|
|
|
|
|
void restart();
|
|
|
|
void poolinit(int sizeofobject, int log2objperblk);
|
|
|
|
char* getblock(int objectindex);
|
|
|
|
void* lookup(int objectindex);
|
|
|
|
int newindex(void** newptr);
|
|
|
|
|
|
|
|
arraypool(int sizeofobject, int log2objperblk);
|
|
|
|
~arraypool();
|
|
|
|
};
|
|
|
|
|
|
|
|
// fastlookup() -- A fast, unsafe operation. Return the pointer to the object
|
|
|
|
// with a given index. Note: The object's block must have been allocated,
|
|
|
|
// i.e., by the function newindex().
|
|
|
|
|
|
|
|
#define fastlookup(pool, index) \
|
|
|
|
(void*)((pool)->toparray[(index) >> (pool)->log2objectsperblock] + \
|
|
|
|
((index) & (pool)->objectsperblockmark) * (pool)->objectbytes)
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Memorypool //
|
|
|
|
// //
|
|
|
|
// A structure for memory allocation. (It is written by J. Shewchuk) //
|
|
|
|
// //
|
|
|
|
// firstblock is the first block of items. nowblock is the block from which //
|
|
|
|
// items are currently being allocated. nextitem points to the next slab //
|
|
|
|
// of free memory for an item. deaditemstack is the head of a linked list //
|
|
|
|
// (stack) of deallocated items that can be recycled. unallocateditems is //
|
|
|
|
// the number of items that remain to be allocated from nowblock. //
|
|
|
|
// //
|
|
|
|
// Traversal is the process of walking through the entire list of items, and //
|
|
|
|
// is separate from allocation. Note that a traversal will visit items on //
|
|
|
|
// the "deaditemstack" stack as well as live items. pathblock points to //
|
|
|
|
// the block currently being traversed. pathitem points to the next item //
|
|
|
|
// to be traversed. pathitemsleft is the number of items that remain to //
|
|
|
|
// be traversed in pathblock. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
class memorypool {
|
|
|
|
|
|
|
|
public:
|
|
|
|
void **firstblock, **nowblock;
|
|
|
|
void* nextitem;
|
|
|
|
void* deaditemstack;
|
|
|
|
void** pathblock;
|
|
|
|
void* pathitem;
|
|
|
|
int alignbytes;
|
|
|
|
int itembytes, itemwords;
|
|
|
|
int itemsperblock;
|
|
|
|
long items, maxitems;
|
|
|
|
int unallocateditems;
|
|
|
|
int pathitemsleft;
|
|
|
|
|
|
|
|
memorypool();
|
|
|
|
memorypool(int, int, int, int);
|
|
|
|
~memorypool();
|
|
|
|
|
|
|
|
void poolinit(int, int, int, int);
|
|
|
|
void restart();
|
|
|
|
void* alloc();
|
|
|
|
void dealloc(void*);
|
|
|
|
void traversalinit();
|
|
|
|
void* traverse();
|
|
|
|
};
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// badface //
|
|
|
|
// //
|
|
|
|
// Despite of its name, a 'badface' can be used to represent one of the //
|
|
|
|
// following objects: //
|
|
|
|
// - a face of a tetrahedron which is (possibly) non-Delaunay; //
|
|
|
|
// - an encroached subsegment or subface; //
|
|
|
|
// - a bad-quality tetrahedron, i.e, has too large radius-edge ratio; //
|
|
|
|
// - a sliver, i.e., has good radius-edge ratio but nearly zero volume; //
|
|
|
|
// - a recently flipped face (saved for undoing the flip later). //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
class badface {
|
|
|
|
public:
|
|
|
|
triface tt;
|
|
|
|
face ss;
|
|
|
|
REAL key, cent[6]; // circumcenter or cos(dihedral angles) at 6 edges.
|
|
|
|
point forg, fdest, fapex, foppo, noppo;
|
|
|
|
badface* nextitem;
|
|
|
|
badface() : key(0), forg(0), fdest(0), fapex(0), foppo(0), noppo(0), nextitem(0) {}
|
|
|
|
};
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// insertvertexflags //
|
|
|
|
// //
|
|
|
|
// A collection of flags that pass to the routine insertvertex(). //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
class insertvertexflags {
|
|
|
|
|
|
|
|
public:
|
|
|
|
int iloc; // input/output.
|
|
|
|
int bowywat, lawson;
|
|
|
|
int splitbdflag, validflag, respectbdflag;
|
|
|
|
int rejflag, chkencflag, cdtflag;
|
|
|
|
int assignmeshsize;
|
|
|
|
int sloc, sbowywat;
|
|
|
|
|
|
|
|
// Used by Delaunay refinement.
|
|
|
|
int refineflag; // 0, 1, 2, 3
|
|
|
|
triface refinetet;
|
|
|
|
face refinesh;
|
|
|
|
int smlenflag; // for useinsertradius.
|
|
|
|
REAL smlen; // for useinsertradius.
|
|
|
|
point parentpt;
|
|
|
|
|
|
|
|
insertvertexflags() {
|
|
|
|
iloc = bowywat = lawson = 0;
|
|
|
|
splitbdflag = validflag = respectbdflag = 0;
|
|
|
|
rejflag = chkencflag = cdtflag = 0;
|
|
|
|
assignmeshsize = 0;
|
|
|
|
sloc = sbowywat = 0;
|
|
|
|
|
|
|
|
refineflag = 0;
|
|
|
|
refinetet.tet = NULL;
|
|
|
|
refinesh.sh = NULL;
|
|
|
|
smlenflag = 0;
|
|
|
|
smlen = 0.0;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// flipconstraints //
|
|
|
|
// //
|
|
|
|
// A structure of a collection of data (options and parameters) which pass //
|
|
|
|
// to the edge flip function flipnm(). //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
class flipconstraints {
|
|
|
|
|
|
|
|
public:
|
|
|
|
// Elementary flip flags.
|
|
|
|
int enqflag; // (= flipflag)
|
|
|
|
int chkencflag;
|
|
|
|
|
|
|
|
// Control flags
|
|
|
|
int unflip; // Undo the performed flips.
|
|
|
|
int collectnewtets; // Collect the new tets created by flips.
|
|
|
|
int collectencsegflag;
|
|
|
|
|
|
|
|
// Optimization flags.
|
|
|
|
int remove_ndelaunay_edge; // Remove a non-Delaunay edge.
|
|
|
|
REAL bak_tetprism_vol; // The value to be minimized.
|
|
|
|
REAL tetprism_vol_sum;
|
|
|
|
int remove_large_angle; // Remove a large dihedral angle at edge.
|
|
|
|
REAL cosdihed_in; // The input cosine of the dihedral angle (> 0).
|
|
|
|
REAL cosdihed_out; // The improved cosine of the dihedral angle.
|
|
|
|
|
|
|
|
// Boundary recovery flags.
|
|
|
|
int checkflipeligibility;
|
|
|
|
point seg[2]; // A constraining edge to be recovered.
|
|
|
|
point fac[3]; // A constraining face to be recovered.
|
|
|
|
point remvert; // A vertex to be removed.
|
|
|
|
|
|
|
|
flipconstraints() {
|
|
|
|
enqflag = 0;
|
|
|
|
chkencflag = 0;
|
|
|
|
|
|
|
|
unflip = 0;
|
|
|
|
collectnewtets = 0;
|
|
|
|
collectencsegflag = 0;
|
|
|
|
|
|
|
|
remove_ndelaunay_edge = 0;
|
|
|
|
bak_tetprism_vol = 0.0;
|
|
|
|
tetprism_vol_sum = 0.0;
|
|
|
|
remove_large_angle = 0;
|
|
|
|
cosdihed_in = 0.0;
|
|
|
|
cosdihed_out = 0.0;
|
|
|
|
|
|
|
|
checkflipeligibility = 0;
|
|
|
|
seg[0] = NULL;
|
|
|
|
fac[0] = NULL;
|
|
|
|
remvert = NULL;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// optparameters //
|
|
|
|
// //
|
|
|
|
// Optimization options and parameters. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
class optparameters {
|
|
|
|
|
|
|
|
public:
|
|
|
|
// The one of goals of optimization.
|
|
|
|
int max_min_volume; // Maximize the minimum volume.
|
|
|
|
int min_max_aspectratio; // Minimize the maximum aspect ratio.
|
|
|
|
int min_max_dihedangle; // Minimize the maximum dihedral angle.
|
|
|
|
|
|
|
|
// The initial and improved value.
|
|
|
|
REAL initval, imprval;
|
|
|
|
|
|
|
|
int numofsearchdirs;
|
|
|
|
REAL searchstep;
|
|
|
|
int maxiter; // Maximum smoothing iterations (disabled by -1).
|
|
|
|
int smthiter; // Performed iterations.
|
|
|
|
|
|
|
|
optparameters() {
|
|
|
|
max_min_volume = 0;
|
|
|
|
min_max_aspectratio = 0;
|
|
|
|
min_max_dihedangle = 0;
|
|
|
|
|
|
|
|
initval = imprval = 0.0;
|
|
|
|
|
|
|
|
numofsearchdirs = 10;
|
|
|
|
searchstep = 0.01;
|
|
|
|
maxiter = -1; // Unlimited smoothing iterations.
|
|
|
|
smthiter = 0;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Labels (enumeration declarations) used by TetGen. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// Labels that signify the type of a vertex.
|
|
|
|
enum verttype {
|
|
|
|
UNUSEDVERTEX,
|
|
|
|
DUPLICATEDVERTEX,
|
|
|
|
RIDGEVERTEX,
|
|
|
|
ACUTEVERTEX,
|
|
|
|
FACETVERTEX,
|
|
|
|
VOLVERTEX,
|
|
|
|
FREESEGVERTEX,
|
|
|
|
FREEFACETVERTEX,
|
|
|
|
FREEVOLVERTEX,
|
|
|
|
NREGULARVERTEX,
|
|
|
|
DEADVERTEX
|
|
|
|
};
|
|
|
|
|
|
|
|
// Labels that signify the result of triangle-triangle intersection test.
|
|
|
|
enum interresult {
|
|
|
|
DISJOINT,
|
|
|
|
INTERSECT,
|
|
|
|
SHAREVERT,
|
|
|
|
SHAREEDGE,
|
|
|
|
SHAREFACE,
|
|
|
|
TOUCHEDGE,
|
|
|
|
TOUCHFACE,
|
|
|
|
ACROSSVERT,
|
|
|
|
ACROSSEDGE,
|
|
|
|
ACROSSFACE
|
|
|
|
};
|
|
|
|
|
|
|
|
// Labels that signify the result of point location.
|
|
|
|
enum locateresult {
|
|
|
|
UNKNOWN,
|
|
|
|
OUTSIDE,
|
|
|
|
INTETRAHEDRON,
|
|
|
|
ONFACE,
|
|
|
|
ONEDGE,
|
|
|
|
ONVERTEX,
|
|
|
|
ENCVERTEX,
|
|
|
|
ENCSEGMENT,
|
|
|
|
ENCSUBFACE,
|
|
|
|
NEARVERTEX,
|
|
|
|
NONREGULAR,
|
|
|
|
INSTAR,
|
|
|
|
BADELEMENT
|
|
|
|
};
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Variables of TetGen //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// Pointer to the input data (a set of nodes, a PLC, or a mesh).
|
|
|
|
tetgenio *in, *addin;
|
|
|
|
|
|
|
|
// Pointer to the switches and parameters.
|
|
|
|
tetgenbehavior* b;
|
|
|
|
|
|
|
|
// Pointer to a background mesh (contains size specification map).
|
|
|
|
tetgenmesh* bgm;
|
|
|
|
|
|
|
|
// Memorypools to store mesh elements (points, tetrahedra, subfaces, and
|
|
|
|
// segments) and extra pointers between tetrahedra, subfaces, and segments.
|
|
|
|
memorypool *tetrahedrons, *subfaces, *subsegs, *points;
|
|
|
|
memorypool *tet2subpool, *tet2segpool;
|
|
|
|
|
|
|
|
// Memorypools to store bad-quality (or encroached) elements.
|
|
|
|
memorypool *badtetrahedrons, *badsubfacs, *badsubsegs;
|
|
|
|
|
|
|
|
// A memorypool to store faces to be flipped.
|
|
|
|
memorypool* flippool;
|
|
|
|
arraypool* unflipqueue;
|
|
|
|
badface* flipstack;
|
|
|
|
|
|
|
|
// Arrays used for point insertion (the Bowyer-Watson algorithm).
|
|
|
|
arraypool *cavetetlist, *cavebdrylist, *caveoldtetlist;
|
|
|
|
arraypool *cavetetshlist, *cavetetseglist, *cavetetvertlist;
|
|
|
|
arraypool *caveencshlist, *caveencseglist;
|
|
|
|
arraypool *caveshlist, *caveshbdlist, *cavesegshlist;
|
|
|
|
|
|
|
|
// Stacks used for CDT construction and boundary recovery.
|
|
|
|
arraypool *subsegstack, *subfacstack, *subvertstack;
|
|
|
|
|
|
|
|
// Arrays of encroached segments and subfaces (for mesh refinement).
|
|
|
|
arraypool *encseglist, *encshlist;
|
|
|
|
|
|
|
|
// The map between facets to their vertices (for mesh refinement).
|
|
|
|
int* idx2facetlist;
|
|
|
|
point* facetverticeslist;
|
|
|
|
|
|
|
|
// The map between segments to their endpoints (for mesh refinement).
|
|
|
|
point* segmentendpointslist;
|
|
|
|
|
|
|
|
// The infinite vertex.
|
|
|
|
point dummypoint;
|
|
|
|
// The recently visited tetrahedron, subface.
|
|
|
|
triface recenttet;
|
|
|
|
face recentsh;
|
|
|
|
|
|
|
|
// PI is the ratio of a circle's circumference to its diameter.
|
|
|
|
static REAL PI;
|
|
|
|
|
|
|
|
// Array (size = numberoftetrahedra * 6) for storing high-order nodes of
|
|
|
|
// tetrahedra (only used when -o2 switch is selected).
|
|
|
|
point* highordertable;
|
|
|
|
|
|
|
|
// Various variables.
|
|
|
|
int numpointattrib; // Number of point attributes.
|
|
|
|
int numelemattrib; // Number of tetrahedron attributes.
|
|
|
|
int sizeoftensor; // Number of REALs per metric tensor.
|
|
|
|
int pointmtrindex; // Index to find the metric tensor of a point.
|
|
|
|
int pointparamindex; // Index to find the u,v coordinates of a point.
|
|
|
|
int point2simindex; // Index to find a simplex adjacent to a point.
|
|
|
|
int pointmarkindex; // Index to find boundary marker of a point.
|
|
|
|
int pointinsradiusindex; // Index to find the insertion radius of a point.
|
|
|
|
int elemattribindex; // Index to find attributes of a tetrahedron.
|
|
|
|
int volumeboundindex; // Index to find volume bound of a tetrahedron.
|
|
|
|
int elemmarkerindex; // Index to find marker of a tetrahedron.
|
|
|
|
int shmarkindex; // Index to find boundary marker of a subface.
|
|
|
|
int areaboundindex; // Index to find area bound of a subface.
|
|
|
|
int checksubsegflag; // Are there segments in the tetrahedralization yet?
|
|
|
|
int checksubfaceflag; // Are there subfaces in the tetrahedralization yet?
|
|
|
|
int checkconstraints; // Are there variant (node, seg, facet) constraints?
|
|
|
|
int nonconvex; // Is current mesh non-convex?
|
|
|
|
int autofliplinklevel; // The increase of link levels, default is 1.
|
|
|
|
int useinsertradius; // Save the insertion radius for Steiner points.
|
|
|
|
long samples; // Number of random samples for point location.
|
|
|
|
unsigned long randomseed; // Current random number seed.
|
|
|
|
REAL cosmaxdihed, cosmindihed; // The cosine values of max/min dihedral.
|
|
|
|
REAL cossmtdihed; // The cosine value of a bad dihedral to be smoothed.
|
|
|
|
REAL cosslidihed; // The cosine value of the max dihedral of a sliver.
|
|
|
|
REAL minfaceang, minfacetdihed; // The minimum input (dihedral) angles.
|
|
|
|
REAL tetprism_vol_sum; // The total volume of tetrahedral-prisms (in 4D).
|
|
|
|
REAL longest; // The longest possible edge length.
|
|
|
|
REAL minedgelength; // = longest * b->epsion.
|
|
|
|
REAL xmax, xmin, ymax, ymin, zmax, zmin; // Bounding box of points.
|
|
|
|
|
|
|
|
// Counters.
|
|
|
|
long insegments; // Number of input segments.
|
|
|
|
long hullsize; // Number of exterior boundary faces.
|
|
|
|
long meshedges; // Number of mesh edges.
|
|
|
|
long meshhulledges; // Number of boundary mesh edges.
|
|
|
|
long steinerleft; // Number of Steiner points not yet used.
|
|
|
|
long dupverts; // Are there duplicated vertices?
|
|
|
|
long unuverts; // Are there unused vertices?
|
|
|
|
long nonregularcount; // Are there non-regular vertices?
|
|
|
|
long st_segref_count, st_facref_count, st_volref_count; // Steiner points.
|
|
|
|
long fillregioncount, cavitycount, cavityexpcount;
|
|
|
|
long flip14count, flip26count, flipn2ncount;
|
|
|
|
long flip23count, flip32count, flip44count, flip41count;
|
|
|
|
long flip31count, flip22count;
|
|
|
|
unsigned long totalworkmemory; // Total memory used by working arrays.
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Mesh manipulation primitives //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// Fast lookup tables for mesh manipulation primitives.
|
|
|
|
static int bondtbl[12][12], fsymtbl[12][12];
|
|
|
|
static int esymtbl[12], enexttbl[12], eprevtbl[12];
|
|
|
|
static int enextesymtbl[12], eprevesymtbl[12];
|
|
|
|
static int eorgoppotbl[12], edestoppotbl[12];
|
|
|
|
static int facepivot1[12], facepivot2[12][12];
|
|
|
|
static int orgpivot[12], destpivot[12], apexpivot[12], oppopivot[12];
|
|
|
|
static int tsbondtbl[12][6], stbondtbl[12][6];
|
|
|
|
static int tspivottbl[12][6], stpivottbl[12][6];
|
|
|
|
static int ver2edge[12], edge2ver[6], epivot[12];
|
|
|
|
static int sorgpivot[6], sdestpivot[6], sapexpivot[6];
|
|
|
|
static int snextpivot[6];
|
|
|
|
|
|
|
|
void inittables();
|
|
|
|
|
|
|
|
// Primitives for tetrahedra.
|
|
|
|
inline tetrahedron encode(triface& t);
|
|
|
|
inline tetrahedron encode2(tetrahedron* ptr, int ver);
|
|
|
|
inline void decode(tetrahedron ptr, triface& t);
|
|
|
|
inline void bond(triface& t1, triface& t2);
|
|
|
|
inline void dissolve(triface& t);
|
|
|
|
inline void esym(triface& t1, triface& t2);
|
|
|
|
inline void esymself(triface& t);
|
|
|
|
inline void enext(triface& t1, triface& t2);
|
|
|
|
inline void enextself(triface& t);
|
|
|
|
inline void eprev(triface& t1, triface& t2);
|
|
|
|
inline void eprevself(triface& t);
|
|
|
|
inline void enextesym(triface& t1, triface& t2);
|
|
|
|
inline void enextesymself(triface& t);
|
|
|
|
inline void eprevesym(triface& t1, triface& t2);
|
|
|
|
inline void eprevesymself(triface& t);
|
|
|
|
inline void eorgoppo(triface& t1, triface& t2);
|
|
|
|
inline void eorgoppoself(triface& t);
|
|
|
|
inline void edestoppo(triface& t1, triface& t2);
|
|
|
|
inline void edestoppoself(triface& t);
|
|
|
|
inline void fsym(triface& t1, triface& t2);
|
|
|
|
inline void fsymself(triface& t);
|
|
|
|
inline void fnext(triface& t1, triface& t2);
|
|
|
|
inline void fnextself(triface& t);
|
|
|
|
inline point org(triface& t);
|
|
|
|
inline point dest(triface& t);
|
|
|
|
inline point apex(triface& t);
|
|
|
|
inline point oppo(triface& t);
|
|
|
|
inline void setorg(triface& t, point p);
|
|
|
|
inline void setdest(triface& t, point p);
|
|
|
|
inline void setapex(triface& t, point p);
|
|
|
|
inline void setoppo(triface& t, point p);
|
|
|
|
inline REAL elemattribute(tetrahedron* ptr, int attnum);
|
|
|
|
inline void setelemattribute(tetrahedron* ptr, int attnum, REAL value);
|
|
|
|
inline REAL volumebound(tetrahedron* ptr);
|
|
|
|
inline void setvolumebound(tetrahedron* ptr, REAL value);
|
|
|
|
inline int elemindex(tetrahedron* ptr);
|
|
|
|
inline void setelemindex(tetrahedron* ptr, int value);
|
|
|
|
inline int elemmarker(tetrahedron* ptr);
|
|
|
|
inline void setelemmarker(tetrahedron* ptr, int value);
|
|
|
|
inline void infect(triface& t);
|
|
|
|
inline void uninfect(triface& t);
|
|
|
|
inline bool infected(triface& t);
|
|
|
|
inline void marktest(triface& t);
|
|
|
|
inline void unmarktest(triface& t);
|
|
|
|
inline bool marktested(triface& t);
|
|
|
|
inline void markface(triface& t);
|
|
|
|
inline void unmarkface(triface& t);
|
|
|
|
inline bool facemarked(triface& t);
|
|
|
|
inline void markedge(triface& t);
|
|
|
|
inline void unmarkedge(triface& t);
|
|
|
|
inline bool edgemarked(triface& t);
|
|
|
|
inline void marktest2(triface& t);
|
|
|
|
inline void unmarktest2(triface& t);
|
|
|
|
inline bool marktest2ed(triface& t);
|
|
|
|
inline int elemcounter(triface& t);
|
|
|
|
inline void setelemcounter(triface& t, int value);
|
|
|
|
inline void increaseelemcounter(triface& t);
|
|
|
|
inline void decreaseelemcounter(triface& t);
|
|
|
|
inline bool ishulltet(triface& t);
|
|
|
|
inline bool isdeadtet(triface& t);
|
|
|
|
|
|
|
|
// Primitives for subfaces and subsegments.
|
|
|
|
inline void sdecode(shellface sptr, face& s);
|
|
|
|
inline shellface sencode(face& s);
|
|
|
|
inline shellface sencode2(shellface* sh, int shver);
|
|
|
|
inline void spivot(face& s1, face& s2);
|
|
|
|
inline void spivotself(face& s);
|
|
|
|
inline void sbond(face& s1, face& s2);
|
|
|
|
inline void sbond1(face& s1, face& s2);
|
|
|
|
inline void sdissolve(face& s);
|
|
|
|
inline point sorg(face& s);
|
|
|
|
inline point sdest(face& s);
|
|
|
|
inline point sapex(face& s);
|
|
|
|
inline void setsorg(face& s, point pointptr);
|
|
|
|
inline void setsdest(face& s, point pointptr);
|
|
|
|
inline void setsapex(face& s, point pointptr);
|
|
|
|
inline void sesym(face& s1, face& s2);
|
|
|
|
inline void sesymself(face& s);
|
|
|
|
inline void senext(face& s1, face& s2);
|
|
|
|
inline void senextself(face& s);
|
|
|
|
inline void senext2(face& s1, face& s2);
|
|
|
|
inline void senext2self(face& s);
|
|
|
|
inline REAL areabound(face& s);
|
|
|
|
inline void setareabound(face& s, REAL value);
|
|
|
|
inline int shellmark(face& s);
|
|
|
|
inline void setshellmark(face& s, int value);
|
|
|
|
inline void sinfect(face& s);
|
|
|
|
inline void suninfect(face& s);
|
|
|
|
inline bool sinfected(face& s);
|
|
|
|
inline void smarktest(face& s);
|
|
|
|
inline void sunmarktest(face& s);
|
|
|
|
inline bool smarktested(face& s);
|
|
|
|
inline void smarktest2(face& s);
|
|
|
|
inline void sunmarktest2(face& s);
|
|
|
|
inline bool smarktest2ed(face& s);
|
|
|
|
inline void smarktest3(face& s);
|
|
|
|
inline void sunmarktest3(face& s);
|
|
|
|
inline bool smarktest3ed(face& s);
|
|
|
|
inline void setfacetindex(face& f, int value);
|
|
|
|
inline int getfacetindex(face& f);
|
|
|
|
|
|
|
|
// Primitives for interacting tetrahedra and subfaces.
|
|
|
|
inline void tsbond(triface& t, face& s);
|
|
|
|
inline void tsdissolve(triface& t);
|
|
|
|
inline void stdissolve(face& s);
|
|
|
|
inline void tspivot(triface& t, face& s);
|
|
|
|
inline void stpivot(face& s, triface& t);
|
|
|
|
|
|
|
|
// Primitives for interacting tetrahedra and segments.
|
|
|
|
inline void tssbond1(triface& t, face& seg);
|
|
|
|
inline void sstbond1(face& s, triface& t);
|
|
|
|
inline void tssdissolve1(triface& t);
|
|
|
|
inline void sstdissolve1(face& s);
|
|
|
|
inline void tsspivot1(triface& t, face& s);
|
|
|
|
inline void sstpivot1(face& s, triface& t);
|
|
|
|
|
|
|
|
// Primitives for interacting subfaces and segments.
|
|
|
|
inline void ssbond(face& s, face& edge);
|
|
|
|
inline void ssbond1(face& s, face& edge);
|
|
|
|
inline void ssdissolve(face& s);
|
|
|
|
inline void sspivot(face& s, face& edge);
|
|
|
|
|
|
|
|
// Primitives for points.
|
|
|
|
inline int pointmark(point pt);
|
|
|
|
inline void setpointmark(point pt, int value);
|
|
|
|
inline enum verttype pointtype(point pt);
|
|
|
|
inline void setpointtype(point pt, enum verttype value);
|
|
|
|
inline int pointgeomtag(point pt);
|
|
|
|
inline void setpointgeomtag(point pt, int value);
|
|
|
|
inline REAL pointgeomuv(point pt, int i);
|
|
|
|
inline void setpointgeomuv(point pt, int i, REAL value);
|
|
|
|
inline void pinfect(point pt);
|
|
|
|
inline void puninfect(point pt);
|
|
|
|
inline bool pinfected(point pt);
|
|
|
|
inline void pmarktest(point pt);
|
|
|
|
inline void punmarktest(point pt);
|
|
|
|
inline bool pmarktested(point pt);
|
|
|
|
inline void pmarktest2(point pt);
|
|
|
|
inline void punmarktest2(point pt);
|
|
|
|
inline bool pmarktest2ed(point pt);
|
|
|
|
inline void pmarktest3(point pt);
|
|
|
|
inline void punmarktest3(point pt);
|
|
|
|
inline bool pmarktest3ed(point pt);
|
|
|
|
inline tetrahedron point2tet(point pt);
|
|
|
|
inline void setpoint2tet(point pt, tetrahedron value);
|
|
|
|
inline shellface point2sh(point pt);
|
|
|
|
inline void setpoint2sh(point pt, shellface value);
|
|
|
|
inline point point2ppt(point pt);
|
|
|
|
inline void setpoint2ppt(point pt, point value);
|
|
|
|
inline tetrahedron point2bgmtet(point pt);
|
|
|
|
inline void setpoint2bgmtet(point pt, tetrahedron value);
|
|
|
|
inline void setpointinsradius(point pt, REAL value);
|
|
|
|
inline REAL getpointinsradius(point pt);
|
|
|
|
inline bool issteinerpoint(point pt);
|
|
|
|
|
|
|
|
// Advanced primitives.
|
|
|
|
inline void point2tetorg(point pt, triface& t);
|
|
|
|
inline void point2shorg(point pa, face& s);
|
|
|
|
inline point farsorg(face& seg);
|
|
|
|
inline point farsdest(face& seg);
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Memory managment //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void tetrahedrondealloc(tetrahedron*);
|
|
|
|
tetrahedron* tetrahedrontraverse();
|
|
|
|
tetrahedron* alltetrahedrontraverse();
|
|
|
|
void shellfacedealloc(memorypool*, shellface*);
|
|
|
|
shellface* shellfacetraverse(memorypool*);
|
|
|
|
void pointdealloc(point);
|
|
|
|
point pointtraverse();
|
|
|
|
|
|
|
|
void makeindex2pointmap(point*&);
|
|
|
|
void makepoint2submap(memorypool*, int*&, face*&);
|
|
|
|
void maketetrahedron(triface*);
|
|
|
|
void makeshellface(memorypool*, face*);
|
|
|
|
void makepoint(point*, enum verttype);
|
|
|
|
|
|
|
|
void initializepools();
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Advanced geometric predicates and calculations //
|
|
|
|
// //
|
|
|
|
// TetGen uses a simplified symbolic perturbation scheme from Edelsbrunner, //
|
|
|
|
// et al [*]. Hence the point-in-sphere test never returns a zero. The idea //
|
|
|
|
// is to perturb the weights of vertices in the fourth dimension. TetGen //
|
|
|
|
// uses the indices of the vertices decide the amount of perturbation. It is //
|
|
|
|
// implemented in the routine insphere_s().
|
|
|
|
// //
|
|
|
|
// The routine tri_edge_test() determines whether or not a triangle and an //
|
|
|
|
// edge intersect in 3D. If they intersect, their intersection type is also //
|
|
|
|
// reported. This test is a combination of n 3D orientation tests (n is bet- //
|
|
|
|
// ween 3 and 9). It uses the robust orient3d() test to make the branch dec- //
|
|
|
|
// isions. The routine tri_tri_test() determines whether or not two triang- //
|
|
|
|
// les intersect in 3D. It also uses the robust orient3d() test. //
|
|
|
|
// //
|
|
|
|
// There are a number of routines to calculate geometrical quantities, e.g., //
|
|
|
|
// circumcenters, angles, dihedral angles, face normals, face areas, etc. //
|
|
|
|
// They are so far done by the default floating-point arithmetics which are //
|
|
|
|
// non-robust. They should be improved in the future. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// Symbolic perturbations (robust)
|
|
|
|
REAL insphere_s(REAL*, REAL*, REAL*, REAL*, REAL*);
|
|
|
|
REAL orient4d_s(REAL*, REAL*, REAL*, REAL*, REAL*, REAL, REAL, REAL, REAL, REAL);
|
|
|
|
|
|
|
|
// Triangle-edge intersection test (robust)
|
|
|
|
int tri_edge_2d(point, point, point, point, point, point, int, int*, int*);
|
|
|
|
int tri_edge_tail(point, point, point, point, point, point, REAL, REAL, int, int*, int*);
|
|
|
|
int tri_edge_test(point, point, point, point, point, point, int, int*, int*);
|
|
|
|
|
|
|
|
// Triangle-triangle intersection test (robust)
|
|
|
|
int tri_edge_inter_tail(point, point, point, point, point, REAL, REAL);
|
|
|
|
int tri_tri_inter(point, point, point, point, point, point);
|
|
|
|
|
|
|
|
// Linear algebra functions
|
|
|
|
inline REAL dot(REAL* v1, REAL* v2);
|
|
|
|
inline void cross(REAL* v1, REAL* v2, REAL* n);
|
|
|
|
bool lu_decmp(REAL lu[4][4], int n, int* ps, REAL* d, int N);
|
|
|
|
void lu_solve(REAL lu[4][4], int n, int* ps, REAL* b, int N);
|
|
|
|
|
|
|
|
// An embedded 2-dimensional geometric predicate (non-robust)
|
|
|
|
REAL incircle3d(point pa, point pb, point pc, point pd);
|
|
|
|
|
|
|
|
// Geometric calculations (non-robust)
|
|
|
|
REAL orient3dfast(REAL* pa, REAL* pb, REAL* pc, REAL* pd);
|
|
|
|
inline REAL norm2(REAL x, REAL y, REAL z);
|
|
|
|
inline REAL distance(REAL* p1, REAL* p2);
|
|
|
|
void facenormal(point pa, point pb, point pc, REAL* n, int pivot, REAL* lav);
|
|
|
|
REAL shortdistance(REAL* p, REAL* e1, REAL* e2);
|
|
|
|
REAL triarea(REAL* pa, REAL* pb, REAL* pc);
|
|
|
|
REAL interiorangle(REAL* o, REAL* p1, REAL* p2, REAL* n);
|
|
|
|
void projpt2edge(REAL* p, REAL* e1, REAL* e2, REAL* prj);
|
|
|
|
void projpt2face(REAL* p, REAL* f1, REAL* f2, REAL* f3, REAL* prj);
|
|
|
|
bool tetalldihedral(point, point, point, point, REAL*, REAL*, REAL*);
|
|
|
|
void tetallnormal(point, point, point, point, REAL N[4][3], REAL* volume);
|
|
|
|
REAL tetaspectratio(point, point, point, point);
|
|
|
|
bool circumsphere(REAL*, REAL*, REAL*, REAL*, REAL* cent, REAL* radius);
|
|
|
|
bool orthosphere(REAL*, REAL*, REAL*, REAL*, REAL, REAL, REAL, REAL, REAL*, REAL*);
|
|
|
|
void tetcircumcenter(point tetorg, point tetdest, point tetfapex, point tettapex,
|
|
|
|
REAL* circumcenter, REAL* radius);
|
|
|
|
void planelineint(REAL*, REAL*, REAL*, REAL*, REAL*, REAL*, REAL*);
|
|
|
|
int linelineint(REAL*, REAL*, REAL*, REAL*, REAL*, REAL*, REAL*, REAL*);
|
|
|
|
REAL tetprismvol(REAL* pa, REAL* pb, REAL* pc, REAL* pd);
|
|
|
|
bool calculateabovepoint(arraypool*, point*, point*, point*);
|
|
|
|
void calculateabovepoint4(point, point, point, point);
|
|
|
|
|
|
|
|
// PLC error reports.
|
|
|
|
void report_overlapping_facets(face*, face*, REAL dihedang = 0.0);
|
|
|
|
int report_selfint_edge(point, point, face* sedge, triface* searchtet, enum interresult);
|
|
|
|
int report_selfint_face(point, point, point, face* sface, triface* iedge, int intflag,
|
|
|
|
int* types, int* poss);
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Local mesh transformations //
|
|
|
|
// //
|
|
|
|
// A local transformation replaces a small set of tetrahedra with another //
|
|
|
|
// set of tetrahedra which fills the same space and the same boundaries. //
|
|
|
|
// In 3D, the most simplest local transformations are the elementary flips //
|
|
|
|
// performed within the convex hull of five vertices: 2-to-3, 3-to-2, 1-to-4,//
|
|
|
|
// and 4-to-1 flips, where the numbers indicate the number of tetrahedra //
|
|
|
|
// before and after each flip. The 1-to-4 and 4-to-1 flip involve inserting //
|
|
|
|
// or deleting a vertex, respectively. //
|
|
|
|
// There are complex local transformations which can be decomposed as a //
|
|
|
|
// combination of elementary flips. For example,a 4-to-4 flip which replaces //
|
|
|
|
// two coplanar edges can be regarded by a 2-to-3 flip and a 3-to-2 flip. //
|
|
|
|
// Note that the first 2-to-3 flip will temporarily create a degenerate tet- //
|
|
|
|
// rahedron which is removed immediately by the followed 3-to-2 flip. More //
|
|
|
|
// generally, a n-to-m flip, where n > 3, m = (n - 2) * 2, which removes an //
|
|
|
|
// edge can be done by first performing a sequence of (n - 3) 2-to-3 flips //
|
|
|
|
// followed by a 3-to-2 flip. //
|
|
|
|
// //
|
|
|
|
// The routines flip23(), flip32(), and flip41() perform the three element- //
|
|
|
|
// ray flips. The flip14() is available inside the routine insertpoint(). //
|
|
|
|
// //
|
|
|
|
// The routines flipnm() and flipnm_post() implement a generalized edge flip //
|
|
|
|
// algorithm which uses a combination of elementary flips. //
|
|
|
|
// //
|
|
|
|
// The routine insertpoint() implements a variant of Bowyer-Watson's cavity //
|
|
|
|
// algorithm to insert a vertex. It works for arbitrary tetrahedralization, //
|
|
|
|
// either Delaunay, or constrained Delaunay, or non-Delaunay. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// The elementary flips.
|
|
|
|
void flip23(triface*, int, flipconstraints* fc);
|
|
|
|
void flip32(triface*, int, flipconstraints* fc);
|
|
|
|
void flip41(triface*, int, flipconstraints* fc);
|
|
|
|
|
|
|
|
// A generalized edge flip.
|
|
|
|
int flipnm(triface*, int n, int level, int, flipconstraints* fc);
|
|
|
|
int flipnm_post(triface*, int n, int nn, int, flipconstraints* fc);
|
|
|
|
|
|
|
|
// Point insertion.
|
|
|
|
int insertpoint(point, triface*, face*, face*, insertvertexflags*);
|
|
|
|
void insertpoint_abort(face*, insertvertexflags*);
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Delaunay tetrahedralization //
|
|
|
|
// //
|
|
|
|
// The routine incrementaldelaunay() implemented two incremental algorithms //
|
|
|
|
// for constructing Delaunay tetrahedralizations (DTs): the Bowyer-Watson //
|
|
|
|
// (B-W) algorithm and the incremental flip algorithm of Edelsbrunner and //
|
|
|
|
// Shah, "Incremental topological flipping works for regular triangulation," //
|
|
|
|
// Algorithmica, 15:233-241, 1996. //
|
|
|
|
// //
|
|
|
|
// The routine incrementalflip() implements the flip algorithm of [Edelsbru- //
|
|
|
|
// nner and Shah, 1996]. It flips a queue of locally non-Delaunay faces (in //
|
|
|
|
// an arbitrary order). The success is guaranteed when the Delaunay tetrah- //
|
|
|
|
// edralization is constructed incrementally by adding one vertex at a time. //
|
|
|
|
// //
|
|
|
|
// The routine locate() finds a tetrahedron contains a new point in current //
|
|
|
|
// DT. It uses a simple stochastic walk algorithm: starting from an arbitr- //
|
|
|
|
// ary tetrahedron in DT, it finds the destination by visit one tetrahedron //
|
|
|
|
// at a time, randomly chooses a tetrahedron if there are more than one //
|
|
|
|
// choices. This algorithm terminates due to Edelsbrunner's acyclic theorem. //
|
|
|
|
// Choose a good starting tetrahedron is crucial to the speed of the walk. //
|
|
|
|
// TetGen originally uses the "jump-and-walk" algorithm of Muecke, E.P., //
|
|
|
|
// Saias, I., and Zhu, B. "Fast Randomized Point Location Without Preproces- //
|
|
|
|
// sing." In Proceedings of the 12th ACM Symposium on Computational Geometry,//
|
|
|
|
// 274-283, 1996. It first randomly samples several tetrahedra in the DT //
|
|
|
|
// and then choosing the closet one to start walking. //
|
|
|
|
// The above algorithm slows download dramatically as the number of points //
|
|
|
|
// grows -- reported in Amenta, N., Choi, S. and Rote, G., "Incremental //
|
|
|
|
// construction con {BRIO}," In Proceedings of 19th ACM Symposium on //
|
|
|
|
// Computational Geometry, 211-219, 2003. On the other hand, Liu and //
|
|
|
|
// Snoeyink showed that the point location can be made in constant time if //
|
|
|
|
// the points are pre-sorted so that the nearby points in space have nearby //
|
|
|
|
// indices, then adding the points in this order. They sorted the points //
|
|
|
|
// along the 3D Hilbert curve. //
|
|
|
|
// //
|
|
|
|
// The routine hilbert_sort3() sorts a set of 3D points along the 3D Hilbert //
|
|
|
|
// curve. It recursively splits a point set according to the Hilbert indices //
|
|
|
|
// mapped to the subboxes of the bounding box of the point set. //
|
|
|
|
// The Hilbert indices is calculated by Butz's algorithm in 1971. A nice //
|
|
|
|
// exposition of this algorithm can be found in the paper of Hamilton, C., //
|
|
|
|
// "Compact Hilbert Indices", Technical Report CS-2006-07, Computer Science, //
|
|
|
|
// Dalhousie University, 2006 (the Section 2). My implementation also refer- //
|
|
|
|
// enced Steven Witham's implementation of "Hilbert walk" (hopefully, it is //
|
|
|
|
// still available at: http://www.tiac.net/~sw/2008/10/Hilbert/). //
|
|
|
|
// //
|
|
|
|
// TetGen sorts the points using the method in the paper of Boissonnat,J.-D.,//
|
|
|
|
// Devillers, O. and Hornus, S. "Incremental Construction of the Delaunay //
|
|
|
|
// Triangulation and the Delaunay Graph in Medium Dimension," In Proceedings //
|
|
|
|
// of the 25th ACM Symposium on Computational Geometry, 2009. //
|
|
|
|
// It first randomly sorts the points into subgroups using the Biased Rand-//
|
|
|
|
// omized Insertion Ordering (BRIO) of Amenta et al 2003, then sorts the //
|
|
|
|
// points in each subgroup along the 3D Hilbert curve. Inserting points in //
|
|
|
|
// this order ensures a randomized "sprinkling" of the points over the //
|
|
|
|
// domain, while sorting of each subset ensures locality. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void transfernodes();
|
|
|
|
|
|
|
|
// Point sorting.
|
|
|
|
int transgc[8][3][8], tsb1mod3[8];
|
|
|
|
void hilbert_init(int n);
|
|
|
|
int hilbert_split(point* vertexarray, int arraysize, int gc0, int gc1, REAL, REAL, REAL, REAL,
|
|
|
|
REAL, REAL);
|
|
|
|
void hilbert_sort3(point* vertexarray, int arraysize, int e, int d, REAL, REAL, REAL, REAL,
|
|
|
|
REAL, REAL, int depth);
|
|
|
|
void brio_multiscale_sort(point*, int, int threshold, REAL ratio, int* depth);
|
|
|
|
|
|
|
|
// Point location.
|
|
|
|
unsigned long randomnation(unsigned int choices);
|
|
|
|
void randomsample(point searchpt, triface* searchtet);
|
|
|
|
enum locateresult locate(point searchpt, triface* searchtet, int chkencflag = 0);
|
|
|
|
|
|
|
|
// Incremental flips.
|
|
|
|
void flippush(badface*&, triface*);
|
|
|
|
int incrementalflip(point newpt, int, flipconstraints* fc);
|
|
|
|
|
|
|
|
// Incremental Delaunay construction.
|
|
|
|
void initialdelaunay(point pa, point pb, point pc, point pd);
|
|
|
|
void incrementaldelaunay(clock_t&);
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Surface triangulation //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void flipshpush(face*);
|
|
|
|
void flip22(face*, int, int);
|
|
|
|
void flip31(face*, int);
|
|
|
|
long lawsonflip();
|
|
|
|
int sinsertvertex(point newpt, face*, face*, int iloc, int bowywat, int);
|
|
|
|
int sremovevertex(point delpt, face*, face*, int lawson);
|
|
|
|
|
|
|
|
enum locateresult slocate(point, face*, int, int, int);
|
|
|
|
enum interresult sscoutsegment(face*, point, int, int, int);
|
|
|
|
void scarveholes(int, REAL*);
|
|
|
|
int triangulate(int, arraypool*, arraypool*, int, REAL*);
|
|
|
|
|
|
|
|
void unifysegments();
|
|
|
|
void identifyinputedges(point*);
|
|
|
|
void mergefacets();
|
|
|
|
void removesmallangles();
|
|
|
|
void meshsurface();
|
|
|
|
|
|
|
|
void interecursive(shellface** subfacearray, int arraysize, int axis, REAL, REAL, REAL, REAL,
|
|
|
|
REAL, REAL, int* internum);
|
|
|
|
void detectinterfaces();
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Constrained Delaunay tetrahedralization //
|
|
|
|
// //
|
|
|
|
// A constrained Delaunay tetrahedralization (CDT) is a variation of a Dela- //
|
|
|
|
// unay tetrahedralization (DT) that is constrained to respect the boundary //
|
|
|
|
// of a 3D PLC (domain). In a CDT of a 3D PLC, every vertex or edge of the //
|
|
|
|
// PLC is also a vertex or an edge of the CDT, every polygon of the PLC is a //
|
|
|
|
// union of triangles of the CDT. A crucial difference between a CDT and a //
|
|
|
|
// DT is that triangles in the PLC's polygons are not required to be locally //
|
|
|
|
// Delaunay, which frees the CDT to better respect the PLC's polygons. CDTs //
|
|
|
|
// have optimal properties similar to those of DTs. //
|
|
|
|
// //
|
|
|
|
// Steiner Points and Steiner CDTs. It is known that even a simple 3D polyh- //
|
|
|
|
// edron may not have a tetrahedralization which only uses its own vertices. //
|
|
|
|
// Some extra points, so-called "Steiner points" are needed in order to form //
|
|
|
|
// a tetrahedralization of such polyhedron. It is true for tetrahedralizing //
|
|
|
|
// a 3D PLC as well. A Steiner CDT of a 3D PLC is a CDT containing Steiner //
|
|
|
|
// points. The CDT algorithms of TetGen in general create Steiner CDTs. //
|
|
|
|
// Almost all of the Steiner points are added in the edges of the PLC. They //
|
|
|
|
// guarantee the existence of a CDT of the modified PLC. //
|
|
|
|
// //
|
|
|
|
// The routine constraineddelaunay() starts from a DT of the vertices of a //
|
|
|
|
// PLC and creates a (Steiner) CDT of the PLC (including Steiner points). It //
|
|
|
|
// is constructed by two steps, (1) segment recovery and (2) facet (polygon) //
|
|
|
|
// recovery. Each step is accomplished by its own algorithm. //
|
|
|
|
// //
|
|
|
|
// The routine delaunizesegments() implements the segment recovery algorithm //
|
|
|
|
// of Si, H. and Gaertner, K. "Meshing Piecewise Linear Complexes by Constr- //
|
|
|
|
// ained Delaunay Tetrahedralizations," In Proceedings of the 14th Internat- //
|
|
|
|
// ional Meshing Roundtable, 147--163, 2005. It adds Steiner points into //
|
|
|
|
// non-Delaunay segments until all subsegments appear together in a DT. The //
|
|
|
|
// running time of this algorithm is proportional to the number of added //
|
|
|
|
// Steiner points. //
|
|
|
|
// //
|
|
|
|
// There are two incremental facet recovery algorithms: the cavity re-trian- //
|
|
|
|
// gulation algorithm of Si, H. and Gaertner, K. "3D Boundary Recovery by //
|
|
|
|
// Constrained Delaunay Tetrahedralization," International Journal for Numer-//
|
|
|
|
// ical Methods in Engineering, 85:1341-1364, 2011, and the flip algorithm //
|
|
|
|
// of Shewchuk, J. "Updating and Constructing Constrained Delaunay and //
|
|
|
|
// Constrained Regular Triangulations by Flips." In Proceedings of the 19th //
|
|
|
|
// ACM Symposium on Computational Geometry, 86-95, 2003. //
|
|
|
|
// //
|
|
|
|
// It is guaranteed in theory, no Steiner point is needed in both algorithms //
|
|
|
|
// However, a facet with non-coplanar vertices might cause the additions of //
|
|
|
|
// Steiner points. It is discussed in the paper of Si, H., and Shewchuk, J.,//
|
|
|
|
// "Incrementally Constructing and Updating Constrained Delaunay //
|
|
|
|
// Tetrahedralizations with Finite Precision Coordinates." In Proceedings of //
|
|
|
|
// the 21th International Meshing Roundtable, 2012. //
|
|
|
|
// //
|
|
|
|
// Our implementation of the facet recovery algorithms recover a "missing //
|
|
|
|
// region" at a time. Each missing region is a subset of connected interiors //
|
|
|
|
// of a polygon. The routine formcavity() creates the cavity of crossing //
|
|
|
|
// tetrahedra of the missing region. //
|
|
|
|
// //
|
|
|
|
// The cavity re-triangulation algorithm is implemented by three subroutines,//
|
|
|
|
// delaunizecavity(), fillcavity(), and carvecavity(). Since it may fail due //
|
|
|
|
// to non-coplanar vertices, the subroutine restorecavity() is used to rest- //
|
|
|
|
// ore the original cavity. //
|
|
|
|
// //
|
|
|
|
// The routine flipinsertfacet() implements the flip algorithm. The subrout- //
|
|
|
|
// ine flipcertify() is used to maintain the priority queue of flips. //
|
|
|
|
// //
|
|
|
|
// The routine refineregion() is called when the facet recovery algorithm //
|
|
|
|
// fail to recover a missing region. It inserts Steiner points to refine the //
|
|
|
|
// missing region. In order to avoid inserting Steiner points very close to //
|
|
|
|
// existing segments. The classical encroachment rules of the Delaunay //
|
|
|
|
// refinement algorithm are used to choose the Steiner points. //
|
|
|
|
// //
|
|
|
|
// The routine constrainedfacets() does the facet recovery by using either //
|
|
|
|
// the cavity re-triangulation algorithm (default) or the flip algorithm. It //
|
|
|
|
// results a CDT of the (modified) PLC (including Steiner points). //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void makesegmentendpointsmap();
|
|
|
|
|
|
|
|
enum interresult finddirection(triface* searchtet, point endpt);
|
|
|
|
enum interresult scoutsegment(point, point, face*, triface*, point*, arraypool*);
|
|
|
|
int getsteinerptonsegment(face* seg, point refpt, point steinpt);
|
|
|
|
void delaunizesegments();
|
|
|
|
|
|
|
|
int scoutsubface(face* searchsh, triface* searchtet, int shflag);
|
|
|
|
void formregion(face*, arraypool*, arraypool*, arraypool*);
|
|
|
|
int scoutcrossedge(triface& crosstet, arraypool*, arraypool*);
|
|
|
|
bool formcavity(triface*, arraypool*, arraypool*, arraypool*, arraypool*, arraypool*,
|
|
|
|
arraypool*);
|
|
|
|
// Facet recovery by cavity re-triangulation [Si and Gaertner 2011].
|
|
|
|
void delaunizecavity(arraypool*, arraypool*, arraypool*, arraypool*, arraypool*, arraypool*);
|
|
|
|
bool fillcavity(arraypool*, arraypool*, arraypool*, arraypool*, arraypool*, arraypool*,
|
|
|
|
triface* crossedge);
|
|
|
|
void carvecavity(arraypool*, arraypool*, arraypool*);
|
|
|
|
void restorecavity(arraypool*, arraypool*, arraypool*, arraypool*);
|
|
|
|
// Facet recovery by flips [Shewchuk 2003].
|
|
|
|
void flipcertify(triface* chkface, badface** pqueue, point, point, point);
|
|
|
|
void flipinsertfacet(arraypool*, arraypool*, arraypool*, arraypool*);
|
|
|
|
|
|
|
|
int insertpoint_cdt(point, triface*, face*, face*, insertvertexflags*, arraypool*, arraypool*,
|
|
|
|
arraypool*, arraypool*, arraypool*, arraypool*);
|
|
|
|
void refineregion(face&, arraypool*, arraypool*, arraypool*, arraypool*, arraypool*,
|
|
|
|
arraypool*);
|
|
|
|
void constrainedfacets();
|
|
|
|
|
|
|
|
void constraineddelaunay(clock_t&);
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Constrained tetrahedralizations. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
int checkflipeligibility(int fliptype, point, point, point, point, point, int level,
|
|
|
|
int edgepivot, flipconstraints* fc);
|
|
|
|
|
|
|
|
int removeedgebyflips(triface*, flipconstraints*);
|
|
|
|
int removefacebyflips(triface*, flipconstraints*);
|
|
|
|
|
|
|
|
int recoveredgebyflips(point, point, face*, triface*, int fullsearch);
|
|
|
|
int add_steinerpt_in_schoenhardtpoly(triface*, int, int chkencflag);
|
|
|
|
int add_steinerpt_in_segment(face*, int searchlevel);
|
|
|
|
int addsteiner4recoversegment(face*, int);
|
|
|
|
int recoversegments(arraypool*, int fullsearch, int steinerflag);
|
|
|
|
|
|
|
|
int recoverfacebyflips(point, point, point, face*, triface*);
|
|
|
|
int recoversubfaces(arraypool*, int steinerflag);
|
|
|
|
|
|
|
|
int getvertexstar(int, point searchpt, arraypool*, arraypool*, arraypool*);
|
|
|
|
int getedge(point, point, triface*);
|
|
|
|
int reduceedgesatvertex(point startpt, arraypool* endptlist);
|
|
|
|
int removevertexbyflips(point steinerpt);
|
|
|
|
|
|
|
|
int suppressbdrysteinerpoint(point steinerpt);
|
|
|
|
int suppresssteinerpoints();
|
|
|
|
|
|
|
|
void recoverboundary(clock_t&);
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Mesh reconstruction //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void carveholes();
|
|
|
|
|
|
|
|
void reconstructmesh();
|
|
|
|
|
|
|
|
int search_face(point p0, point p1, point p2, triface& tetloop);
|
|
|
|
int search_edge(point p0, point p1, triface& tetloop);
|
|
|
|
int scoutpoint(point, triface*, int randflag);
|
|
|
|
REAL getpointmeshsize(point, triface*, int iloc);
|
|
|
|
void interpolatemeshsize();
|
|
|
|
void out_points_to_cells_map(); // in flow_main()
|
|
|
|
|
|
|
|
void insertconstrainedpoints(point* insertarray, int arylen, int rejflag);
|
|
|
|
void insertconstrainedpoints(tetgenio* addio);
|
|
|
|
|
|
|
|
void collectremovepoints(arraypool* remptlist);
|
|
|
|
void meshcoarsening();
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Mesh refinement //
|
|
|
|
// //
|
|
|
|
// The purpose of mesh refinement is to obtain a tetrahedral mesh with well- //
|
|
|
|
// -shaped tetrahedra and appropriate mesh size. It is necessary to insert //
|
|
|
|
// new Steiner points to achieve this property. The questions are (1) how to //
|
|
|
|
// choose the Steiner points? and (2) how to insert them? //
|
|
|
|
// //
|
|
|
|
// Delaunay refinement is a technique first developed by Chew [1989] and //
|
|
|
|
// Ruppert [1993, 1995] to generate quality triangular meshes in the plane. //
|
|
|
|
// It provides guarantee on the smallest angle of the triangles. Rupper's //
|
|
|
|
// algorithm guarantees that the mesh is size-optimal (to within a constant //
|
|
|
|
// factor) among all meshes with the same quality. //
|
|
|
|
// Shewchuk generalized Ruppert's algorithm into 3D in his PhD thesis //
|
|
|
|
// [Shewchuk 1997]. A short version of his algorithm appears in "Tetrahedral //
|
|
|
|
// Mesh Generation by Delaunay Refinement," In Proceedings of the 14th ACM //
|
|
|
|
// Symposium on Computational Geometry, 86-95, 1998. It guarantees that all //
|
|
|
|
// tetrahedra of the output mesh have a "radius-edge ratio" (equivalent to //
|
|
|
|
// the minimal face angle) bounded. However, it does not remove slivers, a //
|
|
|
|
// type of very flat tetrahedra which can have no small face angles but have //
|
|
|
|
// very small (and large) dihedral angles. Moreover, it may not terminate if //
|
|
|
|
// the input PLC contains "sharp features", e.g., two edges (or two facets) //
|
|
|
|
// meet at an acute angle (or dihedral angle). //
|
|
|
|
// //
|
|
|
|
// TetGen uses the basic Delaunay refinement scheme to insert Steiner points.//
|
|
|
|
// While it always maintains a constrained Delaunay mesh. The algorithm is //
|
|
|
|
// described in Si, H., "Adaptive Constrained Delaunay Mesh Generation," //
|
|
|
|
// International Journal for Numerical Methods in Engineering, 75:856-880. //
|
|
|
|
// This algorithm always terminates and sharp features are easily preserved. //
|
|
|
|
// The mesh has good quality (same as Shewchuk's Delaunay refinement algori- //
|
|
|
|
// thm) in the bulk of the mesh domain. Moreover, it supports the generation //
|
|
|
|
// of adaptive mesh according to a (isotropic) mesh sizing function. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void makefacetverticesmap();
|
|
|
|
int segsegadjacent(face*, face*);
|
|
|
|
int segfacetadjacent(face* checkseg, face* checksh);
|
|
|
|
int facetfacetadjacent(face*, face*);
|
|
|
|
void save_segmentpoint_insradius(point segpt, point parentpt, REAL r);
|
|
|
|
void save_facetpoint_insradius(point facpt, point parentpt, REAL r);
|
|
|
|
void enqueuesubface(memorypool*, face*);
|
|
|
|
void enqueuetetrahedron(triface*);
|
|
|
|
|
|
|
|
int checkseg4encroach(point pa, point pb, point checkpt);
|
|
|
|
int checkseg4split(face* chkseg, point&, int&);
|
|
|
|
int splitsegment(face* splitseg, point encpt, REAL, point, point, int, int);
|
|
|
|
void repairencsegs(int chkencflag);
|
|
|
|
|
|
|
|
int checkfac4encroach(point, point, point, point checkpt, REAL*, REAL*);
|
|
|
|
int checkfac4split(face* chkfac, point& encpt, int& qflag, REAL* ccent);
|
|
|
|
int splitsubface(face* splitfac, point, point, int qflag, REAL* ccent, int);
|
|
|
|
void repairencfacs(int chkencflag);
|
|
|
|
|
|
|
|
int checktet4split(triface* chktet, int& qflag, REAL* ccent);
|
|
|
|
int splittetrahedron(triface* splittet, int qflag, REAL* ccent, int);
|
|
|
|
void repairbadtets(int chkencflag);
|
|
|
|
|
|
|
|
void delaunayrefinement();
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Mesh optimization //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
long lawsonflip3d(flipconstraints* fc);
|
|
|
|
void recoverdelaunay();
|
|
|
|
|
|
|
|
int gettetrahedron(point, point, point, point, triface*);
|
|
|
|
long improvequalitybyflips();
|
|
|
|
|
|
|
|
int smoothpoint(point smtpt, arraypool*, int ccw, optparameters* opm);
|
|
|
|
long improvequalitybysmoothing(optparameters* opm);
|
|
|
|
|
|
|
|
int splitsliver(triface*, REAL, int);
|
|
|
|
long removeslivers(int);
|
|
|
|
|
|
|
|
void optimizemesh();
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Mesh check and statistics //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// Mesh validations.
|
|
|
|
int checkmesh(int topoflag);
|
|
|
|
int checkshells();
|
|
|
|
int checksegments();
|
|
|
|
int checkdelaunay(int perturb = 1);
|
|
|
|
int checkregular(int);
|
|
|
|
int checkconforming(int);
|
|
|
|
|
|
|
|
// Mesh statistics.
|
|
|
|
void printfcomma(unsigned long n);
|
|
|
|
void qualitystatistics();
|
|
|
|
void memorystatistics();
|
|
|
|
void statistics();
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Mesh output //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void jettisonnodes();
|
|
|
|
void highorder();
|
|
|
|
void indexelements();
|
|
|
|
void numberedges();
|
|
|
|
void outnodes(tetgenio*);
|
|
|
|
void outmetrics(tetgenio*);
|
|
|
|
void outelements(tetgenio*);
|
|
|
|
void outfaces(tetgenio*);
|
|
|
|
void outhullfaces(tetgenio*);
|
|
|
|
void outsubfaces(tetgenio*);
|
|
|
|
void outedges(tetgenio*);
|
|
|
|
void outsubsegments(tetgenio*);
|
|
|
|
void outneighbors(tetgenio*);
|
|
|
|
void outvoronoi(tetgenio*);
|
|
|
|
void outsmesh(char*);
|
|
|
|
void outmesh2medit(char*);
|
|
|
|
void outmesh2vtk(char*);
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Constructor & destructor //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void initializetetgenmesh() {
|
|
|
|
in = addin = NULL;
|
|
|
|
b = NULL;
|
|
|
|
bgm = NULL;
|
|
|
|
|
|
|
|
tetrahedrons = subfaces = subsegs = points = NULL;
|
|
|
|
badtetrahedrons = badsubfacs = badsubsegs = NULL;
|
|
|
|
tet2segpool = tet2subpool = NULL;
|
|
|
|
flippool = NULL;
|
|
|
|
|
|
|
|
dummypoint = NULL;
|
|
|
|
flipstack = NULL;
|
|
|
|
unflipqueue = NULL;
|
|
|
|
|
|
|
|
cavetetlist = cavebdrylist = caveoldtetlist = NULL;
|
|
|
|
cavetetshlist = cavetetseglist = cavetetvertlist = NULL;
|
|
|
|
caveencshlist = caveencseglist = NULL;
|
|
|
|
caveshlist = caveshbdlist = cavesegshlist = NULL;
|
|
|
|
|
|
|
|
subsegstack = subfacstack = subvertstack = NULL;
|
|
|
|
encseglist = encshlist = NULL;
|
|
|
|
idx2facetlist = NULL;
|
|
|
|
facetverticeslist = NULL;
|
|
|
|
segmentendpointslist = NULL;
|
|
|
|
|
|
|
|
highordertable = NULL;
|
|
|
|
|
|
|
|
numpointattrib = numelemattrib = 0;
|
|
|
|
sizeoftensor = 0;
|
|
|
|
pointmtrindex = 0;
|
|
|
|
pointparamindex = 0;
|
|
|
|
pointmarkindex = 0;
|
|
|
|
point2simindex = 0;
|
|
|
|
pointinsradiusindex = 0;
|
|
|
|
elemattribindex = 0;
|
|
|
|
volumeboundindex = 0;
|
|
|
|
shmarkindex = 0;
|
|
|
|
areaboundindex = 0;
|
|
|
|
checksubsegflag = 0;
|
|
|
|
checksubfaceflag = 0;
|
|
|
|
checkconstraints = 0;
|
|
|
|
nonconvex = 0;
|
|
|
|
autofliplinklevel = 1;
|
|
|
|
useinsertradius = 0;
|
|
|
|
samples = 0l;
|
|
|
|
randomseed = 1l;
|
|
|
|
minfaceang = minfacetdihed = PI;
|
|
|
|
tetprism_vol_sum = 0.0;
|
|
|
|
longest = minedgelength = 0.0;
|
|
|
|
xmax = xmin = ymax = ymin = zmax = zmin = 0.0;
|
|
|
|
|
|
|
|
insegments = 0l;
|
|
|
|
hullsize = 0l;
|
|
|
|
meshedges = meshhulledges = 0l;
|
|
|
|
steinerleft = -1;
|
|
|
|
dupverts = 0l;
|
|
|
|
unuverts = 0l;
|
|
|
|
nonregularcount = 0l;
|
|
|
|
st_segref_count = st_facref_count = st_volref_count = 0l;
|
|
|
|
fillregioncount = cavitycount = cavityexpcount = 0l;
|
|
|
|
flip14count = flip26count = flipn2ncount = 0l;
|
|
|
|
flip23count = flip32count = flip44count = flip41count = 0l;
|
|
|
|
flip22count = flip31count = 0l;
|
|
|
|
totalworkmemory = 0l;
|
|
|
|
|
|
|
|
} // tetgenmesh()
|
|
|
|
|
|
|
|
void freememory() {
|
|
|
|
if (bgm != NULL) {
|
|
|
|
delete bgm;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (points != (memorypool*)NULL) {
|
|
|
|
delete points;
|
|
|
|
delete[] dummypoint;
|
|
|
|
}
|
|
|
|
if (tetrahedrons != (memorypool*)NULL) {
|
|
|
|
delete tetrahedrons;
|
|
|
|
}
|
|
|
|
if (subfaces != (memorypool*)NULL) {
|
|
|
|
delete subfaces;
|
|
|
|
delete subsegs;
|
|
|
|
}
|
|
|
|
if (tet2segpool != NULL) {
|
|
|
|
delete tet2segpool;
|
|
|
|
delete tet2subpool;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (badtetrahedrons) {
|
|
|
|
delete badtetrahedrons;
|
|
|
|
}
|
|
|
|
if (badsubfacs) {
|
|
|
|
delete badsubfacs;
|
|
|
|
}
|
|
|
|
if (badsubsegs) {
|
|
|
|
delete badsubsegs;
|
|
|
|
}
|
|
|
|
if (encseglist) {
|
|
|
|
delete encseglist;
|
|
|
|
}
|
|
|
|
if (encshlist) {
|
|
|
|
delete encshlist;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (flippool != NULL) {
|
|
|
|
delete flippool;
|
|
|
|
delete unflipqueue;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (cavetetlist != NULL) {
|
|
|
|
delete cavetetlist;
|
|
|
|
delete cavebdrylist;
|
|
|
|
delete caveoldtetlist;
|
|
|
|
delete cavetetvertlist;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (caveshlist != NULL) {
|
|
|
|
delete caveshlist;
|
|
|
|
delete caveshbdlist;
|
|
|
|
delete cavesegshlist;
|
|
|
|
delete cavetetshlist;
|
|
|
|
delete cavetetseglist;
|
|
|
|
delete caveencshlist;
|
|
|
|
delete caveencseglist;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (subsegstack != NULL) {
|
|
|
|
delete subsegstack;
|
|
|
|
delete subfacstack;
|
|
|
|
delete subvertstack;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (idx2facetlist != NULL) {
|
|
|
|
delete[] idx2facetlist;
|
|
|
|
delete[] facetverticeslist;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (segmentendpointslist != NULL) {
|
|
|
|
delete[] segmentendpointslist;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (highordertable != NULL) {
|
|
|
|
delete[] highordertable;
|
|
|
|
}
|
|
|
|
|
|
|
|
initializetetgenmesh();
|
|
|
|
}
|
|
|
|
|
|
|
|
tetgenmesh() { initializetetgenmesh(); }
|
|
|
|
|
|
|
|
~tetgenmesh() { freememory(); } // ~tetgenmesh()
|
|
|
|
|
|
|
|
}; // End of class tetgenmesh.
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// tetrahedralize() Interface for using TetGen's library to generate //
|
|
|
|
// Delaunay tetrahedralizations, constrained Delaunay //
|
|
|
|
// tetrahedralizations, quality tetrahedral meshes. //
|
|
|
|
// //
|
|
|
|
// 'in' is an object of 'tetgenio' which contains a PLC you want to tetrahed-//
|
|
|
|
// ralize or a previously generated tetrahedral mesh you want to refine. It //
|
|
|
|
// must not be a NULL. 'out' is another object of 'tetgenio' for storing the //
|
|
|
|
// generated tetrahedral mesh. It can be a NULL. If so, the output will be //
|
|
|
|
// saved to file(s). If 'bgmin' != NULL, it contains a background mesh which //
|
|
|
|
// defines a mesh size function. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
void tetrahedralize(tetgenbehavior* b, tetgenio* in, tetgenio* out, tetgenio* addin = NULL,
|
|
|
|
tetgenio* bgmin = NULL);
|
|
|
|
|
|
|
|
#ifdef TETLIBRARY
|
|
|
|
void tetrahedralize(char* switches, tetgenio* in, tetgenio* out, tetgenio* addin = NULL,
|
|
|
|
tetgenio* bgmin = NULL);
|
|
|
|
#endif // #ifdef TETLIBRARY
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// terminatetetgen() Terminate TetGen with a given exit code. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// selfint_event, a structure to report self-intersections.
|
|
|
|
//
|
|
|
|
// - e_type, report the type of self-intersections,
|
|
|
|
// it may be one of:
|
|
|
|
// 0, reserved.
|
|
|
|
// 1, two edges intersect,
|
|
|
|
// 2, an edge and a triangle intersect,
|
|
|
|
// 3, two triangles intersect,
|
|
|
|
// 4, two edges are overlapping,
|
|
|
|
// 5, an edge and a triangle are overlapping,
|
|
|
|
// 6, two triangles are overlapping,
|
|
|
|
// 7, a vertex lies in an edge,
|
|
|
|
// 8, a vertex lies in a facet,
|
|
|
|
|
|
|
|
class selfint_event {
|
|
|
|
public:
|
|
|
|
int e_type;
|
|
|
|
int f_marker1; // Tag of the 1st facet.
|
|
|
|
int s_marker1; // Tag of the 1st segment.
|
|
|
|
int f_vertices1[3];
|
|
|
|
int f_marker2; // Tag of the 2nd facet.
|
|
|
|
int s_marker2; // Tag of the 2nd segment.
|
|
|
|
int f_vertices2[3];
|
|
|
|
REAL int_point[3];
|
|
|
|
selfint_event() {
|
|
|
|
e_type = 0;
|
|
|
|
f_marker1 = f_marker2 = 0;
|
|
|
|
s_marker1 = s_marker2 = 0;
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
static selfint_event sevent;
|
|
|
|
|
|
|
|
inline void terminatetetgen(tetgenmesh* m, int x) {
|
|
|
|
#ifdef TETLIBRARY
|
|
|
|
throw x;
|
|
|
|
#else
|
|
|
|
switch (x) {
|
|
|
|
case 1: // Out of memory.
|
|
|
|
printf("Error: Out of memory.\n");
|
|
|
|
break;
|
|
|
|
case 2: // Encounter an internal error.
|
|
|
|
printf("Please report this bug to Hang.Si@wias-berlin.de. Include\n");
|
|
|
|
printf(" the message above, your input data set, and the exact\n");
|
|
|
|
printf(" command line you used to run this program, thank you.\n");
|
|
|
|
break;
|
|
|
|
case 3:
|
|
|
|
printf("A self-intersection was detected. Program stopped.\n");
|
|
|
|
printf("Hint: use -d option to detect all self-intersections.\n");
|
|
|
|
break;
|
|
|
|
case 4:
|
|
|
|
printf("A very small input feature size was detected. Program stopped.\n");
|
|
|
|
if (m) {
|
|
|
|
printf("Hint: use -T option to set a smaller tolerance. Current is %g\n",
|
|
|
|
m->b->epsilon);
|
|
|
|
}
|
|
|
|
break;
|
|
|
|
case 5:
|
|
|
|
printf("Two very close input facets were detected. Program stopped.\n");
|
|
|
|
printf("Hint: use -Y option to avoid adding Steiner points in boundary.\n");
|
|
|
|
break;
|
|
|
|
case 10:
|
|
|
|
printf("An input error was detected. Program stopped.\n");
|
|
|
|
break;
|
|
|
|
} // switch (x)
|
|
|
|
exit(x);
|
|
|
|
#endif // #ifdef TETLIBRARY
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Primitives for tetrahedra //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// encode() compress a handle into a single pointer. It relies on the
|
|
|
|
// assumption that all addresses of tetrahedra are aligned to sixteen-
|
|
|
|
// byte boundaries, so that the last four significant bits are zero.
|
|
|
|
|
|
|
|
inline tetgenmesh::tetrahedron tetgenmesh::encode(triface& t) {
|
|
|
|
return (tetrahedron)((uintptr_t)(t).tet | (uintptr_t)(t).ver);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline tetgenmesh::tetrahedron tetgenmesh::encode2(tetrahedron* ptr, int ver) {
|
|
|
|
return (tetrahedron)((uintptr_t)(ptr) | (uintptr_t)(ver));
|
|
|
|
}
|
|
|
|
|
|
|
|
// decode() converts a pointer to a handle. The version is extracted from
|
|
|
|
// the four least significant bits of the pointer.
|
|
|
|
|
|
|
|
inline void tetgenmesh::decode(tetrahedron ptr, triface& t) {
|
|
|
|
(t).ver = (int)((uintptr_t)(ptr) & (uintptr_t)15);
|
|
|
|
(t).tet = (tetrahedron*)((uintptr_t)(ptr) ^ (uintptr_t)(t).ver);
|
|
|
|
}
|
|
|
|
|
|
|
|
// bond() connects two tetrahedra together. (t1,v1) and (t2,v2) must
|
|
|
|
// refer to the same face and the same edge.
|
|
|
|
|
|
|
|
inline void tetgenmesh::bond(triface& t1, triface& t2) {
|
|
|
|
t1.tet[t1.ver & 3] = encode2(t2.tet, bondtbl[t1.ver][t2.ver]);
|
|
|
|
t2.tet[t2.ver & 3] = encode2(t1.tet, bondtbl[t2.ver][t1.ver]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// dissolve() a bond (from one side).
|
|
|
|
|
|
|
|
inline void tetgenmesh::dissolve(triface& t) { t.tet[t.ver & 3] = NULL; }
|
|
|
|
|
|
|
|
// enext() finds the next edge (counterclockwise) in the same face.
|
|
|
|
|
|
|
|
inline void tetgenmesh::enext(triface& t1, triface& t2) {
|
|
|
|
t2.tet = t1.tet;
|
|
|
|
t2.ver = enexttbl[t1.ver];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::enextself(triface& t) { t.ver = enexttbl[t.ver]; }
|
|
|
|
|
|
|
|
// eprev() finds the next edge (clockwise) in the same face.
|
|
|
|
|
|
|
|
inline void tetgenmesh::eprev(triface& t1, triface& t2) {
|
|
|
|
t2.tet = t1.tet;
|
|
|
|
t2.ver = eprevtbl[t1.ver];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::eprevself(triface& t) { t.ver = eprevtbl[t.ver]; }
|
|
|
|
|
|
|
|
// esym() finds the reversed edge. It is in the other face of the
|
|
|
|
// same tetrahedron.
|
|
|
|
|
|
|
|
inline void tetgenmesh::esym(triface& t1, triface& t2) {
|
|
|
|
(t2).tet = (t1).tet;
|
|
|
|
(t2).ver = esymtbl[(t1).ver];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::esymself(triface& t) { (t).ver = esymtbl[(t).ver]; }
|
|
|
|
|
|
|
|
// enextesym() finds the reversed edge of the next edge. It is in the other
|
|
|
|
// face of the same tetrahedron. It is the combination esym() * enext().
|
|
|
|
|
|
|
|
inline void tetgenmesh::enextesym(triface& t1, triface& t2) {
|
|
|
|
t2.tet = t1.tet;
|
|
|
|
t2.ver = enextesymtbl[t1.ver];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::enextesymself(triface& t) { t.ver = enextesymtbl[t.ver]; }
|
|
|
|
|
|
|
|
// eprevesym() finds the reversed edge of the previous edge.
|
|
|
|
|
|
|
|
inline void tetgenmesh::eprevesym(triface& t1, triface& t2) {
|
|
|
|
t2.tet = t1.tet;
|
|
|
|
t2.ver = eprevesymtbl[t1.ver];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::eprevesymself(triface& t) { t.ver = eprevesymtbl[t.ver]; }
|
|
|
|
|
|
|
|
// eorgoppo() Finds the opposite face of the origin of the current edge.
|
|
|
|
// Return the opposite edge of the current edge.
|
|
|
|
|
|
|
|
inline void tetgenmesh::eorgoppo(triface& t1, triface& t2) {
|
|
|
|
t2.tet = t1.tet;
|
|
|
|
t2.ver = eorgoppotbl[t1.ver];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::eorgoppoself(triface& t) { t.ver = eorgoppotbl[t.ver]; }
|
|
|
|
|
|
|
|
// edestoppo() Finds the opposite face of the destination of the current
|
|
|
|
// edge. Return the opposite edge of the current edge.
|
|
|
|
|
|
|
|
inline void tetgenmesh::edestoppo(triface& t1, triface& t2) {
|
|
|
|
t2.tet = t1.tet;
|
|
|
|
t2.ver = edestoppotbl[t1.ver];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::edestoppoself(triface& t) { t.ver = edestoppotbl[t.ver]; }
|
|
|
|
|
|
|
|
// fsym() finds the adjacent tetrahedron at the same face and the same edge.
|
|
|
|
|
|
|
|
inline void tetgenmesh::fsym(triface& t1, triface& t2) {
|
|
|
|
decode((t1).tet[(t1).ver & 3], t2);
|
|
|
|
t2.ver = fsymtbl[t1.ver][t2.ver];
|
|
|
|
}
|
|
|
|
|
|
|
|
#define fsymself(t) \
|
|
|
|
t1ver = (t).ver; \
|
|
|
|
decode((t).tet[(t).ver & 3], (t)); \
|
|
|
|
(t).ver = fsymtbl[t1ver][(t).ver]
|
|
|
|
|
|
|
|
// fnext() finds the next face while rotating about an edge according to
|
|
|
|
// a right-hand rule. The face is in the adjacent tetrahedron. It is
|
|
|
|
// the combination: fsym() * esym().
|
|
|
|
|
|
|
|
inline void tetgenmesh::fnext(triface& t1, triface& t2) {
|
|
|
|
decode(t1.tet[facepivot1[t1.ver]], t2);
|
|
|
|
t2.ver = facepivot2[t1.ver][t2.ver];
|
|
|
|
}
|
|
|
|
|
|
|
|
#define fnextself(t) \
|
|
|
|
t1ver = (t).ver; \
|
|
|
|
decode((t).tet[facepivot1[(t).ver]], (t)); \
|
|
|
|
(t).ver = facepivot2[t1ver][(t).ver]
|
|
|
|
|
|
|
|
// The following primtives get or set the origin, destination, face apex,
|
|
|
|
// or face opposite of an ordered tetrahedron.
|
|
|
|
|
|
|
|
inline tetgenmesh::point tetgenmesh::org(triface& t) { return (point)(t).tet[orgpivot[(t).ver]]; }
|
|
|
|
|
|
|
|
inline tetgenmesh::point tetgenmesh::dest(triface& t) { return (point)(t).tet[destpivot[(t).ver]]; }
|
|
|
|
|
|
|
|
inline tetgenmesh::point tetgenmesh::apex(triface& t) { return (point)(t).tet[apexpivot[(t).ver]]; }
|
|
|
|
|
|
|
|
inline tetgenmesh::point tetgenmesh::oppo(triface& t) { return (point)(t).tet[oppopivot[(t).ver]]; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::setorg(triface& t, point p) {
|
|
|
|
(t).tet[orgpivot[(t).ver]] = (tetrahedron)(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::setdest(triface& t, point p) {
|
|
|
|
(t).tet[destpivot[(t).ver]] = (tetrahedron)(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::setapex(triface& t, point p) {
|
|
|
|
(t).tet[apexpivot[(t).ver]] = (tetrahedron)(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::setoppo(triface& t, point p) {
|
|
|
|
(t).tet[oppopivot[(t).ver]] = (tetrahedron)(p);
|
|
|
|
}
|
|
|
|
|
|
|
|
#define setvertices(t, torg, tdest, tapex, toppo) \
|
|
|
|
(t).tet[orgpivot[(t).ver]] = (tetrahedron)(torg); \
|
|
|
|
(t).tet[destpivot[(t).ver]] = (tetrahedron)(tdest); \
|
|
|
|
(t).tet[apexpivot[(t).ver]] = (tetrahedron)(tapex); \
|
|
|
|
(t).tet[oppopivot[(t).ver]] = (tetrahedron)(toppo)
|
|
|
|
|
|
|
|
// Check or set a tetrahedron's attributes.
|
|
|
|
|
|
|
|
inline REAL tetgenmesh::elemattribute(tetrahedron* ptr, int attnum) {
|
|
|
|
return ((REAL*)(ptr))[elemattribindex + attnum];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::setelemattribute(tetrahedron* ptr, int attnum, REAL value) {
|
|
|
|
((REAL*)(ptr))[elemattribindex + attnum] = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Check or set a tetrahedron's maximum volume bound.
|
|
|
|
|
|
|
|
inline REAL tetgenmesh::volumebound(tetrahedron* ptr) { return ((REAL*)(ptr))[volumeboundindex]; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::setvolumebound(tetrahedron* ptr, REAL value) {
|
|
|
|
((REAL*)(ptr))[volumeboundindex] = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get or set a tetrahedron's index (only used for output).
|
|
|
|
// These two routines use the reserved slot ptr[10].
|
|
|
|
|
|
|
|
inline int tetgenmesh::elemindex(tetrahedron* ptr) {
|
|
|
|
int* iptr = (int*)&(ptr[10]);
|
|
|
|
return iptr[0];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::setelemindex(tetrahedron* ptr, int value) {
|
|
|
|
int* iptr = (int*)&(ptr[10]);
|
|
|
|
iptr[0] = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Get or set a tetrahedron's marker.
|
|
|
|
// Set 'value = 0' cleans all the face/edge flags.
|
|
|
|
|
|
|
|
inline int tetgenmesh::elemmarker(tetrahedron* ptr) { return ((int*)(ptr))[elemmarkerindex]; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::setelemmarker(tetrahedron* ptr, int value) {
|
|
|
|
((int*)(ptr))[elemmarkerindex] = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
// infect(), infected(), uninfect() -- primitives to flag or unflag a
|
|
|
|
// tetrahedron. The last bit of the element marker is flagged (1)
|
|
|
|
// or unflagged (0).
|
|
|
|
|
|
|
|
inline void tetgenmesh::infect(triface& t) { ((int*)(t.tet))[elemmarkerindex] |= 1; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::uninfect(triface& t) { ((int*)(t.tet))[elemmarkerindex] &= ~1; }
|
|
|
|
|
|
|
|
inline bool tetgenmesh::infected(triface& t) { return (((int*)(t.tet))[elemmarkerindex] & 1) != 0; }
|
|
|
|
|
|
|
|
// marktest(), marktested(), unmarktest() -- primitives to flag or unflag a
|
|
|
|
// tetrahedron. Use the second lowerest bit of the element marker.
|
|
|
|
|
|
|
|
inline void tetgenmesh::marktest(triface& t) { ((int*)(t.tet))[elemmarkerindex] |= 2; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::unmarktest(triface& t) { ((int*)(t.tet))[elemmarkerindex] &= ~2; }
|
|
|
|
|
|
|
|
inline bool tetgenmesh::marktested(triface& t) {
|
|
|
|
return (((int*)(t.tet))[elemmarkerindex] & 2) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// markface(), unmarkface(), facemarked() -- primitives to flag or unflag a
|
|
|
|
// face of a tetrahedron. From the last 3rd to 6th bits are used for
|
|
|
|
// face markers, e.g., the last third bit corresponds to loc = 0.
|
|
|
|
|
|
|
|
inline void tetgenmesh::markface(triface& t) {
|
|
|
|
((int*)(t.tet))[elemmarkerindex] |= (4 << (t.ver & 3));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::unmarkface(triface& t) {
|
|
|
|
((int*)(t.tet))[elemmarkerindex] &= ~(4 << (t.ver & 3));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool tetgenmesh::facemarked(triface& t) {
|
|
|
|
return (((int*)(t.tet))[elemmarkerindex] & (4 << (t.ver & 3))) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// markedge(), unmarkedge(), edgemarked() -- primitives to flag or unflag an
|
|
|
|
// edge of a tetrahedron. From the last 7th to 12th bits are used for
|
|
|
|
// edge markers, e.g., the last 7th bit corresponds to the 0th edge, etc.
|
|
|
|
// Remark: The last 7th bit is marked by 2^6 = 64.
|
|
|
|
|
|
|
|
inline void tetgenmesh::markedge(triface& t) {
|
|
|
|
((int*)(t.tet))[elemmarkerindex] |= (int)(64 << ver2edge[(t).ver]);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::unmarkedge(triface& t) {
|
|
|
|
((int*)(t.tet))[elemmarkerindex] &= ~(int)(64 << ver2edge[(t).ver]);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool tetgenmesh::edgemarked(triface& t) {
|
|
|
|
return (((int*)(t.tet))[elemmarkerindex] & (int)(64 << ver2edge[(t).ver])) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// marktest2(), unmarktest2(), marktest2ed() -- primitives to flag and unflag
|
|
|
|
// a tetrahedron. The 13th bit (2^12 = 4096) is used for this flag.
|
|
|
|
|
|
|
|
inline void tetgenmesh::marktest2(triface& t) { ((int*)(t.tet))[elemmarkerindex] |= (int)(4096); }
|
|
|
|
|
|
|
|
inline void tetgenmesh::unmarktest2(triface& t) {
|
|
|
|
((int*)(t.tet))[elemmarkerindex] &= ~(int)(4096);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool tetgenmesh::marktest2ed(triface& t) {
|
|
|
|
return (((int*)(t.tet))[elemmarkerindex] & (int)(4096)) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// elemcounter(), setelemcounter() -- primitives to read or ser a (small)
|
|
|
|
// integer counter in this tet. It is saved from the 16th bit. On 32 bit
|
|
|
|
// system, the range of the counter is [0, 2^15 = 32768].
|
|
|
|
|
|
|
|
inline int tetgenmesh::elemcounter(triface& t) { return (((int*)(t.tet))[elemmarkerindex]) >> 16; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::setelemcounter(triface& t, int value) {
|
|
|
|
int c = ((int*)(t.tet))[elemmarkerindex];
|
|
|
|
// Clear the old counter while keep the other flags.
|
|
|
|
c &= 65535; // sum_{i=0^15} 2^i
|
|
|
|
c |= (value << 16);
|
|
|
|
((int*)(t.tet))[elemmarkerindex] = c;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::increaseelemcounter(triface& t) {
|
|
|
|
int c = elemcounter(t);
|
|
|
|
setelemcounter(t, c + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::decreaseelemcounter(triface& t) {
|
|
|
|
int c = elemcounter(t);
|
|
|
|
setelemcounter(t, c - 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ishulltet() tests if t is a hull tetrahedron.
|
|
|
|
|
|
|
|
inline bool tetgenmesh::ishulltet(triface& t) { return (point)(t).tet[7] == dummypoint; }
|
|
|
|
|
|
|
|
// isdeadtet() tests if t is a tetrahedron is dead.
|
|
|
|
|
|
|
|
inline bool tetgenmesh::isdeadtet(triface& t) { return ((t.tet == NULL) || (t.tet[4] == NULL)); }
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Primitives for subfaces and subsegments //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// Each subface contains three pointers to its neighboring subfaces, with
|
|
|
|
// edge versions. To save memory, both information are kept in a single
|
|
|
|
// pointer. To make this possible, all subfaces are aligned to eight-byte
|
|
|
|
// boundaries, so that the last three bits of each pointer are zeros. An
|
|
|
|
// edge version (in the range 0 to 5) is compressed into the last three
|
|
|
|
// bits of each pointer by 'sencode()'. 'sdecode()' decodes a pointer,
|
|
|
|
// extracting an edge version and a pointer to the beginning of a subface.
|
|
|
|
|
|
|
|
inline void tetgenmesh::sdecode(shellface sptr, face& s) {
|
|
|
|
s.shver = (int)((uintptr_t)(sptr) & (uintptr_t)7);
|
|
|
|
s.sh = (shellface*)((uintptr_t)(sptr) ^ (uintptr_t)(s.shver));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline tetgenmesh::shellface tetgenmesh::sencode(face& s) {
|
|
|
|
return (shellface)((uintptr_t)s.sh | (uintptr_t)s.shver);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline tetgenmesh::shellface tetgenmesh::sencode2(shellface* sh, int shver) {
|
|
|
|
return (shellface)((uintptr_t)sh | (uintptr_t)shver);
|
|
|
|
}
|
|
|
|
|
|
|
|
// sbond() bonds two subfaces (s1) and (s2) together. s1 and s2 must refer
|
|
|
|
// to the same edge. No requirement is needed on their orientations.
|
|
|
|
|
|
|
|
inline void tetgenmesh::sbond(face& s1, face& s2) {
|
|
|
|
s1.sh[s1.shver >> 1] = sencode(s2);
|
|
|
|
s2.sh[s2.shver >> 1] = sencode(s1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// sbond1() bonds s1 <== s2, i.e., after bonding, s1 is pointing to s2,
|
|
|
|
// but s2 is not pointing to s1. s1 and s2 must refer to the same edge.
|
|
|
|
// No requirement is needed on their orientations.
|
|
|
|
|
|
|
|
inline void tetgenmesh::sbond1(face& s1, face& s2) { s1.sh[s1.shver >> 1] = sencode(s2); }
|
|
|
|
|
|
|
|
// Dissolve a subface bond (from one side). Note that the other subface
|
|
|
|
// will still think it's connected to this subface.
|
|
|
|
|
|
|
|
inline void tetgenmesh::sdissolve(face& s) { s.sh[s.shver >> 1] = NULL; }
|
|
|
|
|
|
|
|
// spivot() finds the adjacent subface (s2) for a given subface (s1).
|
|
|
|
// s1 and s2 share at the same edge.
|
|
|
|
|
|
|
|
inline void tetgenmesh::spivot(face& s1, face& s2) {
|
|
|
|
shellface sptr = s1.sh[s1.shver >> 1];
|
|
|
|
sdecode(sptr, s2);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::spivotself(face& s) {
|
|
|
|
shellface sptr = s.sh[s.shver >> 1];
|
|
|
|
sdecode(sptr, s);
|
|
|
|
}
|
|
|
|
|
|
|
|
// These primitives determine or set the origin, destination, or apex
|
|
|
|
// of a subface with respect to the edge version.
|
|
|
|
|
|
|
|
inline tetgenmesh::point tetgenmesh::sorg(face& s) { return (point)s.sh[sorgpivot[s.shver]]; }
|
|
|
|
|
|
|
|
inline tetgenmesh::point tetgenmesh::sdest(face& s) { return (point)s.sh[sdestpivot[s.shver]]; }
|
|
|
|
|
|
|
|
inline tetgenmesh::point tetgenmesh::sapex(face& s) { return (point)s.sh[sapexpivot[s.shver]]; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::setsorg(face& s, point pointptr) {
|
|
|
|
s.sh[sorgpivot[s.shver]] = (shellface)pointptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::setsdest(face& s, point pointptr) {
|
|
|
|
s.sh[sdestpivot[s.shver]] = (shellface)pointptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::setsapex(face& s, point pointptr) {
|
|
|
|
s.sh[sapexpivot[s.shver]] = (shellface)pointptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define setshvertices(s, pa, pb, pc) \
|
|
|
|
setsorg(s, pa); \
|
|
|
|
setsdest(s, pb); \
|
|
|
|
setsapex(s, pc)
|
|
|
|
|
|
|
|
// sesym() reserves the direction of the lead edge.
|
|
|
|
|
|
|
|
inline void tetgenmesh::sesym(face& s1, face& s2) {
|
|
|
|
s2.sh = s1.sh;
|
|
|
|
s2.shver = (s1.shver ^ 1); // Inverse the last bit.
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::sesymself(face& s) { s.shver ^= 1; }
|
|
|
|
|
|
|
|
// senext() finds the next edge (counterclockwise) in the same orientation
|
|
|
|
// of this face.
|
|
|
|
|
|
|
|
inline void tetgenmesh::senext(face& s1, face& s2) {
|
|
|
|
s2.sh = s1.sh;
|
|
|
|
s2.shver = snextpivot[s1.shver];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::senextself(face& s) { s.shver = snextpivot[s.shver]; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::senext2(face& s1, face& s2) {
|
|
|
|
s2.sh = s1.sh;
|
|
|
|
s2.shver = snextpivot[snextpivot[s1.shver]];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::senext2self(face& s) { s.shver = snextpivot[snextpivot[s.shver]]; }
|
|
|
|
|
|
|
|
// Check or set a subface's maximum area bound.
|
|
|
|
|
|
|
|
inline REAL tetgenmesh::areabound(face& s) { return ((REAL*)(s.sh))[areaboundindex]; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::setareabound(face& s, REAL value) {
|
|
|
|
((REAL*)(s.sh))[areaboundindex] = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
// These two primitives read or set a shell marker. Shell markers are used
|
|
|
|
// to hold user boundary information.
|
|
|
|
|
|
|
|
inline int tetgenmesh::shellmark(face& s) { return ((int*)(s.sh))[shmarkindex]; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::setshellmark(face& s, int value) { ((int*)(s.sh))[shmarkindex] = value; }
|
|
|
|
|
|
|
|
// sinfect(), sinfected(), suninfect() -- primitives to flag or unflag a
|
|
|
|
// subface. The last bit of ((int *) ((s).sh))[shmarkindex+1] is flagged.
|
|
|
|
|
|
|
|
inline void tetgenmesh::sinfect(face& s) {
|
|
|
|
((int*)((s).sh))[shmarkindex + 1] = (((int*)((s).sh))[shmarkindex + 1] | (int)1);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::suninfect(face& s) {
|
|
|
|
((int*)((s).sh))[shmarkindex + 1] = (((int*)((s).sh))[shmarkindex + 1] & ~(int)1);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test a subface for viral infection.
|
|
|
|
|
|
|
|
inline bool tetgenmesh::sinfected(face& s) {
|
|
|
|
return (((int*)((s).sh))[shmarkindex + 1] & (int)1) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// smarktest(), smarktested(), sunmarktest() -- primitives to flag or unflag
|
|
|
|
// a subface. The last 2nd bit of the integer is flagged.
|
|
|
|
|
|
|
|
inline void tetgenmesh::smarktest(face& s) {
|
|
|
|
((int*)((s).sh))[shmarkindex + 1] = (((int*)((s).sh))[shmarkindex + 1] | (int)2);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::sunmarktest(face& s) {
|
|
|
|
((int*)((s).sh))[shmarkindex + 1] = (((int*)((s).sh))[shmarkindex + 1] & ~(int)2);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool tetgenmesh::smarktested(face& s) {
|
|
|
|
return ((((int*)((s).sh))[shmarkindex + 1] & (int)2) != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// smarktest2(), smarktest2ed(), sunmarktest2() -- primitives to flag or
|
|
|
|
// unflag a subface. The last 3rd bit of the integer is flagged.
|
|
|
|
|
|
|
|
inline void tetgenmesh::smarktest2(face& s) {
|
|
|
|
((int*)((s).sh))[shmarkindex + 1] = (((int*)((s).sh))[shmarkindex + 1] | (int)4);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::sunmarktest2(face& s) {
|
|
|
|
((int*)((s).sh))[shmarkindex + 1] = (((int*)((s).sh))[shmarkindex + 1] & ~(int)4);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool tetgenmesh::smarktest2ed(face& s) {
|
|
|
|
return ((((int*)((s).sh))[shmarkindex + 1] & (int)4) != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// The last 4th bit of ((int *) ((s).sh))[shmarkindex+1] is flagged.
|
|
|
|
|
|
|
|
inline void tetgenmesh::smarktest3(face& s) {
|
|
|
|
((int*)((s).sh))[shmarkindex + 1] = (((int*)((s).sh))[shmarkindex + 1] | (int)8);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::sunmarktest3(face& s) {
|
|
|
|
((int*)((s).sh))[shmarkindex + 1] = (((int*)((s).sh))[shmarkindex + 1] & ~(int)8);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline bool tetgenmesh::smarktest3ed(face& s) {
|
|
|
|
return ((((int*)((s).sh))[shmarkindex + 1] & (int)8) != 0);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Each facet has a unique index (automatically indexed). Starting from '0'.
|
|
|
|
// We save this index in the same field of the shell type.
|
|
|
|
|
|
|
|
inline void tetgenmesh::setfacetindex(face& s, int value) {
|
|
|
|
((int*)(s.sh))[shmarkindex + 2] = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline int tetgenmesh::getfacetindex(face& s) { return ((int*)(s.sh))[shmarkindex + 2]; }
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Primitives for interacting between tetrahedra and subfaces //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// tsbond() bond a tetrahedron (t) and a subface (s) together.
|
|
|
|
// Note that t and s must be the same face and the same edge. Moreover,
|
|
|
|
// t and s have the same orientation.
|
|
|
|
// Since the edge number in t and in s can be any number in {0,1,2}. We bond
|
|
|
|
// the edge in s which corresponds to t's 0th edge, and vice versa.
|
|
|
|
|
|
|
|
inline void tetgenmesh::tsbond(triface& t, face& s) {
|
|
|
|
if ((t).tet[9] == NULL) {
|
|
|
|
// Allocate space for this tet.
|
|
|
|
(t).tet[9] = (tetrahedron)tet2subpool->alloc();
|
|
|
|
// Initialize.
|
|
|
|
for (int i = 0; i < 4; i++) {
|
|
|
|
((shellface*)(t).tet[9])[i] = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Bond t <== s.
|
|
|
|
((shellface*)(t).tet[9])[(t).ver & 3] = sencode2((s).sh, tsbondtbl[t.ver][s.shver]);
|
|
|
|
// Bond s <== t.
|
|
|
|
s.sh[9 + ((s).shver & 1)] = (shellface)encode2((t).tet, stbondtbl[t.ver][s.shver]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// tspivot() finds a subface (s) abutting on the given tetrahdera (t).
|
|
|
|
// Return s.sh = NULL if there is no subface at t. Otherwise, return
|
|
|
|
// the subface s, and s and t must be at the same edge wth the same
|
|
|
|
// orientation.
|
|
|
|
|
|
|
|
inline void tetgenmesh::tspivot(triface& t, face& s) {
|
|
|
|
if ((t).tet[9] == NULL) {
|
|
|
|
(s).sh = NULL;
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// Get the attached subface s.
|
|
|
|
sdecode(((shellface*)(t).tet[9])[(t).ver & 3], (s));
|
|
|
|
(s).shver = tspivottbl[t.ver][s.shver];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Quickly check if the handle (t, v) is a subface.
|
|
|
|
#define issubface(t) ((t).tet[9] && ((t).tet[9])[(t).ver & 3])
|
|
|
|
|
|
|
|
// stpivot() finds a tetrahedron (t) abutting a given subface (s).
|
|
|
|
// Return the t (if it exists) with the same edge and the same
|
|
|
|
// orientation of s.
|
|
|
|
|
|
|
|
inline void tetgenmesh::stpivot(face& s, triface& t) {
|
|
|
|
decode((tetrahedron)s.sh[9 + (s.shver & 1)], t);
|
|
|
|
if ((t).tet == NULL) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
(t).ver = stpivottbl[t.ver][s.shver];
|
|
|
|
}
|
|
|
|
|
|
|
|
// Quickly check if this subface is attached to a tetrahedron.
|
|
|
|
|
|
|
|
#define isshtet(s) ((s).sh[9 + ((s).shver & 1)])
|
|
|
|
|
|
|
|
// tsdissolve() dissolve a bond (from the tetrahedron side).
|
|
|
|
|
|
|
|
inline void tetgenmesh::tsdissolve(triface& t) {
|
|
|
|
if ((t).tet[9] != NULL) {
|
|
|
|
((shellface*)(t).tet[9])[(t).ver & 3] = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// stdissolve() dissolve a bond (from the subface side).
|
|
|
|
|
|
|
|
inline void tetgenmesh::stdissolve(face& s) {
|
|
|
|
(s).sh[9] = NULL;
|
|
|
|
(s).sh[10] = NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Primitives for interacting between subfaces and segments //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// ssbond() bond a subface to a subsegment.
|
|
|
|
|
|
|
|
inline void tetgenmesh::ssbond(face& s, face& edge) {
|
|
|
|
s.sh[6 + (s.shver >> 1)] = sencode(edge);
|
|
|
|
edge.sh[0] = sencode(s);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::ssbond1(face& s, face& edge) {
|
|
|
|
s.sh[6 + (s.shver >> 1)] = sencode(edge);
|
|
|
|
// edge.sh[0] = sencode(s);
|
|
|
|
}
|
|
|
|
|
|
|
|
// ssdisolve() dissolve a bond (from the subface side)
|
|
|
|
|
|
|
|
inline void tetgenmesh::ssdissolve(face& s) { s.sh[6 + (s.shver >> 1)] = NULL; }
|
|
|
|
|
|
|
|
// sspivot() finds a subsegment abutting a subface.
|
|
|
|
|
|
|
|
inline void tetgenmesh::sspivot(face& s, face& edge) {
|
|
|
|
sdecode((shellface)s.sh[6 + (s.shver >> 1)], edge);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Quickly check if the edge is a subsegment.
|
|
|
|
|
|
|
|
#define isshsubseg(s) ((s).sh[6 + ((s).shver >> 1)])
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Primitives for interacting between tetrahedra and segments //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
inline void tetgenmesh::tssbond1(triface& t, face& s) {
|
|
|
|
if ((t).tet[8] == NULL) {
|
|
|
|
// Allocate space for this tet.
|
|
|
|
(t).tet[8] = (tetrahedron)tet2segpool->alloc();
|
|
|
|
// Initialization.
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
|
|
((shellface*)(t).tet[8])[i] = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
((shellface*)(t).tet[8])[ver2edge[(t).ver]] = sencode((s));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::sstbond1(face& s, triface& t) { ((tetrahedron*)(s).sh)[9] = encode(t); }
|
|
|
|
|
|
|
|
inline void tetgenmesh::tssdissolve1(triface& t) {
|
|
|
|
if ((t).tet[8] != NULL) {
|
|
|
|
((shellface*)(t).tet[8])[ver2edge[(t).ver]] = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::sstdissolve1(face& s) { ((tetrahedron*)(s).sh)[9] = NULL; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::tsspivot1(triface& t, face& s) {
|
|
|
|
if ((t).tet[8] != NULL) {
|
|
|
|
sdecode(((shellface*)(t).tet[8])[ver2edge[(t).ver]], s);
|
|
|
|
} else {
|
|
|
|
(s).sh = NULL;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Quickly check whether 't' is a segment or not.
|
|
|
|
|
|
|
|
#define issubseg(t) ((t).tet[8] && ((t).tet[8])[ver2edge[(t).ver]])
|
|
|
|
|
|
|
|
inline void tetgenmesh::sstpivot1(face& s, triface& t) { decode((tetrahedron)s.sh[9], t); }
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Primitives for points //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
inline int tetgenmesh::pointmark(point pt) { return ((int*)(pt))[pointmarkindex]; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::setpointmark(point pt, int value) { ((int*)(pt))[pointmarkindex] = value; }
|
|
|
|
|
|
|
|
// These two primitives set and read the type of the point.
|
|
|
|
|
|
|
|
inline enum tetgenmesh::verttype tetgenmesh::pointtype(point pt) {
|
|
|
|
return (enum verttype)(((int*)(pt))[pointmarkindex + 1] >> (int)8);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::setpointtype(point pt, enum verttype value) {
|
|
|
|
((int*)(pt))[pointmarkindex + 1] =
|
|
|
|
((int)value << 8) + (((int*)(pt))[pointmarkindex + 1] & (int)255);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Read and set the geometry tag of the point (used by -s option).
|
|
|
|
|
|
|
|
inline int tetgenmesh::pointgeomtag(point pt) { return ((int*)(pt))[pointmarkindex + 2]; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::setpointgeomtag(point pt, int value) {
|
|
|
|
((int*)(pt))[pointmarkindex + 2] = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Read and set the u,v coordinates of the point (used by -s option).
|
|
|
|
|
|
|
|
inline REAL tetgenmesh::pointgeomuv(point pt, int i) { return pt[pointparamindex + i]; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::setpointgeomuv(point pt, int i, REAL value) {
|
|
|
|
pt[pointparamindex + i] = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
// pinfect(), puninfect(), pinfected() -- primitives to flag or unflag
|
|
|
|
// a point. The last bit of the integer '[pointindex+1]' is flagged.
|
|
|
|
|
|
|
|
inline void tetgenmesh::pinfect(point pt) { ((int*)(pt))[pointmarkindex + 1] |= (int)1; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::puninfect(point pt) { ((int*)(pt))[pointmarkindex + 1] &= ~(int)1; }
|
|
|
|
|
|
|
|
inline bool tetgenmesh::pinfected(point pt) {
|
|
|
|
return (((int*)(pt))[pointmarkindex + 1] & (int)1) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// pmarktest(), punmarktest(), pmarktested() -- more primitives to
|
|
|
|
// flag or unflag a point.
|
|
|
|
|
|
|
|
inline void tetgenmesh::pmarktest(point pt) { ((int*)(pt))[pointmarkindex + 1] |= (int)2; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::punmarktest(point pt) { ((int*)(pt))[pointmarkindex + 1] &= ~(int)2; }
|
|
|
|
|
|
|
|
inline bool tetgenmesh::pmarktested(point pt) {
|
|
|
|
return (((int*)(pt))[pointmarkindex + 1] & (int)2) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::pmarktest2(point pt) { ((int*)(pt))[pointmarkindex + 1] |= (int)4; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::punmarktest2(point pt) { ((int*)(pt))[pointmarkindex + 1] &= ~(int)4; }
|
|
|
|
|
|
|
|
inline bool tetgenmesh::pmarktest2ed(point pt) {
|
|
|
|
return (((int*)(pt))[pointmarkindex + 1] & (int)4) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::pmarktest3(point pt) { ((int*)(pt))[pointmarkindex + 1] |= (int)8; }
|
|
|
|
|
|
|
|
inline void tetgenmesh::punmarktest3(point pt) { ((int*)(pt))[pointmarkindex + 1] &= ~(int)8; }
|
|
|
|
|
|
|
|
inline bool tetgenmesh::pmarktest3ed(point pt) {
|
|
|
|
return (((int*)(pt))[pointmarkindex + 1] & (int)8) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// These following primitives set and read a pointer to a tetrahedron
|
|
|
|
// a subface/subsegment, a point, or a tet of background mesh.
|
|
|
|
|
|
|
|
inline tetgenmesh::tetrahedron tetgenmesh::point2tet(point pt) {
|
|
|
|
return ((tetrahedron*)(pt))[point2simindex];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::setpoint2tet(point pt, tetrahedron value) {
|
|
|
|
((tetrahedron*)(pt))[point2simindex] = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline tetgenmesh::point tetgenmesh::point2ppt(point pt) {
|
|
|
|
return (point)((tetrahedron*)(pt))[point2simindex + 1];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::setpoint2ppt(point pt, point value) {
|
|
|
|
((tetrahedron*)(pt))[point2simindex + 1] = (tetrahedron)value;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline tetgenmesh::shellface tetgenmesh::point2sh(point pt) {
|
|
|
|
return (shellface)((tetrahedron*)(pt))[point2simindex + 2];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::setpoint2sh(point pt, shellface value) {
|
|
|
|
((tetrahedron*)(pt))[point2simindex + 2] = (tetrahedron)value;
|
|
|
|
}
|
|
|
|
|
|
|
|
inline tetgenmesh::tetrahedron tetgenmesh::point2bgmtet(point pt) {
|
|
|
|
return ((tetrahedron*)(pt))[point2simindex + 3];
|
|
|
|
}
|
|
|
|
|
|
|
|
inline void tetgenmesh::setpoint2bgmtet(point pt, tetrahedron value) {
|
|
|
|
((tetrahedron*)(pt))[point2simindex + 3] = value;
|
|
|
|
}
|
|
|
|
|
|
|
|
// The primitives for saving and getting the insertion radius.
|
|
|
|
inline void tetgenmesh::setpointinsradius(point pt, REAL value) { pt[pointinsradiusindex] = value; }
|
|
|
|
|
|
|
|
inline REAL tetgenmesh::getpointinsradius(point pt) { return pt[pointinsradiusindex]; }
|
|
|
|
|
|
|
|
inline bool tetgenmesh::issteinerpoint(point pt) {
|
|
|
|
return (pointtype(pt) == FREESEGVERTEX) || (pointtype(pt) == FREEFACETVERTEX) ||
|
|
|
|
(pointtype(pt) == FREEVOLVERTEX);
|
|
|
|
}
|
|
|
|
|
|
|
|
// point2tetorg() Get the tetrahedron whose origin is the point.
|
|
|
|
|
|
|
|
inline void tetgenmesh::point2tetorg(point pa, triface& searchtet) {
|
|
|
|
decode(point2tet(pa), searchtet);
|
|
|
|
if ((point)searchtet.tet[4] == pa) {
|
|
|
|
searchtet.ver = 11;
|
|
|
|
} else if ((point)searchtet.tet[5] == pa) {
|
|
|
|
searchtet.ver = 3;
|
|
|
|
} else if ((point)searchtet.tet[6] == pa) {
|
|
|
|
searchtet.ver = 7;
|
|
|
|
} else {
|
|
|
|
searchtet.ver = 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// point2shorg() Get the subface/segment whose origin is the point.
|
|
|
|
|
|
|
|
inline void tetgenmesh::point2shorg(point pa, face& searchsh) {
|
|
|
|
sdecode(point2sh(pa), searchsh);
|
|
|
|
if ((point)searchsh.sh[3] == pa) {
|
|
|
|
searchsh.shver = 0;
|
|
|
|
} else if ((point)searchsh.sh[4] == pa) {
|
|
|
|
searchsh.shver = (searchsh.sh[5] != NULL ? 2 : 1);
|
|
|
|
} else {
|
|
|
|
searchsh.shver = 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// farsorg() Return the origin of the subsegment.
|
|
|
|
// farsdest() Return the destination of the subsegment.
|
|
|
|
|
|
|
|
inline tetgenmesh::point tetgenmesh::farsorg(face& s) {
|
|
|
|
face travesh, neighsh;
|
|
|
|
|
|
|
|
travesh = s;
|
|
|
|
while (1) {
|
|
|
|
senext2(travesh, neighsh);
|
|
|
|
spivotself(neighsh);
|
|
|
|
if (neighsh.sh == NULL) break;
|
|
|
|
if (sorg(neighsh) != sorg(travesh)) sesymself(neighsh);
|
|
|
|
senext2(neighsh, travesh);
|
|
|
|
}
|
|
|
|
return sorg(travesh);
|
|
|
|
}
|
|
|
|
|
|
|
|
inline tetgenmesh::point tetgenmesh::farsdest(face& s) {
|
|
|
|
face travesh, neighsh;
|
|
|
|
|
|
|
|
travesh = s;
|
|
|
|
while (1) {
|
|
|
|
senext(travesh, neighsh);
|
|
|
|
spivotself(neighsh);
|
|
|
|
if (neighsh.sh == NULL) break;
|
|
|
|
if (sdest(neighsh) != sdest(travesh)) sesymself(neighsh);
|
|
|
|
senext(neighsh, travesh);
|
|
|
|
}
|
|
|
|
return sdest(travesh);
|
|
|
|
}
|
|
|
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
// //
|
|
|
|
// Linear algebra operators. //
|
|
|
|
// //
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
// dot() returns the dot product: v1 dot v2.
|
|
|
|
inline REAL tetgenmesh::dot(REAL* v1, REAL* v2) {
|
|
|
|
return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
// cross() computes the cross product: n = v1 cross v2.
|
|
|
|
inline void tetgenmesh::cross(REAL* v1, REAL* v2, REAL* n) {
|
|
|
|
n[0] = v1[1] * v2[2] - v2[1] * v1[2];
|
|
|
|
n[1] = -(v1[0] * v2[2] - v2[0] * v1[2]);
|
|
|
|
n[2] = v1[0] * v2[1] - v2[0] * v1[1];
|
|
|
|
}
|
|
|
|
|
|
|
|
// distance() computes the Euclidean distance between two points.
|
|
|
|
inline REAL tetgenmesh::distance(REAL* p1, REAL* p2) {
|
|
|
|
return sqrt((p2[0] - p1[0]) * (p2[0] - p1[0]) + (p2[1] - p1[1]) * (p2[1] - p1[1]) +
|
|
|
|
(p2[2] - p1[2]) * (p2[2] - p1[2]));
|
|
|
|
}
|
|
|
|
|
|
|
|
inline REAL tetgenmesh::norm2(REAL x, REAL y, REAL z) { return (x) * (x) + (y) * (y) + (z) * (z); }
|
|
|
|
|
|
|
|
#endif // #ifndef tetgenH
|