You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
32128 lines
1.3 MiB
32128 lines
1.3 MiB
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// TetGen // |
|
// // |
|
// A Quality Tetrahedral Mesh Generator and A 3D Delaunay Triangulator // |
|
// // |
|
// Version 1.5 // |
|
// August 18, 2018 // |
|
// // |
|
// Copyright (C) 2002--2018 // |
|
// // |
|
// TetGen is freely available through the website: http://www.tetgen.org. // |
|
// It may be copied, modified, and redistributed for non-commercial use. // |
|
// Please consult the file LICENSE for the detailed copyright notices. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
#include "tetgen.h" |
|
|
|
//// io_cxx /////////////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_node_call() Read a list of points from a file. // |
|
// // |
|
// 'infile' is the file handle contains the node list. It may point to a // |
|
// .node, or .poly or .smesh file. 'markers' indicates each node contains an // |
|
// additional marker (integer) or not. 'uvflag' indicates each node contains // |
|
// u,v coordinates or not. It is reuqired by a PSC. 'infilename' is the name // |
|
// of the file being read, it is only used in error messages. // |
|
// // |
|
// The 'firstnumber' (0 or 1) is automatically determined by the number of // |
|
// the first index of the first point. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenio::load_node_call(FILE* infile, int markers, int uvflag, char* infilename) { |
|
char inputline[INPUTLINESIZE]; |
|
char* stringptr; |
|
REAL x, y, z, attrib; |
|
int firstnode, currentmarker; |
|
int index, attribindex; |
|
int i, j; |
|
|
|
// Initialize 'pointlist', 'pointattributelist', and 'pointmarkerlist'. |
|
pointlist = new REAL[numberofpoints * 3]; |
|
if (pointlist == (REAL*)NULL) { |
|
terminatetetgen(NULL, 1); |
|
} |
|
if (numberofpointattributes > 0) { |
|
pointattributelist = new REAL[numberofpoints * numberofpointattributes]; |
|
if (pointattributelist == (REAL*)NULL) { |
|
terminatetetgen(NULL, 1); |
|
} |
|
} |
|
if (markers) { |
|
pointmarkerlist = new int[numberofpoints]; |
|
if (pointmarkerlist == (int*)NULL) { |
|
terminatetetgen(NULL, 1); |
|
} |
|
} |
|
if (uvflag) { |
|
pointparamlist = new pointparam[numberofpoints]; |
|
if (pointparamlist == NULL) { |
|
terminatetetgen(NULL, 1); |
|
} |
|
} |
|
|
|
// Read the point section. |
|
index = 0; |
|
attribindex = 0; |
|
for (i = 0; i < numberofpoints; i++) { |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
if (useindex) { |
|
if (i == 0) { |
|
firstnode = (int)strtol(stringptr, &stringptr, 0); |
|
if ((firstnode == 0) || (firstnode == 1)) { |
|
firstnumber = firstnode; |
|
} |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
} // if (useindex) |
|
if (*stringptr == '\0') { |
|
printf("Error: Point %d has no x coordinate.\n", firstnumber + i); |
|
break; |
|
} |
|
x = (REAL)strtod(stringptr, &stringptr); |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Point %d has no y coordinate.\n", firstnumber + i); |
|
break; |
|
} |
|
y = (REAL)strtod(stringptr, &stringptr); |
|
if (mesh_dim == 3) { |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Point %d has no z coordinate.\n", firstnumber + i); |
|
break; |
|
} |
|
z = (REAL)strtod(stringptr, &stringptr); |
|
} else { |
|
z = 0.0; // mesh_dim == 2; |
|
} |
|
pointlist[index++] = x; |
|
pointlist[index++] = y; |
|
pointlist[index++] = z; |
|
// Read the point attributes. |
|
for (j = 0; j < numberofpointattributes; j++) { |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
attrib = 0.0; |
|
} else { |
|
attrib = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
pointattributelist[attribindex++] = attrib; |
|
} |
|
if (markers) { |
|
// Read a point marker. |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
currentmarker = 0; |
|
} else { |
|
currentmarker = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
pointmarkerlist[i] = currentmarker; |
|
} |
|
if (uvflag) { |
|
// Read point paramteters. |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Point %d has no uv[0].\n", firstnumber + i); |
|
break; |
|
} |
|
pointparamlist[i].uv[0] = (REAL)strtod(stringptr, &stringptr); |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Point %d has no uv[1].\n", firstnumber + i); |
|
break; |
|
} |
|
pointparamlist[i].uv[1] = (REAL)strtod(stringptr, &stringptr); |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Point %d has no tag.\n", firstnumber + i); |
|
break; |
|
} |
|
pointparamlist[i].tag = (int)strtol(stringptr, &stringptr, 0); |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Point %d has no type.\n", firstnumber + i); |
|
break; |
|
} |
|
pointparamlist[i].type = (int)strtol(stringptr, &stringptr, 0); |
|
if ((pointparamlist[i].type < 0) || (pointparamlist[i].type > 2)) { |
|
printf("Error: Point %d has an invalid type.\n", firstnumber + i); |
|
break; |
|
} |
|
} |
|
} |
|
if (i < numberofpoints) { |
|
// Failed to read points due to some error. |
|
delete[] pointlist; |
|
pointlist = (REAL*)NULL; |
|
if (markers) { |
|
delete[] pointmarkerlist; |
|
pointmarkerlist = (int*)NULL; |
|
} |
|
if (numberofpointattributes > 0) { |
|
delete[] pointattributelist; |
|
pointattributelist = (REAL*)NULL; |
|
} |
|
if (uvflag) { |
|
delete[] pointparamlist; |
|
pointparamlist = NULL; |
|
} |
|
numberofpoints = 0; |
|
return false; |
|
} |
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_node() Load a list of points from a .node file. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenio::load_node(char* filebasename) { |
|
FILE* infile; |
|
char innodefilename[FILENAMESIZE]; |
|
char inputline[INPUTLINESIZE]; |
|
char* stringptr; |
|
bool okflag; |
|
int markers; |
|
int uvflag; // for psc input. |
|
|
|
// Assembling the actual file names we want to open. |
|
strcpy(innodefilename, filebasename); |
|
strcat(innodefilename, ".node"); |
|
|
|
// Try to open a .node file. |
|
infile = fopen(innodefilename, "r"); |
|
if (infile == (FILE*)NULL) { |
|
printf(" Cannot access file %s.\n", innodefilename); |
|
return false; |
|
} |
|
printf("Opening %s.\n", innodefilename); |
|
|
|
// Set initial flags. |
|
mesh_dim = 3; |
|
numberofpointattributes = 0; // no point attribute. |
|
markers = 0; // no boundary marker. |
|
uvflag = 0; // no uv parameters (required by a PSC). |
|
|
|
// Read the first line of the file. |
|
stringptr = readnumberline(inputline, infile, innodefilename); |
|
// Does this file contain an index column? |
|
stringptr = strstr(inputline, "rbox"); |
|
if (stringptr == NULL) { |
|
// Read number of points, number of dimensions, number of point |
|
// attributes, and number of boundary markers. |
|
stringptr = inputline; |
|
numberofpoints = (int)strtol(stringptr, &stringptr, 0); |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr != '\0') { |
|
mesh_dim = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr != '\0') { |
|
numberofpointattributes = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr != '\0') { |
|
markers = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr != '\0') { |
|
uvflag = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
} else { |
|
// It is a rbox (qhull) input file. |
|
stringptr = inputline; |
|
// Get the dimension. |
|
mesh_dim = (int)strtol(stringptr, &stringptr, 0); |
|
// Get the number of points. |
|
stringptr = readnumberline(inputline, infile, innodefilename); |
|
numberofpoints = (int)strtol(stringptr, &stringptr, 0); |
|
// There is no index column. |
|
useindex = 0; |
|
} |
|
|
|
// Load the list of nodes. |
|
okflag = load_node_call(infile, markers, uvflag, innodefilename); |
|
|
|
fclose(infile); |
|
return okflag; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_edge() Load a list of edges from a .edge file. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenio::load_edge(char* filebasename) { |
|
FILE* infile; |
|
char inedgefilename[FILENAMESIZE]; |
|
char inputline[INPUTLINESIZE]; |
|
char* stringptr; |
|
int markers, corner; |
|
int index; |
|
int i, j; |
|
|
|
strcpy(inedgefilename, filebasename); |
|
strcat(inedgefilename, ".edge"); |
|
|
|
infile = fopen(inedgefilename, "r"); |
|
if (infile != (FILE*)NULL) { |
|
printf("Opening %s.\n", inedgefilename); |
|
} else { |
|
// printf(" Cannot access file %s.\n", inedgefilename); |
|
return false; |
|
} |
|
|
|
// Read number of boundary edges. |
|
stringptr = readnumberline(inputline, infile, inedgefilename); |
|
numberofedges = (int)strtol(stringptr, &stringptr, 0); |
|
if (numberofedges > 0) { |
|
edgelist = new int[numberofedges * 2]; |
|
if (edgelist == (int*)NULL) { |
|
terminatetetgen(NULL, 1); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
markers = 0; // Default value. |
|
} else { |
|
markers = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
if (markers > 0) { |
|
edgemarkerlist = new int[numberofedges]; |
|
} |
|
} |
|
|
|
// Read the list of edges. |
|
index = 0; |
|
for (i = 0; i < numberofedges; i++) { |
|
// Read edge index and the edge's two endpoints. |
|
stringptr = readnumberline(inputline, infile, inedgefilename); |
|
for (j = 0; j < 2; j++) { |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Edge %d is missing vertex %d in %s.\n", i + firstnumber, j + 1, |
|
inedgefilename); |
|
terminatetetgen(NULL, 1); |
|
} |
|
corner = (int)strtol(stringptr, &stringptr, 0); |
|
if (corner < firstnumber || corner >= numberofpoints + firstnumber) { |
|
printf("Error: Edge %d has an invalid vertex index.\n", i + firstnumber); |
|
terminatetetgen(NULL, 1); |
|
} |
|
edgelist[index++] = corner; |
|
} |
|
if (numberofcorners == 10) { |
|
// Skip an extra vertex (generated by a previous -o2 option). |
|
stringptr = findnextnumber(stringptr); |
|
} |
|
// Read the edge marker if it has. |
|
if (markers) { |
|
stringptr = findnextnumber(stringptr); |
|
edgemarkerlist[i] = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
} |
|
|
|
fclose(infile); |
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_face() Load a list of faces (triangles) from a .face file. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenio::load_face(char* filebasename) { |
|
FILE* infile; |
|
char infilename[FILENAMESIZE]; |
|
char inputline[INPUTLINESIZE]; |
|
char* stringptr; |
|
REAL attrib; |
|
int markers, corner; |
|
int index; |
|
int i, j; |
|
|
|
strcpy(infilename, filebasename); |
|
strcat(infilename, ".face"); |
|
|
|
infile = fopen(infilename, "r"); |
|
if (infile != (FILE*)NULL) { |
|
printf("Opening %s.\n", infilename); |
|
} else { |
|
return false; |
|
} |
|
|
|
// Read number of faces, boundary markers. |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
numberoftrifaces = (int)strtol(stringptr, &stringptr, 0); |
|
stringptr = findnextnumber(stringptr); |
|
if (mesh_dim == 2) { |
|
// Skip a number. |
|
stringptr = findnextnumber(stringptr); |
|
} |
|
if (*stringptr == '\0') { |
|
markers = 0; // Default there is no marker per face. |
|
} else { |
|
markers = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
if (numberoftrifaces > 0) { |
|
trifacelist = new int[numberoftrifaces * 3]; |
|
if (trifacelist == (int*)NULL) { |
|
terminatetetgen(NULL, 1); |
|
} |
|
if (markers) { |
|
trifacemarkerlist = new int[numberoftrifaces]; |
|
if (trifacemarkerlist == (int*)NULL) { |
|
terminatetetgen(NULL, 1); |
|
} |
|
} |
|
} |
|
|
|
// Read the list of faces. |
|
index = 0; |
|
for (i = 0; i < numberoftrifaces; i++) { |
|
// Read face index and the face's three corners. |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
for (j = 0; j < 3; j++) { |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Face %d is missing vertex %d in %s.\n", i + firstnumber, j + 1, |
|
infilename); |
|
terminatetetgen(NULL, 1); |
|
} |
|
corner = (int)strtol(stringptr, &stringptr, 0); |
|
if (corner < firstnumber || corner >= numberofpoints + firstnumber) { |
|
printf("Error: Face %d has an invalid vertex index.\n", i + firstnumber); |
|
terminatetetgen(NULL, 1); |
|
} |
|
trifacelist[index++] = corner; |
|
} |
|
if (numberofcorners == 10) { |
|
// Skip 3 extra vertices (generated by a previous -o2 option). |
|
for (j = 0; j < 3; j++) { |
|
stringptr = findnextnumber(stringptr); |
|
} |
|
} |
|
// Read the boundary marker if it exists. |
|
if (markers) { |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
attrib = 0.0; |
|
} else { |
|
attrib = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
trifacemarkerlist[i] = (int)attrib; |
|
} |
|
} |
|
|
|
fclose(infile); |
|
|
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_tet() Load a list of tetrahedra from a .ele file. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenio::load_tet(char* filebasename) { |
|
FILE* infile; |
|
char infilename[FILENAMESIZE]; |
|
char inputline[INPUTLINESIZE]; |
|
char* stringptr; |
|
REAL attrib; |
|
int corner; |
|
int index, attribindex; |
|
int i, j; |
|
|
|
strcpy(infilename, filebasename); |
|
strcat(infilename, ".ele"); |
|
|
|
infile = fopen(infilename, "r"); |
|
if (infile != (FILE*)NULL) { |
|
printf("Opening %s.\n", infilename); |
|
} else { |
|
return false; |
|
} |
|
|
|
// Read number of elements, number of corners (4 or 10), number of |
|
// element attributes. |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
numberoftetrahedra = (int)strtol(stringptr, &stringptr, 0); |
|
if (numberoftetrahedra <= 0) { |
|
printf("Error: Invalid number of tetrahedra.\n"); |
|
fclose(infile); |
|
return false; |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
numberofcorners = 4; // Default read 4 nodes per element. |
|
} else { |
|
numberofcorners = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
numberoftetrahedronattributes = 0; // Default no attribute. |
|
} else { |
|
numberoftetrahedronattributes = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
if (numberofcorners != 4 && numberofcorners != 10) { |
|
printf("Error: Wrong number of corners %d (should be 4 or 10).\n", numberofcorners); |
|
fclose(infile); |
|
return false; |
|
} |
|
|
|
// Allocate memory for tetrahedra. |
|
tetrahedronlist = new int[numberoftetrahedra * numberofcorners]; |
|
if (tetrahedronlist == (int*)NULL) { |
|
terminatetetgen(NULL, 1); |
|
} |
|
// Allocate memory for output tetrahedron attributes if necessary. |
|
if (numberoftetrahedronattributes > 0) { |
|
tetrahedronattributelist = new REAL[numberoftetrahedra * numberoftetrahedronattributes]; |
|
if (tetrahedronattributelist == (REAL*)NULL) { |
|
terminatetetgen(NULL, 1); |
|
} |
|
} |
|
|
|
// Read the list of tetrahedra. |
|
index = 0; |
|
attribindex = 0; |
|
for (i = 0; i < numberoftetrahedra; i++) { |
|
// Read tetrahedron index and the tetrahedron's corners. |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
for (j = 0; j < numberofcorners; j++) { |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Tetrahedron %d is missing vertex %d in %s.\n", i + firstnumber, |
|
j + 1, infilename); |
|
terminatetetgen(NULL, 1); |
|
} |
|
corner = (int)strtol(stringptr, &stringptr, 0); |
|
if (corner < firstnumber || corner >= numberofpoints + firstnumber) { |
|
printf("Error: Tetrahedron %d has an invalid vertex index.\n", i + firstnumber); |
|
terminatetetgen(NULL, 1); |
|
} |
|
tetrahedronlist[index++] = corner; |
|
} |
|
// Read the tetrahedron's attributes. |
|
for (j = 0; j < numberoftetrahedronattributes; j++) { |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
attrib = 0.0; |
|
} else { |
|
attrib = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
tetrahedronattributelist[attribindex++] = attrib; |
|
} |
|
} |
|
|
|
fclose(infile); |
|
|
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_vol() Load a list of volume constraints from a .vol file. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenio::load_vol(char* filebasename) { |
|
FILE* infile; |
|
char inelefilename[FILENAMESIZE]; |
|
char infilename[FILENAMESIZE]; |
|
char inputline[INPUTLINESIZE]; |
|
char* stringptr; |
|
REAL volume; |
|
int volelements; |
|
int i; |
|
|
|
strcpy(infilename, filebasename); |
|
strcat(infilename, ".vol"); |
|
|
|
infile = fopen(infilename, "r"); |
|
if (infile != (FILE*)NULL) { |
|
printf("Opening %s.\n", infilename); |
|
} else { |
|
return false; |
|
} |
|
|
|
// Read number of tetrahedra. |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
volelements = (int)strtol(stringptr, &stringptr, 0); |
|
if (volelements != numberoftetrahedra) { |
|
strcpy(inelefilename, filebasename); |
|
strcat(infilename, ".ele"); |
|
printf("Warning: %s and %s disagree on number of tetrahedra.\n", inelefilename, |
|
infilename); |
|
fclose(infile); |
|
return false; |
|
} |
|
|
|
tetrahedronvolumelist = new REAL[volelements]; |
|
if (tetrahedronvolumelist == (REAL*)NULL) { |
|
terminatetetgen(NULL, 1); |
|
} |
|
|
|
// Read the list of volume constraints. |
|
for (i = 0; i < volelements; i++) { |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
volume = -1.0; // No constraint on this tetrahedron. |
|
} else { |
|
volume = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
tetrahedronvolumelist[i] = volume; |
|
} |
|
|
|
fclose(infile); |
|
|
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_var() Load constraints applied on facets, segments, and nodes // |
|
// from a .var file. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenio::load_var(char* filebasename) { |
|
FILE* infile; |
|
char varfilename[FILENAMESIZE]; |
|
char inputline[INPUTLINESIZE]; |
|
char* stringptr; |
|
int index; |
|
int i; |
|
|
|
// Variant constraints are saved in file "filename.var". |
|
strcpy(varfilename, filebasename); |
|
strcat(varfilename, ".var"); |
|
infile = fopen(varfilename, "r"); |
|
if (infile != (FILE*)NULL) { |
|
printf("Opening %s.\n", varfilename); |
|
} else { |
|
return false; |
|
} |
|
|
|
// Read the facet constraint section. |
|
stringptr = readnumberline(inputline, infile, varfilename); |
|
if (stringptr == NULL) { |
|
// No region list, return. |
|
fclose(infile); |
|
return true; |
|
} |
|
if (*stringptr != '\0') { |
|
numberoffacetconstraints = (int)strtol(stringptr, &stringptr, 0); |
|
} else { |
|
numberoffacetconstraints = 0; |
|
} |
|
if (numberoffacetconstraints > 0) { |
|
// Initialize 'facetconstraintlist'. |
|
facetconstraintlist = new REAL[numberoffacetconstraints * 2]; |
|
index = 0; |
|
for (i = 0; i < numberoffacetconstraints; i++) { |
|
stringptr = readnumberline(inputline, infile, varfilename); |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: facet constraint %d has no facet marker.\n", firstnumber + i); |
|
break; |
|
} else { |
|
facetconstraintlist[index++] = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: facet constraint %d has no maximum area bound.\n", firstnumber + i); |
|
break; |
|
} else { |
|
facetconstraintlist[index++] = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
} |
|
if (i < numberoffacetconstraints) { |
|
// This must be caused by an error. |
|
fclose(infile); |
|
return false; |
|
} |
|
} |
|
|
|
// Read the segment constraint section. |
|
stringptr = readnumberline(inputline, infile, varfilename); |
|
if (stringptr == NULL) { |
|
// No segment list, return. |
|
fclose(infile); |
|
return true; |
|
} |
|
if (*stringptr != '\0') { |
|
numberofsegmentconstraints = (int)strtol(stringptr, &stringptr, 0); |
|
} else { |
|
numberofsegmentconstraints = 0; |
|
} |
|
if (numberofsegmentconstraints > 0) { |
|
// Initialize 'segmentconstraintlist'. |
|
segmentconstraintlist = new REAL[numberofsegmentconstraints * 3]; |
|
index = 0; |
|
for (i = 0; i < numberofsegmentconstraints; i++) { |
|
stringptr = readnumberline(inputline, infile, varfilename); |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: segment constraint %d has no frist endpoint.\n", firstnumber + i); |
|
break; |
|
} else { |
|
segmentconstraintlist[index++] = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: segment constraint %d has no second endpoint.\n", firstnumber + i); |
|
break; |
|
} else { |
|
segmentconstraintlist[index++] = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: segment constraint %d has no maximum length bound.\n", |
|
firstnumber + i); |
|
break; |
|
} else { |
|
segmentconstraintlist[index++] = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
} |
|
if (i < numberofsegmentconstraints) { |
|
// This must be caused by an error. |
|
fclose(infile); |
|
return false; |
|
} |
|
} |
|
|
|
fclose(infile); |
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_mtr() Load a size specification map from a .mtr file. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenio::load_mtr(char* filebasename) { |
|
FILE* infile; |
|
char mtrfilename[FILENAMESIZE]; |
|
char inputline[INPUTLINESIZE]; |
|
char* stringptr; |
|
REAL mtr; |
|
int ptnum; |
|
int mtrindex; |
|
int i, j; |
|
|
|
strcpy(mtrfilename, filebasename); |
|
strcat(mtrfilename, ".mtr"); |
|
infile = fopen(mtrfilename, "r"); |
|
if (infile != (FILE*)NULL) { |
|
printf("Opening %s.\n", mtrfilename); |
|
} else { |
|
return false; |
|
} |
|
|
|
// Read the number of points. |
|
stringptr = readnumberline(inputline, infile, mtrfilename); |
|
ptnum = (int)strtol(stringptr, &stringptr, 0); |
|
if (ptnum != numberofpoints) { |
|
printf(" !! Point numbers are not equal. Ignored.\n"); |
|
fclose(infile); |
|
return false; |
|
} |
|
// Read the number of columns (1, 3, or 6). |
|
stringptr = findnextnumber(stringptr); // Skip number of points. |
|
if (*stringptr != '\0') { |
|
numberofpointmtrs = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
if ((numberofpointmtrs != 1) && (numberofpointmtrs != 3) && (numberofpointmtrs != 6)) { |
|
// Column number doesn't match. |
|
numberofpointmtrs = 0; |
|
printf(" !! Metric size does not match (1, 3, or 6). Ignored.\n"); |
|
fclose(infile); |
|
return false; |
|
} |
|
|
|
// Allocate space for pointmtrlist. |
|
pointmtrlist = new REAL[numberofpoints * numberofpointmtrs]; |
|
if (pointmtrlist == (REAL*)NULL) { |
|
terminatetetgen(NULL, 1); |
|
} |
|
mtrindex = 0; |
|
for (i = 0; i < numberofpoints; i++) { |
|
// Read metrics. |
|
stringptr = readnumberline(inputline, infile, mtrfilename); |
|
for (j = 0; j < numberofpointmtrs; j++) { |
|
if (*stringptr == '\0') { |
|
printf("Error: Metric %d is missing value #%d in %s.\n", i + firstnumber, j + 1, |
|
mtrfilename); |
|
terminatetetgen(NULL, 1); |
|
} |
|
mtr = (REAL)strtod(stringptr, &stringptr); |
|
pointmtrlist[mtrindex++] = mtr; |
|
stringptr = findnextnumber(stringptr); |
|
} |
|
} |
|
|
|
fclose(infile); |
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_poly() Load a PL complex from a .poly or a .smesh file. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenio::load_poly(char* filebasename) { |
|
FILE* infile; |
|
char inpolyfilename[FILENAMESIZE]; |
|
char insmeshfilename[FILENAMESIZE]; |
|
char inputline[INPUTLINESIZE]; |
|
char *stringptr, *infilename; |
|
int smesh, markers, uvflag, currentmarker; |
|
int index; |
|
int i, j, k; |
|
|
|
// Assembling the actual file names we want to open. |
|
strcpy(inpolyfilename, filebasename); |
|
strcpy(insmeshfilename, filebasename); |
|
strcat(inpolyfilename, ".poly"); |
|
strcat(insmeshfilename, ".smesh"); |
|
|
|
// First assume it is a .poly file. |
|
smesh = 0; |
|
// Try to open a .poly file. |
|
infile = fopen(inpolyfilename, "r"); |
|
if (infile == (FILE*)NULL) { |
|
// .poly doesn't exist! Try to open a .smesh file. |
|
infile = fopen(insmeshfilename, "r"); |
|
if (infile == (FILE*)NULL) { |
|
printf(" Cannot access file %s and %s.\n", inpolyfilename, insmeshfilename); |
|
return false; |
|
} else { |
|
printf("Opening %s.\n", insmeshfilename); |
|
infilename = insmeshfilename; |
|
} |
|
smesh = 1; |
|
} else { |
|
printf("Opening %s.\n", inpolyfilename); |
|
infilename = inpolyfilename; |
|
} |
|
|
|
// Initialize the default values. |
|
mesh_dim = 3; // Three-dimensional coordinates. |
|
numberofpointattributes = 0; // no point attribute. |
|
markers = 0; // no boundary marker. |
|
uvflag = 0; // no uv parameters (required by a PSC). |
|
|
|
// Read number of points, number of dimensions, number of point |
|
// attributes, and number of boundary markers. |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
numberofpoints = (int)strtol(stringptr, &stringptr, 0); |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr != '\0') { |
|
mesh_dim = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr != '\0') { |
|
numberofpointattributes = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr != '\0') { |
|
markers = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
if (*stringptr != '\0') { |
|
uvflag = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
|
|
if (numberofpoints > 0) { |
|
// Load the list of nodes. |
|
if (!load_node_call(infile, markers, uvflag, infilename)) { |
|
fclose(infile); |
|
return false; |
|
} |
|
} else { |
|
// If the .poly or .smesh file claims there are zero points, that |
|
// means the points should be read from a separate .node file. |
|
if (!load_node(filebasename)) { |
|
fclose(infile); |
|
return false; |
|
} |
|
} |
|
|
|
if ((mesh_dim != 3) && (mesh_dim != 2)) { |
|
printf("Input error: TetGen only works for 2D & 3D point sets.\n"); |
|
fclose(infile); |
|
return false; |
|
} |
|
if (numberofpoints < (mesh_dim + 1)) { |
|
printf("Input error: TetGen needs at least %d points.\n", mesh_dim + 1); |
|
fclose(infile); |
|
return false; |
|
} |
|
|
|
facet* f; |
|
polygon* p; |
|
|
|
if (mesh_dim == 3) { |
|
|
|
// Read number of facets and number of boundary markers. |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
if (stringptr == NULL) { |
|
// No facet list, return. |
|
fclose(infile); |
|
return true; |
|
} |
|
numberoffacets = (int)strtol(stringptr, &stringptr, 0); |
|
if (numberoffacets <= 0) { |
|
// No facet list, return. |
|
fclose(infile); |
|
return true; |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
markers = 0; // no boundary marker. |
|
} else { |
|
markers = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
|
|
// Initialize the 'facetlist', 'facetmarkerlist'. |
|
facetlist = new facet[numberoffacets]; |
|
if (markers == 1) { |
|
facetmarkerlist = new int[numberoffacets]; |
|
} |
|
|
|
// Read data into 'facetlist', 'facetmarkerlist'. |
|
if (smesh == 0) { |
|
// Facets are in .poly file format. |
|
for (i = 1; i <= numberoffacets; i++) { |
|
f = &(facetlist[i - 1]); |
|
init(f); |
|
f->numberofholes = 0; |
|
currentmarker = 0; |
|
// Read number of polygons, number of holes, and a boundary marker. |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
f->numberofpolygons = (int)strtol(stringptr, &stringptr, 0); |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr != '\0') { |
|
f->numberofholes = (int)strtol(stringptr, &stringptr, 0); |
|
if (markers == 1) { |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr != '\0') { |
|
currentmarker = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
} |
|
} |
|
// Initialize facetmarker if it needs. |
|
if (markers == 1) { |
|
facetmarkerlist[i - 1] = currentmarker; |
|
} |
|
// Each facet should has at least one polygon. |
|
if (f->numberofpolygons <= 0) { |
|
printf("Error: Wrong number of polygon in %d facet.\n", i); |
|
break; |
|
} |
|
// Initialize the 'f->polygonlist'. |
|
f->polygonlist = new polygon[f->numberofpolygons]; |
|
// Go through all polygons, read in their vertices. |
|
for (j = 1; j <= f->numberofpolygons; j++) { |
|
p = &(f->polygonlist[j - 1]); |
|
init(p); |
|
// Read number of vertices of this polygon. |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
p->numberofvertices = (int)strtol(stringptr, &stringptr, 0); |
|
if (p->numberofvertices < 1) { |
|
printf("Error: Wrong polygon %d in facet %d\n", j, i); |
|
break; |
|
} |
|
// Initialize 'p->vertexlist'. |
|
p->vertexlist = new int[p->numberofvertices]; |
|
// Read all vertices of this polygon. |
|
for (k = 1; k <= p->numberofvertices; k++) { |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
// Try to load another non-empty line and continue to read the |
|
// rest of vertices. |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
if (*stringptr == '\0') { |
|
printf("Error: Missing %d endpoints of polygon %d in facet %d", |
|
p->numberofvertices - k, j, i); |
|
break; |
|
} |
|
} |
|
p->vertexlist[k - 1] = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
} |
|
if (j <= f->numberofpolygons) { |
|
// This must be caused by an error. However, there're j - 1 |
|
// polygons have been read. Reset the 'f->numberofpolygon'. |
|
if (j == 1) { |
|
// This is the first polygon. |
|
delete[] f->polygonlist; |
|
} |
|
f->numberofpolygons = j - 1; |
|
// No hole will be read even it exists. |
|
f->numberofholes = 0; |
|
break; |
|
} |
|
// If this facet has hole pints defined, read them. |
|
if (f->numberofholes > 0) { |
|
// Initialize 'f->holelist'. |
|
f->holelist = new REAL[f->numberofholes * 3]; |
|
// Read the holes' coordinates. |
|
index = 0; |
|
for (j = 1; j <= f->numberofholes; j++) { |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
for (k = 1; k <= 3; k++) { |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Hole %d in facet %d has no coordinates", j, i); |
|
break; |
|
} |
|
f->holelist[index++] = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
if (k <= 3) { |
|
// This must be caused by an error. |
|
break; |
|
} |
|
} |
|
if (j <= f->numberofholes) { |
|
// This must be caused by an error. |
|
break; |
|
} |
|
} |
|
} |
|
if (i <= numberoffacets) { |
|
// This must be caused by an error. |
|
numberoffacets = i - 1; |
|
fclose(infile); |
|
return false; |
|
} |
|
} else { // poly == 0 |
|
// Read the facets from a .smesh file. |
|
for (i = 1; i <= numberoffacets; i++) { |
|
f = &(facetlist[i - 1]); |
|
init(f); |
|
// Initialize 'f->facetlist'. In a .smesh file, each facetlist only |
|
// contains exactly one polygon, no hole. |
|
f->numberofpolygons = 1; |
|
f->polygonlist = new polygon[f->numberofpolygons]; |
|
p = &(f->polygonlist[0]); |
|
init(p); |
|
// Read number of vertices of this polygon. |
|
stringptr = readnumberline(inputline, infile, insmeshfilename); |
|
p->numberofvertices = (int)strtol(stringptr, &stringptr, 0); |
|
if (p->numberofvertices < 1) { |
|
printf("Error: Wrong number of vertex in facet %d\n", i); |
|
break; |
|
} |
|
// Initialize 'p->vertexlist'. |
|
p->vertexlist = new int[p->numberofvertices]; |
|
for (k = 1; k <= p->numberofvertices; k++) { |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
// Try to load another non-empty line and continue to read the |
|
// rest of vertices. |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
if (*stringptr == '\0') { |
|
printf("Error: Missing %d endpoints in facet %d", |
|
p->numberofvertices - k, i); |
|
break; |
|
} |
|
} |
|
p->vertexlist[k - 1] = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
if (k <= p->numberofvertices) { |
|
// This must be caused by an error. |
|
break; |
|
} |
|
// Read facet's boundary marker at last. |
|
if (markers == 1) { |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
currentmarker = 0; |
|
} else { |
|
currentmarker = (int)strtol(stringptr, &stringptr, 0); |
|
} |
|
facetmarkerlist[i - 1] = currentmarker; |
|
} |
|
} |
|
if (i <= numberoffacets) { |
|
// This must be caused by an error. |
|
numberoffacets = i - 1; |
|
fclose(infile); |
|
return false; |
|
} |
|
} |
|
|
|
// Read the hole section. |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
if (stringptr == NULL) { |
|
// No hole list, return. |
|
fclose(infile); |
|
return true; |
|
} |
|
if (*stringptr != '\0') { |
|
numberofholes = (int)strtol(stringptr, &stringptr, 0); |
|
} else { |
|
numberofholes = 0; |
|
} |
|
if (numberofholes > 0) { |
|
// Initialize 'holelist'. |
|
holelist = new REAL[numberofholes * 3]; |
|
for (i = 0; i < 3 * numberofholes; i += 3) { |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Hole %d has no x coord.\n", firstnumber + (i / 3)); |
|
break; |
|
} else { |
|
holelist[i] = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Hole %d has no y coord.\n", firstnumber + (i / 3)); |
|
break; |
|
} else { |
|
holelist[i + 1] = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Hole %d has no z coord.\n", firstnumber + (i / 3)); |
|
break; |
|
} else { |
|
holelist[i + 2] = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
} |
|
if (i < 3 * numberofholes) { |
|
// This must be caused by an error. |
|
fclose(infile); |
|
return false; |
|
} |
|
} |
|
|
|
// Read the region section. The 'region' section is optional, if we |
|
// don't reach the end-of-file, try read it in. |
|
stringptr = readnumberline(inputline, infile, NULL); |
|
if (stringptr != (char*)NULL && *stringptr != '\0') { |
|
numberofregions = (int)strtol(stringptr, &stringptr, 0); |
|
} else { |
|
numberofregions = 0; |
|
} |
|
if (numberofregions > 0) { |
|
// Initialize 'regionlist'. |
|
regionlist = new REAL[numberofregions * 5]; |
|
index = 0; |
|
for (i = 0; i < numberofregions; i++) { |
|
stringptr = readnumberline(inputline, infile, infilename); |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Region %d has no x coordinate.\n", firstnumber + i); |
|
break; |
|
} else { |
|
regionlist[index++] = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Region %d has no y coordinate.\n", firstnumber + i); |
|
break; |
|
} else { |
|
regionlist[index++] = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Region %d has no z coordinate.\n", firstnumber + i); |
|
break; |
|
} else { |
|
regionlist[index++] = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
printf("Error: Region %d has no region attrib.\n", firstnumber + i); |
|
break; |
|
} else { |
|
regionlist[index++] = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
stringptr = findnextnumber(stringptr); |
|
if (*stringptr == '\0') { |
|
regionlist[index] = regionlist[index - 1]; |
|
} else { |
|
regionlist[index] = (REAL)strtod(stringptr, &stringptr); |
|
} |
|
index++; |
|
} |
|
if (i < numberofregions) { |
|
// This must be caused by an error. |
|
fclose(infile); |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
// End of reading poly/smesh file. |
|
fclose(infile); |
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_off() Load a polyhedron from a .off file. // |
|
// // |
|
// The .off format is one of file formats of the Geomview, an interactive // |
|
// program for viewing and manipulating geometric objects. More information // |
|
// is available form: http://www.geomview.org. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenio::load_off(char* filebasename) { |
|
FILE* fp; |
|
tetgenio::facet* f; |
|
tetgenio::polygon* p; |
|
char infilename[FILENAMESIZE]; |
|
char buffer[INPUTLINESIZE]; |
|
char* bufferp; |
|
double* coord; |
|
int nverts = 0, iverts = 0; |
|
int nfaces = 0, ifaces = 0; |
|
int nedges = 0; |
|
int line_count = 0, i; |
|
|
|
// Default, the off file's index is from '0'. We check it by remembering the |
|
// smallest index we found in the file. It should be either 0 or 1. |
|
int smallestidx = 0; |
|
|
|
strncpy(infilename, filebasename, 1024 - 1); |
|
infilename[FILENAMESIZE - 1] = '\0'; |
|
if (infilename[0] == '\0') { |
|
printf("Error: No filename.\n"); |
|
return false; |
|
} |
|
if (strcmp(&infilename[strlen(infilename) - 4], ".off") != 0) { |
|
strcat(infilename, ".off"); |
|
} |
|
|
|
if (!(fp = fopen(infilename, "r"))) { |
|
printf(" Unable to open file %s\n", infilename); |
|
return false; |
|
} |
|
printf("Opening %s.\n", infilename); |
|
|
|
while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { |
|
// Check section |
|
if (nverts == 0) { |
|
// Read header |
|
bufferp = strstr(bufferp, "OFF"); |
|
if (bufferp != NULL) { |
|
// Read mesh counts |
|
bufferp = findnextnumber(bufferp); // Skip field "OFF". |
|
if (*bufferp == '\0') { |
|
// Read a non-empty line. |
|
bufferp = readline(buffer, fp, &line_count); |
|
} |
|
if ((sscanf(bufferp, "%d%d%d", &nverts, &nfaces, &nedges) != 3) || (nverts == 0)) { |
|
printf("Syntax error reading header on line %d in file %s\n", line_count, |
|
infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
// Allocate memory for 'tetgenio' |
|
if (nverts > 0) { |
|
numberofpoints = nverts; |
|
pointlist = new REAL[nverts * 3]; |
|
smallestidx = nverts + 1; // A bigger enough number. |
|
} |
|
if (nfaces > 0) { |
|
numberoffacets = nfaces; |
|
facetlist = new tetgenio::facet[nfaces]; |
|
} |
|
} |
|
} else if (iverts < nverts) { |
|
// Read vertex coordinates |
|
coord = &pointlist[iverts * 3]; |
|
for (i = 0; i < 3; i++) { |
|
if (*bufferp == '\0') { |
|
printf("Syntax error reading vertex coords on line %d in file %s\n", line_count, |
|
infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
coord[i] = (REAL)strtod(bufferp, &bufferp); |
|
bufferp = findnextnumber(bufferp); |
|
} |
|
iverts++; |
|
} else if (ifaces < nfaces) { |
|
// Get next face |
|
f = &facetlist[ifaces]; |
|
init(f); |
|
// In .off format, each facet has one polygon, no hole. |
|
f->numberofpolygons = 1; |
|
f->polygonlist = new tetgenio::polygon[1]; |
|
p = &f->polygonlist[0]; |
|
init(p); |
|
// Read the number of vertices, it should be greater than 0. |
|
p->numberofvertices = (int)strtol(bufferp, &bufferp, 0); |
|
if (p->numberofvertices == 0) { |
|
printf("Syntax error reading polygon on line %d in file %s\n", line_count, |
|
infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
// Allocate memory for face vertices |
|
p->vertexlist = new int[p->numberofvertices]; |
|
for (i = 0; i < p->numberofvertices; i++) { |
|
bufferp = findnextnumber(bufferp); |
|
if (*bufferp == '\0') { |
|
printf("Syntax error reading polygon on line %d in file %s\n", line_count, |
|
infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
p->vertexlist[i] = (int)strtol(bufferp, &bufferp, 0); |
|
// Detect the smallest index. |
|
if (p->vertexlist[i] < smallestidx) { |
|
smallestidx = p->vertexlist[i]; |
|
} |
|
} |
|
ifaces++; |
|
} else { |
|
// Should never get here |
|
printf("Found extra text starting at line %d in file %s\n", line_count, infilename); |
|
break; |
|
} |
|
} |
|
|
|
// Close file |
|
fclose(fp); |
|
|
|
// Decide the firstnumber of the index. |
|
if (smallestidx == 0) { |
|
firstnumber = 0; |
|
} else if (smallestidx == 1) { |
|
firstnumber = 1; |
|
} else { |
|
printf("A wrong smallest index (%d) was detected in file %s\n", smallestidx, infilename); |
|
return false; |
|
} |
|
|
|
if (iverts != nverts) { |
|
printf("Expected %d vertices, but read only %d vertices in file %s\n", nverts, iverts, |
|
infilename); |
|
return false; |
|
} |
|
if (ifaces != nfaces) { |
|
printf("Expected %d faces, but read only %d faces in file %s\n", nfaces, ifaces, |
|
infilename); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_ply() Load a polyhedron from a .ply file. // |
|
// // |
|
// This is a simplified version of reading .ply files, which only reads the // |
|
// set of vertices and the set of faces. Other informations (such as color, // |
|
// material, texture, etc) in .ply file are ignored. Complete routines for // |
|
// reading and writing ,ply files are available from: http://www.cc.gatech. // |
|
// edu/projects/large_models/ply.html. Except the header section, ply file // |
|
// format has exactly the same format for listing vertices and polygons as // |
|
// off file format. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenio::load_ply(char* filebasename) { |
|
FILE* fp; |
|
tetgenio::facet* f; |
|
tetgenio::polygon* p; |
|
char infilename[FILENAMESIZE]; |
|
char buffer[INPUTLINESIZE]; |
|
char *bufferp, *str; |
|
double* coord; |
|
int endheader = 0, format = 0; |
|
int nverts = 0, iverts = 0; |
|
int nfaces = 0, ifaces = 0; |
|
int line_count = 0, i; |
|
|
|
// Default, the ply file's index is from '0'. We check it by remembering the |
|
// smallest index we found in the file. It should be either 0 or 1. |
|
int smallestidx = 0; |
|
|
|
strncpy(infilename, filebasename, FILENAMESIZE - 1); |
|
infilename[FILENAMESIZE - 1] = '\0'; |
|
if (infilename[0] == '\0') { |
|
printf("Error: No filename.\n"); |
|
return false; |
|
} |
|
if (strcmp(&infilename[strlen(infilename) - 4], ".ply") != 0) { |
|
strcat(infilename, ".ply"); |
|
} |
|
|
|
if (!(fp = fopen(infilename, "r"))) { |
|
printf("Error: Unable to open file %s\n", infilename); |
|
return false; |
|
} |
|
printf("Opening %s.\n", infilename); |
|
|
|
while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { |
|
if (!endheader) { |
|
// Find if it is the keyword "end_header". |
|
str = strstr(bufferp, "end_header"); |
|
// strstr() is case sensitive. |
|
if (!str) str = strstr(bufferp, "End_header"); |
|
if (!str) str = strstr(bufferp, "End_Header"); |
|
if (str) { |
|
// This is the end of the header section. |
|
endheader = 1; |
|
continue; |
|
} |
|
// Parse the number of vertices and the number of faces. |
|
if (nverts == 0 || nfaces == 0) { |
|
// Find if it si the keyword "element". |
|
str = strstr(bufferp, "element"); |
|
if (!str) str = strstr(bufferp, "Element"); |
|
if (str) { |
|
bufferp = findnextfield(str); |
|
if (*bufferp == '\0') { |
|
printf("Syntax error reading element type on line%d in file %s\n", |
|
line_count, infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
if (nverts == 0) { |
|
// Find if it is the keyword "vertex". |
|
str = strstr(bufferp, "vertex"); |
|
if (!str) str = strstr(bufferp, "Vertex"); |
|
if (str) { |
|
bufferp = findnextnumber(str); |
|
if (*bufferp == '\0') { |
|
printf("Syntax error reading vertex number on line"); |
|
printf(" %d in file %s\n", line_count, infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
nverts = (int)strtol(bufferp, &bufferp, 0); |
|
// Allocate memory for 'tetgenio' |
|
if (nverts > 0) { |
|
numberofpoints = nverts; |
|
pointlist = new REAL[nverts * 3]; |
|
smallestidx = nverts + 1; // A big enough index. |
|
} |
|
} |
|
} |
|
if (nfaces == 0) { |
|
// Find if it is the keyword "face". |
|
str = strstr(bufferp, "face"); |
|
if (!str) str = strstr(bufferp, "Face"); |
|
if (str) { |
|
bufferp = findnextnumber(str); |
|
if (*bufferp == '\0') { |
|
printf("Syntax error reading face number on line"); |
|
printf(" %d in file %s\n", line_count, infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
nfaces = (int)strtol(bufferp, &bufferp, 0); |
|
// Allocate memory for 'tetgenio' |
|
if (nfaces > 0) { |
|
numberoffacets = nfaces; |
|
facetlist = new tetgenio::facet[nfaces]; |
|
} |
|
} |
|
} |
|
} // It is not the string "element". |
|
} |
|
if (format == 0) { |
|
// Find the keyword "format". |
|
str = strstr(bufferp, "format"); |
|
if (!str) str = strstr(bufferp, "Format"); |
|
if (str) { |
|
format = 1; |
|
bufferp = findnextfield(str); |
|
// Find if it is the string "ascii". |
|
str = strstr(bufferp, "ascii"); |
|
if (!str) str = strstr(bufferp, "ASCII"); |
|
if (!str) { |
|
printf("This routine only reads ascii format of ply files.\n"); |
|
printf("Hint: You can convert the binary to ascii format by\n"); |
|
printf(" using the provided ply tools:\n"); |
|
printf(" ply2ascii < %s > ascii_%s\n", infilename, infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
} |
|
} |
|
} else if (iverts < nverts) { |
|
// Read vertex coordinates |
|
coord = &pointlist[iverts * 3]; |
|
for (i = 0; i < 3; i++) { |
|
if (*bufferp == '\0') { |
|
printf("Syntax error reading vertex coords on line %d in file %s\n", line_count, |
|
infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
coord[i] = (REAL)strtod(bufferp, &bufferp); |
|
bufferp = findnextnumber(bufferp); |
|
} |
|
iverts++; |
|
} else if (ifaces < nfaces) { |
|
// Get next face |
|
f = &facetlist[ifaces]; |
|
init(f); |
|
// In .off format, each facet has one polygon, no hole. |
|
f->numberofpolygons = 1; |
|
f->polygonlist = new tetgenio::polygon[1]; |
|
p = &f->polygonlist[0]; |
|
init(p); |
|
// Read the number of vertices, it should be greater than 0. |
|
p->numberofvertices = (int)strtol(bufferp, &bufferp, 0); |
|
if (p->numberofvertices == 0) { |
|
printf("Syntax error reading polygon on line %d in file %s\n", line_count, |
|
infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
// Allocate memory for face vertices |
|
p->vertexlist = new int[p->numberofvertices]; |
|
for (i = 0; i < p->numberofvertices; i++) { |
|
bufferp = findnextnumber(bufferp); |
|
if (*bufferp == '\0') { |
|
printf("Syntax error reading polygon on line %d in file %s\n", line_count, |
|
infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
p->vertexlist[i] = (int)strtol(bufferp, &bufferp, 0); |
|
if (p->vertexlist[i] < smallestidx) { |
|
smallestidx = p->vertexlist[i]; |
|
} |
|
} |
|
ifaces++; |
|
} else { |
|
// Should never get here |
|
printf("Found extra text starting at line %d in file %s\n", line_count, infilename); |
|
break; |
|
} |
|
} |
|
|
|
// Close file |
|
fclose(fp); |
|
|
|
// Decide the firstnumber of the index. |
|
if (smallestidx == 0) { |
|
firstnumber = 0; |
|
} else if (smallestidx == 1) { |
|
firstnumber = 1; |
|
} else { |
|
printf("A wrong smallest index (%d) was detected in file %s\n", smallestidx, infilename); |
|
return false; |
|
} |
|
|
|
if (iverts != nverts) { |
|
printf("Expected %d vertices, but read only %d vertices in file %s\n", nverts, iverts, |
|
infilename); |
|
return false; |
|
} |
|
if (ifaces != nfaces) { |
|
printf("Expected %d faces, but read only %d faces in file %s\n", nfaces, ifaces, |
|
infilename); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_stl() Load a surface mesh from a .stl file. // |
|
// // |
|
// The .stl or stereolithography format is an ASCII or binary file used in // |
|
// manufacturing. It is a list of the triangular surfaces that describe a // |
|
// computer generated solid model. This is the standard input for most rapid // |
|
// prototyping machines. // |
|
// // |
|
// Comment: A .stl file many contain many duplicated points. They will be // |
|
// unified during the Delaunay tetrahedralization process. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void SwapBytes(char* array, int size, int n) { |
|
char* x = new char[size]; |
|
for (int i = 0; i < n; i++) { |
|
char* a = &array[i * size]; |
|
memcpy(x, a, size); |
|
for (int c = 0; c < size; c++) |
|
a[size - 1 - c] = x[c]; |
|
} |
|
delete[] x; |
|
} |
|
|
|
bool tetgenio::load_stl(char* filebasename) { |
|
FILE* fp; |
|
tetgenmesh::arraypool* plist; |
|
tetgenio::facet* f; |
|
tetgenio::polygon* p; |
|
char infilename[FILENAMESIZE]; |
|
char buffer[INPUTLINESIZE]; |
|
char *bufferp, *str; |
|
double* coord; |
|
int solid = 0; |
|
int nverts = 0, iverts = 0; |
|
int nfaces = 0; |
|
int line_count = 0, i; |
|
|
|
strncpy(infilename, filebasename, FILENAMESIZE - 1); |
|
infilename[FILENAMESIZE - 1] = '\0'; |
|
if (infilename[0] == '\0') { |
|
printf("Error: No filename.\n"); |
|
return false; |
|
} |
|
if (strcmp(&infilename[strlen(infilename) - 4], ".stl") != 0) { |
|
strcat(infilename, ".stl"); |
|
} |
|
|
|
if (!(fp = fopen(infilename, "rb"))) { |
|
printf("Error: Unable to open file %s\n", infilename); |
|
return false; |
|
} |
|
printf("Opening %s.\n", infilename); |
|
|
|
// "solid", or binary data header |
|
if (!fgets(buffer, sizeof(buffer), fp)) { |
|
fclose(fp); |
|
return 0; |
|
} |
|
bool binary = strncmp(buffer, "solid", 5) && strncmp(buffer, "SOLID", 5); |
|
|
|
// STL file has no number of points available. Use a list to read points. |
|
plist = new tetgenmesh::arraypool(sizeof(double) * 3, 10); |
|
|
|
if (!binary) { |
|
solid = 1; |
|
while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { |
|
// The ASCII .stl file must start with the lower case keyword solid and |
|
// end with endsolid. |
|
if (solid == 0) { |
|
// Read header |
|
bufferp = strstr(bufferp, "solid"); |
|
if (bufferp != NULL) { |
|
solid = 1; |
|
} |
|
} else { |
|
// We're inside the block of the solid. |
|
str = bufferp; |
|
// Is this the end of the solid. |
|
bufferp = strstr(bufferp, "endsolid"); |
|
if (bufferp != NULL) { |
|
solid = 0; |
|
} else { |
|
// Read the XYZ coordinates if it is a vertex. |
|
bufferp = str; |
|
bufferp = strstr(bufferp, "vertex"); |
|
if (bufferp != NULL) { |
|
plist->newindex((void**)&coord); |
|
for (i = 0; i < 3; i++) { |
|
bufferp = findnextnumber(bufferp); |
|
if (*bufferp == '\0') { |
|
printf("Syntax error reading vertex coords on line %d\n", |
|
line_count); |
|
delete plist; |
|
fclose(fp); |
|
return false; |
|
} |
|
coord[i] = (REAL)strtod(bufferp, &bufferp); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} // if(!binary) |
|
|
|
else { |
|
rewind(fp); |
|
while (!feof(fp)) { |
|
char header[80]; |
|
if (!fread(header, sizeof(char), 80, fp)) break; |
|
unsigned int nfacets = 0; |
|
size_t ret = fread(&nfacets, sizeof(unsigned int), 1, fp); |
|
bool swap = false; |
|
if (nfacets > 100000000) { |
|
// Msg::Info("Swapping bytes from binary file"); |
|
swap = true; |
|
SwapBytes((char*)&nfacets, sizeof(unsigned int), 1); |
|
} |
|
if (ret && nfacets) { |
|
// points.resize(points.size() + 1); |
|
char* data = new char[nfacets * 50 * sizeof(char)]; |
|
ret = fread(data, sizeof(char), nfacets * 50, fp); |
|
if (ret == nfacets * 50) { |
|
for (unsigned int i = 0; i < nfacets; i++) { |
|
float* xyz = (float*)&data[i * 50 * sizeof(char)]; |
|
if (swap) SwapBytes((char*)xyz, sizeof(float), 12); |
|
for (int j = 0; j < 3; j++) { |
|
// SPoint3 p(xyz[3 + 3 * j], xyz[3 + 3 * j + 1], xyz[3 + 3 * j + 2]); |
|
// points.back().push_back(p); |
|
// bbox += p; |
|
plist->newindex((void**)&coord); |
|
coord[0] = xyz[3 + 3 * j]; |
|
coord[1] = xyz[3 + 3 * j + 1]; |
|
coord[2] = xyz[3 + 3 * j + 2]; |
|
} |
|
} |
|
} |
|
delete[] data; |
|
} |
|
} // while (!feof(fp)) |
|
} // binary |
|
|
|
fclose(fp); |
|
|
|
nverts = (int)plist->objects; |
|
// nverts should be an integer times 3 (every 3 vertices denote a face). |
|
if (nverts == 0 || (nverts % 3 != 0)) { |
|
printf("Error: Wrong number of vertices in file %s.\n", infilename); |
|
delete plist; |
|
return false; |
|
} |
|
numberofpoints = nverts; |
|
pointlist = new REAL[nverts * 3]; |
|
for (i = 0; i < nverts; i++) { |
|
coord = (double*)fastlookup(plist, i); |
|
iverts = i * 3; |
|
pointlist[iverts] = (REAL)coord[0]; |
|
pointlist[iverts + 1] = (REAL)coord[1]; |
|
pointlist[iverts + 2] = (REAL)coord[2]; |
|
} |
|
|
|
nfaces = (int)(nverts / 3); |
|
numberoffacets = nfaces; |
|
facetlist = new tetgenio::facet[nfaces]; |
|
|
|
// Default use '1' as the array starting index. |
|
firstnumber = 1; |
|
iverts = firstnumber; |
|
for (i = 0; i < nfaces; i++) { |
|
f = &facetlist[i]; |
|
init(f); |
|
// In .stl format, each facet has one polygon, no hole. |
|
f->numberofpolygons = 1; |
|
f->polygonlist = new tetgenio::polygon[1]; |
|
p = &f->polygonlist[0]; |
|
init(p); |
|
// Each polygon has three vertices. |
|
p->numberofvertices = 3; |
|
p->vertexlist = new int[p->numberofvertices]; |
|
p->vertexlist[0] = iverts; |
|
p->vertexlist[1] = iverts + 1; |
|
p->vertexlist[2] = iverts + 2; |
|
iverts += 3; |
|
} |
|
|
|
delete plist; |
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_medit() Load a surface mesh from a .mesh file. // |
|
// // |
|
// The .mesh format is the file format of Medit, a user-friendly interactive // |
|
// mesh viewer program. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenio::load_medit(char* filebasename, int istetmesh) { |
|
FILE* fp; |
|
tetgenio::facet *tmpflist, *f; |
|
tetgenio::polygon* p; |
|
char infilename[FILENAMESIZE]; |
|
char buffer[INPUTLINESIZE]; |
|
char *bufferp, *str; |
|
double* coord; |
|
int* tmpfmlist; |
|
int dimension = 0; |
|
int nverts = 0; |
|
int nfaces = 0; |
|
int ntets = 0; |
|
int line_count = 0; |
|
int corners = 0; // 3 (triangle) or 4 (quad). |
|
int* plist; |
|
int i, j; |
|
|
|
int smallestidx = 0; |
|
|
|
strncpy(infilename, filebasename, FILENAMESIZE - 1); |
|
infilename[FILENAMESIZE - 1] = '\0'; |
|
if (infilename[0] == '\0') { |
|
printf("Error: No filename.\n"); |
|
return false; |
|
} |
|
if (strcmp(&infilename[strlen(infilename) - 5], ".mesh") != 0) { |
|
strcat(infilename, ".mesh"); |
|
} |
|
|
|
if (!(fp = fopen(infilename, "r"))) { |
|
printf("Error: Unable to open file %s\n", infilename); |
|
return false; |
|
} |
|
printf("Opening %s.\n", infilename); |
|
|
|
while ((bufferp = readline(buffer, fp, &line_count)) != NULL) { |
|
if (*bufferp == '#') continue; // A comment line is skipped. |
|
if (dimension == 0) { |
|
// Find if it is the keyword "Dimension". |
|
str = strstr(bufferp, "Dimension"); |
|
if (!str) str = strstr(bufferp, "dimension"); |
|
if (!str) str = strstr(bufferp, "DIMENSION"); |
|
if (str) { |
|
// Read the dimensions |
|
bufferp = findnextnumber(str); // Skip field "Dimension". |
|
if (*bufferp == '\0') { |
|
// Read a non-empty line. |
|
bufferp = readline(buffer, fp, &line_count); |
|
} |
|
dimension = (int)strtol(bufferp, &bufferp, 0); |
|
if (dimension != 2 && dimension != 3) { |
|
printf("Unknown dimension in file on line %d in file %s\n", line_count, |
|
infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
mesh_dim = dimension; |
|
} |
|
} |
|
if (nverts == 0) { |
|
// Find if it is the keyword "Vertices". |
|
str = strstr(bufferp, "Vertices"); |
|
if (!str) str = strstr(bufferp, "vertices"); |
|
if (!str) str = strstr(bufferp, "VERTICES"); |
|
if (str) { |
|
// Read the number of vertices. |
|
bufferp = findnextnumber(str); // Skip field "Vertices". |
|
if (*bufferp == '\0') { |
|
// Read a non-empty line. |
|
bufferp = readline(buffer, fp, &line_count); |
|
} |
|
nverts = (int)strtol(bufferp, &bufferp, 0); |
|
// Initialize the smallest index. |
|
smallestidx = nverts + 1; |
|
// Allocate memory for 'tetgenio' |
|
if (nverts > 0) { |
|
numberofpoints = nverts; |
|
pointlist = new REAL[nverts * 3]; |
|
} |
|
// Read the follwoing node list. |
|
for (i = 0; i < nverts; i++) { |
|
bufferp = readline(buffer, fp, &line_count); |
|
if (bufferp == NULL) { |
|
printf("Unexpected end of file on line %d in file %s\n", line_count, |
|
infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
// Read vertex coordinates |
|
coord = &pointlist[i * 3]; |
|
for (j = 0; j < 3; j++) { |
|
if (*bufferp == '\0') { |
|
printf("Syntax error reading vertex coords on line"); |
|
printf(" %d in file %s\n", line_count, infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
if ((j < 2) || (dimension == 3)) { |
|
coord[j] = (REAL)strtod(bufferp, &bufferp); |
|
} else { |
|
coord[j] = 0.0; |
|
} |
|
bufferp = findnextnumber(bufferp); |
|
} |
|
} |
|
continue; |
|
} |
|
} |
|
if (ntets == 0) { |
|
// Find if it is the keyword "Tetrahedra" |
|
corners = 0; |
|
str = strstr(bufferp, "Tetrahedra"); |
|
if (!str) str = strstr(bufferp, "tetrahedra"); |
|
if (!str) str = strstr(bufferp, "TETRAHEDRA"); |
|
if (str) { |
|
corners = 4; |
|
} |
|
if (corners == 4) { |
|
// Read the number of tetrahedra |
|
bufferp = findnextnumber(str); // Skip field "Tetrahedra". |
|
if (*bufferp == '\0') { |
|
// Read a non-empty line. |
|
bufferp = readline(buffer, fp, &line_count); |
|
} |
|
ntets = strtol(bufferp, &bufferp, 0); |
|
if (ntets > 0) { |
|
// It is a tetrahedral mesh. |
|
numberoftetrahedra = ntets; |
|
numberofcorners = 4; |
|
numberoftetrahedronattributes = 1; |
|
tetrahedronlist = new int[ntets * 4]; |
|
tetrahedronattributelist = new REAL[ntets]; |
|
} |
|
} // if (corners == 4) |
|
// Read the list of tetrahedra. |
|
for (i = 0; i < numberoftetrahedra; i++) { |
|
plist = &(tetrahedronlist[i * 4]); |
|
bufferp = readline(buffer, fp, &line_count); |
|
if (bufferp == NULL) { |
|
printf("Unexpected end of file on line %d in file %s\n", line_count, |
|
infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
// Read the vertices of the tet. |
|
for (j = 0; j < corners; j++) { |
|
if (*bufferp == '\0') { |
|
printf("Syntax error reading face on line %d in file %s\n", line_count, |
|
infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
plist[j] = (int)strtol(bufferp, &bufferp, 0); |
|
// Remember the smallest index. |
|
if (plist[j] < smallestidx) smallestidx = plist[j]; |
|
bufferp = findnextnumber(bufferp); |
|
} |
|
// Read the attribute of the tet if it exists. |
|
tetrahedronattributelist[i] = 0; |
|
if (*bufferp != '\0') { |
|
tetrahedronattributelist[i] = (REAL)strtol(bufferp, &bufferp, 0); |
|
} |
|
} // i |
|
} // Tetrahedra |
|
if (nfaces == 0) { |
|
// Find if it is the keyword "Triangles" or "Quadrilaterals". |
|
corners = 0; |
|
str = strstr(bufferp, "Triangles"); |
|
if (!str) str = strstr(bufferp, "triangles"); |
|
if (!str) str = strstr(bufferp, "TRIANGLES"); |
|
if (str) { |
|
corners = 3; |
|
} else { |
|
str = strstr(bufferp, "Quadrilaterals"); |
|
if (!str) str = strstr(bufferp, "quadrilaterals"); |
|
if (!str) str = strstr(bufferp, "QUADRILATERALS"); |
|
if (str) { |
|
corners = 4; |
|
} |
|
} |
|
if (corners == 3 || corners == 4) { |
|
// Read the number of triangles (or quadrilaterals). |
|
bufferp = findnextnumber(str); // Skip field "Triangles". |
|
if (*bufferp == '\0') { |
|
// Read a non-empty line. |
|
bufferp = readline(buffer, fp, &line_count); |
|
} |
|
nfaces = strtol(bufferp, &bufferp, 0); |
|
// Allocate memory for 'tetgenio' |
|
if (nfaces > 0) { |
|
if (!istetmesh) { |
|
// It is a PLC surface mesh. |
|
if (numberoffacets > 0) { |
|
// facetlist has already been allocated. Enlarge arrays. |
|
// This happens when the surface mesh contains mixed cells. |
|
tmpflist = new tetgenio::facet[numberoffacets + nfaces]; |
|
tmpfmlist = new int[numberoffacets + nfaces]; |
|
// Copy the data of old arrays into new arrays. |
|
for (i = 0; i < numberoffacets; i++) { |
|
f = &(tmpflist[i]); |
|
tetgenio::init(f); |
|
*f = facetlist[i]; |
|
tmpfmlist[i] = facetmarkerlist[i]; |
|
} |
|
// Release old arrays. |
|
delete[] facetlist; |
|
delete[] facetmarkerlist; |
|
// Remember the new arrays. |
|
facetlist = tmpflist; |
|
facetmarkerlist = tmpfmlist; |
|
} else { |
|
// This is the first time to allocate facetlist. |
|
facetlist = new tetgenio::facet[nfaces]; |
|
facetmarkerlist = new int[nfaces]; |
|
} |
|
} else { |
|
if (corners == 3) { |
|
// It is a surface mesh of a tetrahedral mesh. |
|
numberoftrifaces = nfaces; |
|
trifacelist = new int[nfaces * 3]; |
|
trifacemarkerlist = new int[nfaces]; |
|
} |
|
} |
|
} // if (nfaces > 0) |
|
// Read the following list of faces. |
|
if (!istetmesh) { |
|
for (i = numberoffacets; i < numberoffacets + nfaces; i++) { |
|
bufferp = readline(buffer, fp, &line_count); |
|
if (bufferp == NULL) { |
|
printf("Unexpected end of file on line %d in file %s\n", line_count, |
|
infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
f = &facetlist[i]; |
|
tetgenio::init(f); |
|
// In .mesh format, each facet has one polygon, no hole. |
|
f->numberofpolygons = 1; |
|
f->polygonlist = new tetgenio::polygon[1]; |
|
p = &f->polygonlist[0]; |
|
tetgenio::init(p); |
|
p->numberofvertices = corners; |
|
// Allocate memory for face vertices |
|
p->vertexlist = new int[p->numberofvertices]; |
|
// Read the vertices of the face. |
|
for (j = 0; j < corners; j++) { |
|
if (*bufferp == '\0') { |
|
printf("Syntax error reading face on line %d in file %s\n", |
|
line_count, infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
p->vertexlist[j] = (int)strtol(bufferp, &bufferp, 0); |
|
// Remember the smallest index. |
|
if (p->vertexlist[j] < smallestidx) { |
|
smallestidx = p->vertexlist[j]; |
|
} |
|
bufferp = findnextnumber(bufferp); |
|
} |
|
// Read the marker of the face if it exists. |
|
facetmarkerlist[i] = 0; |
|
if (*bufferp != '\0') { |
|
facetmarkerlist[i] = (int)strtol(bufferp, &bufferp, 0); |
|
} |
|
} |
|
// Have read in a list of triangles/quads. |
|
numberoffacets += nfaces; |
|
nfaces = 0; |
|
} else { |
|
// It is a surface mesh of a tetrahedral mesh. |
|
if (corners == 3) { |
|
for (i = 0; i < numberoftrifaces; i++) { |
|
plist = &(trifacelist[i * 3]); |
|
bufferp = readline(buffer, fp, &line_count); |
|
if (bufferp == NULL) { |
|
printf("Unexpected end of file on line %d in file %s\n", line_count, |
|
infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
// Read the vertices of the face. |
|
for (j = 0; j < corners; j++) { |
|
if (*bufferp == '\0') { |
|
printf("Syntax error reading face on line %d in file %s\n", |
|
line_count, infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
plist[j] = (int)strtol(bufferp, &bufferp, 0); |
|
// Remember the smallest index. |
|
if (plist[j] < smallestidx) { |
|
smallestidx = plist[j]; |
|
} |
|
bufferp = findnextnumber(bufferp); |
|
} |
|
// Read the marker of the face if it exists. |
|
trifacemarkerlist[i] = 0; |
|
if (*bufferp != '\0') { |
|
trifacemarkerlist[i] = (int)strtol(bufferp, &bufferp, 0); |
|
} |
|
} // i |
|
} // if (corners == 3) |
|
} // if (b->refine) |
|
} // if (corners == 3 || corners == 4) |
|
} |
|
} |
|
|
|
// Close file |
|
fclose(fp); |
|
|
|
// Decide the firstnumber of the index. |
|
if (smallestidx == 0) { |
|
firstnumber = 0; |
|
} else if (smallestidx == 1) { |
|
firstnumber = 1; |
|
} else { |
|
printf("A wrong smallest index (%d) was detected in file %s\n", smallestidx, infilename); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_vtk() Load VTK surface mesh from file (.vtk ascii or binary). // |
|
// // |
|
// This function is contributed by: Bryn Lloyd, Computer Vision Laboratory, // |
|
// ETH, Zuerich. May 7, 2007. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
// Two inline functions used in read/write VTK files. |
|
|
|
void swapBytes(unsigned char* var, int size) { |
|
int i = 0; |
|
int j = size - 1; |
|
char c; |
|
|
|
while (i < j) { |
|
c = var[i]; |
|
var[i] = var[j]; |
|
var[j] = c; |
|
i++, j--; |
|
} |
|
} |
|
|
|
bool testIsBigEndian() { |
|
short word = 0x4321; |
|
if ((*(char*)&word) != 0x21) |
|
return true; |
|
else |
|
return false; |
|
} |
|
|
|
bool tetgenio::load_vtk(char* filebasename) { |
|
FILE* fp; |
|
tetgenio::facet* f; |
|
tetgenio::polygon* p; |
|
char infilename[FILENAMESIZE]; |
|
char line[INPUTLINESIZE]; |
|
char mode[128], id[256], fmt[64]; |
|
char* bufferp; |
|
double* coord; |
|
float _x, _y, _z; |
|
int nverts = 0; |
|
int nfaces = 0; |
|
int line_count = 0; |
|
int dummy; |
|
int id1, id2, id3; |
|
int nn = -1; |
|
int nn_old = -1; |
|
int i, j; |
|
bool ImALittleEndian = !testIsBigEndian(); |
|
|
|
int smallestidx = 0; |
|
|
|
strncpy(infilename, filebasename, FILENAMESIZE - 1); |
|
infilename[FILENAMESIZE - 1] = '\0'; |
|
if (infilename[0] == '\0') { |
|
printf("Error: No filename.\n"); |
|
return false; |
|
} |
|
if (strcmp(&infilename[strlen(infilename) - 4], ".vtk") != 0) { |
|
strcat(infilename, ".vtk"); |
|
} |
|
if (!(fp = fopen(infilename, "r"))) { |
|
printf("Error: Unable to open file %s\n", infilename); |
|
return false; |
|
} |
|
printf("Opening %s.\n", infilename); |
|
|
|
// Default uses the index starts from '0'. |
|
firstnumber = 0; |
|
strcpy(mode, "BINARY"); |
|
|
|
while ((bufferp = readline(line, fp, &line_count)) != NULL) { |
|
if (strlen(line) == 0) continue; |
|
// swallow lines beginning with a comment sign or white space |
|
if (line[0] == '#' || line[0] == '\n' || line[0] == 10 || line[0] == 13 || line[0] == 32) |
|
continue; |
|
|
|
sscanf(line, "%s", id); |
|
if (!strcmp(id, "ASCII")) { |
|
strcpy(mode, "ASCII"); |
|
} |
|
|
|
if (!strcmp(id, "POINTS")) { |
|
sscanf(line, "%s %d %s", id, &nverts, fmt); |
|
if (nverts > 0) { |
|
numberofpoints = nverts; |
|
pointlist = new REAL[nverts * 3]; |
|
smallestidx = nverts + 1; |
|
} |
|
|
|
if (!strcmp(mode, "BINARY")) { |
|
for (i = 0; i < nverts; i++) { |
|
coord = &pointlist[i * 3]; |
|
if (!strcmp(fmt, "double")) { |
|
fread((char*)(&(coord[0])), sizeof(double), 1, fp); |
|
fread((char*)(&(coord[1])), sizeof(double), 1, fp); |
|
fread((char*)(&(coord[2])), sizeof(double), 1, fp); |
|
if (ImALittleEndian) { |
|
swapBytes((unsigned char*)&(coord[0]), sizeof(coord[0])); |
|
swapBytes((unsigned char*)&(coord[1]), sizeof(coord[1])); |
|
swapBytes((unsigned char*)&(coord[2]), sizeof(coord[2])); |
|
} |
|
} else if (!strcmp(fmt, "float")) { |
|
fread((char*)(&_x), sizeof(float), 1, fp); |
|
fread((char*)(&_y), sizeof(float), 1, fp); |
|
fread((char*)(&_z), sizeof(float), 1, fp); |
|
if (ImALittleEndian) { |
|
swapBytes((unsigned char*)&_x, sizeof(_x)); |
|
swapBytes((unsigned char*)&_y, sizeof(_y)); |
|
swapBytes((unsigned char*)&_z, sizeof(_z)); |
|
} |
|
coord[0] = double(_x); |
|
coord[1] = double(_y); |
|
coord[2] = double(_z); |
|
} else { |
|
printf("Error: Only float or double formats are supported!\n"); |
|
return false; |
|
} |
|
} |
|
} else if (!strcmp(mode, "ASCII")) { |
|
for (i = 0; i < nverts; i++) { |
|
bufferp = readline(line, fp, &line_count); |
|
if (bufferp == NULL) { |
|
printf("Unexpected end of file on line %d in file %s\n", line_count, |
|
infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
// Read vertex coordinates |
|
coord = &pointlist[i * 3]; |
|
for (j = 0; j < 3; j++) { |
|
if (*bufferp == '\0') { |
|
printf("Syntax error reading vertex coords on line"); |
|
printf(" %d in file %s\n", line_count, infilename); |
|
fclose(fp); |
|
return false; |
|
} |
|
coord[j] = (REAL)strtod(bufferp, &bufferp); |
|
bufferp = findnextnumber(bufferp); |
|
} |
|
} |
|
} |
|
continue; |
|
} |
|
|
|
if (!strcmp(id, "POLYGONS")) { |
|
sscanf(line, "%s %d %d", id, &nfaces, &dummy); |
|
if (nfaces > 0) { |
|
numberoffacets = nfaces; |
|
facetlist = new tetgenio::facet[nfaces]; |
|
} |
|
|
|
if (!strcmp(mode, "BINARY")) { |
|
for (i = 0; i < nfaces; i++) { |
|
fread((char*)(&nn), sizeof(int), 1, fp); |
|
if (ImALittleEndian) { |
|
swapBytes((unsigned char*)&nn, sizeof(nn)); |
|
} |
|
if (i == 0) nn_old = nn; |
|
if (nn != nn_old) { |
|
printf("Error: No mixed cells are allowed.\n"); |
|
return false; |
|
} |
|
|
|
if (nn == 3) { |
|
fread((char*)(&id1), sizeof(int), 1, fp); |
|
fread((char*)(&id2), sizeof(int), 1, fp); |
|
fread((char*)(&id3), sizeof(int), 1, fp); |
|
if (ImALittleEndian) { |
|
swapBytes((unsigned char*)&id1, sizeof(id1)); |
|
swapBytes((unsigned char*)&id2, sizeof(id2)); |
|
swapBytes((unsigned char*)&id3, sizeof(id3)); |
|
} |
|
f = &facetlist[i]; |
|
init(f); |
|
// In .off format, each facet has one polygon, no hole. |
|
f->numberofpolygons = 1; |
|
f->polygonlist = new tetgenio::polygon[1]; |
|
p = &f->polygonlist[0]; |
|
init(p); |
|
// Set number of vertices |
|
p->numberofvertices = 3; |
|
// Allocate memory for face vertices |
|
p->vertexlist = new int[p->numberofvertices]; |
|
p->vertexlist[0] = id1; |
|
p->vertexlist[1] = id2; |
|
p->vertexlist[2] = id3; |
|
// Detect the smallest index. |
|
for (j = 0; j < 3; j++) { |
|
if (p->vertexlist[j] < smallestidx) { |
|
smallestidx = p->vertexlist[j]; |
|
} |
|
} |
|
} else { |
|
printf("Error: Only triangles are supported\n"); |
|
return false; |
|
} |
|
} |
|
} else if (!strcmp(mode, "ASCII")) { |
|
for (i = 0; i < nfaces; i++) { |
|
bufferp = readline(line, fp, &line_count); |
|
nn = (int)strtol(bufferp, &bufferp, 0); |
|
if (i == 0) nn_old = nn; |
|
if (nn != nn_old) { |
|
printf("Error: No mixed cells are allowed.\n"); |
|
return false; |
|
} |
|
|
|
if (nn == 3) { |
|
bufferp = findnextnumber(bufferp); // Skip the first field. |
|
id1 = (int)strtol(bufferp, &bufferp, 0); |
|
bufferp = findnextnumber(bufferp); |
|
id2 = (int)strtol(bufferp, &bufferp, 0); |
|
bufferp = findnextnumber(bufferp); |
|
id3 = (int)strtol(bufferp, &bufferp, 0); |
|
f = &facetlist[i]; |
|
init(f); |
|
// In .off format, each facet has one polygon, no hole. |
|
f->numberofpolygons = 1; |
|
f->polygonlist = new tetgenio::polygon[1]; |
|
p = &f->polygonlist[0]; |
|
init(p); |
|
// Set number of vertices |
|
p->numberofvertices = 3; |
|
// Allocate memory for face vertices |
|
p->vertexlist = new int[p->numberofvertices]; |
|
p->vertexlist[0] = id1; |
|
p->vertexlist[1] = id2; |
|
p->vertexlist[2] = id3; |
|
// Detect the smallest index. |
|
for (j = 0; j < 3; j++) { |
|
if (p->vertexlist[j] < smallestidx) { |
|
smallestidx = p->vertexlist[j]; |
|
} |
|
} |
|
} else { |
|
printf("Error: Only triangles are supported.\n"); |
|
return false; |
|
} |
|
} |
|
} |
|
|
|
fclose(fp); |
|
|
|
// Decide the firstnumber of the index. |
|
if (smallestidx == 0) { |
|
firstnumber = 0; |
|
} else if (smallestidx == 1) { |
|
firstnumber = 1; |
|
} else { |
|
printf("A wrong smallest index (%d) was detected in file %s\n", smallestidx, |
|
infilename); |
|
return false; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
if (!strcmp(id, "LINES") || !strcmp(id, "CELLS")) { |
|
printf("Warning: load_vtk(): cannot read formats LINES, CELLS.\n"); |
|
} |
|
} // while () |
|
|
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_plc() Load a piecewise linear complex from file(s). // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenio::load_plc(char* filebasename, int object) { |
|
bool success; |
|
|
|
if (object == (int)tetgenbehavior::NODES) { |
|
success = load_node(filebasename); |
|
} else if (object == (int)tetgenbehavior::POLY) { |
|
success = load_poly(filebasename); |
|
} else if (object == (int)tetgenbehavior::OFF) { |
|
success = load_off(filebasename); |
|
} else if (object == (int)tetgenbehavior::PLY) { |
|
success = load_ply(filebasename); |
|
} else if (object == (int)tetgenbehavior::STL) { |
|
success = load_stl(filebasename); |
|
} else if (object == (int)tetgenbehavior::MEDIT) { |
|
success = load_medit(filebasename, 0); |
|
} else if (object == (int)tetgenbehavior::VTK) { |
|
success = load_vtk(filebasename); |
|
} else { |
|
success = load_poly(filebasename); |
|
} |
|
|
|
if (success) { |
|
// Try to load the following files (.edge, .var, .mtr). |
|
load_edge(filebasename); |
|
load_var(filebasename); |
|
load_mtr(filebasename); |
|
} |
|
|
|
return success; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// load_mesh() Load a tetrahedral mesh from file(s). // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenio::load_tetmesh(char* filebasename, int object) { |
|
bool success; |
|
|
|
if (object == (int)tetgenbehavior::MEDIT) { |
|
success = load_medit(filebasename, 1); |
|
} else if (object == (int)tetgenbehavior::NEU_MESH) { |
|
// success = load_neumesh(filebasename, 1); |
|
} else { |
|
success = load_node(filebasename); |
|
if (success) { |
|
success = load_tet(filebasename); |
|
} |
|
if (success) { |
|
// Try to load the following files (.face, .edge, .vol). |
|
load_face(filebasename); |
|
load_edge(filebasename); |
|
load_vol(filebasename); |
|
} |
|
} |
|
|
|
// if (success) { |
|
// Try to load the following files (.var, .mtr). |
|
load_var(filebasename); |
|
load_mtr(filebasename); |
|
//} |
|
|
|
return success; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// save_nodes() Save points to a .node file. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenio::save_nodes(char* filebasename) { |
|
FILE* fout; |
|
char outnodefilename[FILENAMESIZE]; |
|
char outmtrfilename[FILENAMESIZE]; |
|
int i, j; |
|
|
|
sprintf(outnodefilename, "%s.node", filebasename); |
|
printf("Saving nodes to %s\n", outnodefilename); |
|
fout = fopen(outnodefilename, "w"); |
|
fprintf(fout, "%d %d %d %d\n", numberofpoints, mesh_dim, numberofpointattributes, |
|
pointmarkerlist != NULL ? 1 : 0); |
|
for (i = 0; i < numberofpoints; i++) { |
|
if (mesh_dim == 2) { |
|
fprintf(fout, "%d %.16g %.16g", i + firstnumber, pointlist[i * 3], |
|
pointlist[i * 3 + 1]); |
|
} else { |
|
fprintf(fout, "%d %.16g %.16g %.16g", i + firstnumber, pointlist[i * 3], |
|
pointlist[i * 3 + 1], pointlist[i * 3 + 2]); |
|
} |
|
for (j = 0; j < numberofpointattributes; j++) { |
|
fprintf(fout, " %.16g", pointattributelist[i * numberofpointattributes + j]); |
|
} |
|
if (pointmarkerlist != NULL) { |
|
fprintf(fout, " %d", pointmarkerlist[i]); |
|
} |
|
fprintf(fout, "\n"); |
|
} |
|
fclose(fout); |
|
|
|
// If the point metrics exist, output them to a .mtr file. |
|
if ((numberofpointmtrs > 0) && (pointmtrlist != (REAL*)NULL)) { |
|
sprintf(outmtrfilename, "%s.mtr", filebasename); |
|
printf("Saving metrics to %s\n", outmtrfilename); |
|
fout = fopen(outmtrfilename, "w"); |
|
fprintf(fout, "%d %d\n", numberofpoints, numberofpointmtrs); |
|
for (i = 0; i < numberofpoints; i++) { |
|
for (j = 0; j < numberofpointmtrs; j++) { |
|
fprintf(fout, "%.16g ", pointmtrlist[i * numberofpointmtrs + j]); |
|
} |
|
fprintf(fout, "\n"); |
|
} |
|
fclose(fout); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// save_elements() Save elements to a .ele file. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenio::save_elements(char* filebasename) { |
|
FILE* fout; |
|
char outelefilename[FILENAMESIZE]; |
|
int i, j; |
|
|
|
sprintf(outelefilename, "%s.ele", filebasename); |
|
printf("Saving elements to %s\n", outelefilename); |
|
fout = fopen(outelefilename, "w"); |
|
if (mesh_dim == 3) { |
|
fprintf(fout, "%d %d %d\n", numberoftetrahedra, numberofcorners, |
|
numberoftetrahedronattributes); |
|
for (i = 0; i < numberoftetrahedra; i++) { |
|
fprintf(fout, "%d", i + firstnumber); |
|
for (j = 0; j < numberofcorners; j++) { |
|
fprintf(fout, " %5d", tetrahedronlist[i * numberofcorners + j]); |
|
} |
|
for (j = 0; j < numberoftetrahedronattributes; j++) { |
|
fprintf(fout, " %g", |
|
tetrahedronattributelist[i * numberoftetrahedronattributes + j]); |
|
} |
|
fprintf(fout, "\n"); |
|
} |
|
} else { |
|
// Save a two-dimensional mesh. |
|
fprintf(fout, "%d %d %d\n", numberoftrifaces, 3, trifacemarkerlist ? 1 : 0); |
|
for (i = 0; i < numberoftrifaces; i++) { |
|
fprintf(fout, "%d", i + firstnumber); |
|
for (j = 0; j < 3; j++) { |
|
fprintf(fout, " %5d", trifacelist[i * 3 + j]); |
|
} |
|
if (trifacemarkerlist != NULL) { |
|
fprintf(fout, " %d", trifacemarkerlist[i]); |
|
} |
|
fprintf(fout, "\n"); |
|
} |
|
} |
|
|
|
fclose(fout); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// save_faces() Save faces to a .face file. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenio::save_faces(char* filebasename) { |
|
FILE* fout; |
|
char outfacefilename[FILENAMESIZE]; |
|
int i; |
|
|
|
sprintf(outfacefilename, "%s.face", filebasename); |
|
printf("Saving faces to %s\n", outfacefilename); |
|
fout = fopen(outfacefilename, "w"); |
|
fprintf(fout, "%d %d\n", numberoftrifaces, trifacemarkerlist != NULL ? 1 : 0); |
|
for (i = 0; i < numberoftrifaces; i++) { |
|
fprintf(fout, "%d %5d %5d %5d", i + firstnumber, trifacelist[i * 3], |
|
trifacelist[i * 3 + 1], trifacelist[i * 3 + 2]); |
|
if (trifacemarkerlist != NULL) { |
|
fprintf(fout, " %d", trifacemarkerlist[i]); |
|
} |
|
fprintf(fout, "\n"); |
|
} |
|
|
|
fclose(fout); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// save_edges() Save egdes to a .edge file. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenio::save_edges(char* filebasename) { |
|
FILE* fout; |
|
char outedgefilename[FILENAMESIZE]; |
|
int i; |
|
|
|
sprintf(outedgefilename, "%s.edge", filebasename); |
|
printf("Saving edges to %s\n", outedgefilename); |
|
fout = fopen(outedgefilename, "w"); |
|
fprintf(fout, "%d %d\n", numberofedges, edgemarkerlist != NULL ? 1 : 0); |
|
for (i = 0; i < numberofedges; i++) { |
|
fprintf(fout, "%d %4d %4d", i + firstnumber, edgelist[i * 2], edgelist[i * 2 + 1]); |
|
if (edgemarkerlist != NULL) { |
|
fprintf(fout, " %d", edgemarkerlist[i]); |
|
} |
|
fprintf(fout, "\n"); |
|
} |
|
|
|
fclose(fout); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// save_neighbors() Save egdes to a .neigh file. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenio::save_neighbors(char* filebasename) { |
|
FILE* fout; |
|
char outneighborfilename[FILENAMESIZE]; |
|
int i; |
|
|
|
sprintf(outneighborfilename, "%s.neigh", filebasename); |
|
printf("Saving neighbors to %s\n", outneighborfilename); |
|
fout = fopen(outneighborfilename, "w"); |
|
fprintf(fout, "%d %d\n", numberoftetrahedra, mesh_dim + 1); |
|
for (i = 0; i < numberoftetrahedra; i++) { |
|
if (mesh_dim == 2) { |
|
fprintf(fout, "%d %5d %5d %5d", i + firstnumber, neighborlist[i * 3], |
|
neighborlist[i * 3 + 1], neighborlist[i * 3 + 2]); |
|
} else { |
|
fprintf(fout, "%d %5d %5d %5d %5d", i + firstnumber, neighborlist[i * 4], |
|
neighborlist[i * 4 + 1], neighborlist[i * 4 + 2], neighborlist[i * 4 + 3]); |
|
} |
|
fprintf(fout, "\n"); |
|
} |
|
|
|
fclose(fout); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// save_poly() Save segments or facets to a .poly file. // |
|
// // |
|
// It only save the facets, holes and regions. No .node file is saved. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenio::save_poly(char* filebasename) { |
|
FILE* fout; |
|
facet* f; |
|
polygon* p; |
|
char outpolyfilename[FILENAMESIZE]; |
|
int i, j, k; |
|
|
|
sprintf(outpolyfilename, "%s.poly", filebasename); |
|
printf("Saving poly to %s\n", outpolyfilename); |
|
fout = fopen(outpolyfilename, "w"); |
|
|
|
// The zero indicates that the vertices are in a separate .node file. |
|
// Followed by number of dimensions, number of vertex attributes, |
|
// and number of boundary markers (zero or one). |
|
fprintf(fout, "%d %d %d %d\n", 0, mesh_dim, numberofpointattributes, |
|
pointmarkerlist != NULL ? 1 : 0); |
|
|
|
// Save segments or facets. |
|
if (mesh_dim == 2) { |
|
// Number of segments, number of boundary markers (zero or one). |
|
fprintf(fout, "%d %d\n", numberofedges, edgemarkerlist != NULL ? 1 : 0); |
|
for (i = 0; i < numberofedges; i++) { |
|
fprintf(fout, "%d %4d %4d", i + firstnumber, edgelist[i * 2], edgelist[i * 2 + 1]); |
|
if (edgemarkerlist != NULL) { |
|
fprintf(fout, " %d", edgemarkerlist[i]); |
|
} |
|
fprintf(fout, "\n"); |
|
} |
|
} else { |
|
// Number of facets, number of boundary markers (zero or one). |
|
fprintf(fout, "%d %d\n", numberoffacets, facetmarkerlist != NULL ? 1 : 0); |
|
for (i = 0; i < numberoffacets; i++) { |
|
f = &(facetlist[i]); |
|
fprintf(fout, "%d %d %d # %d\n", f->numberofpolygons, f->numberofholes, |
|
facetmarkerlist != NULL ? facetmarkerlist[i] : 0, i + firstnumber); |
|
// Output polygons of this facet. |
|
for (j = 0; j < f->numberofpolygons; j++) { |
|
p = &(f->polygonlist[j]); |
|
fprintf(fout, "%d ", p->numberofvertices); |
|
for (k = 0; k < p->numberofvertices; k++) { |
|
if (((k + 1) % 10) == 0) { |
|
fprintf(fout, "\n "); |
|
} |
|
fprintf(fout, " %d", p->vertexlist[k]); |
|
} |
|
fprintf(fout, "\n"); |
|
} |
|
// Output holes of this facet. |
|
for (j = 0; j < f->numberofholes; j++) { |
|
fprintf(fout, "%d %.12g %.12g %.12g\n", j + firstnumber, f->holelist[j * 3], |
|
f->holelist[j * 3 + 1], f->holelist[j * 3 + 2]); |
|
} |
|
} |
|
} |
|
|
|
// Save holes. |
|
fprintf(fout, "%d\n", numberofholes); |
|
for (i = 0; i < numberofholes; i++) { |
|
// Output x, y coordinates. |
|
fprintf(fout, "%d %.12g %.12g", i + firstnumber, holelist[i * mesh_dim], |
|
holelist[i * mesh_dim + 1]); |
|
if (mesh_dim == 3) { |
|
// Output z coordinate. |
|
fprintf(fout, " %.12g", holelist[i * mesh_dim + 2]); |
|
} |
|
fprintf(fout, "\n"); |
|
} |
|
|
|
// Save regions. |
|
fprintf(fout, "%d\n", numberofregions); |
|
for (i = 0; i < numberofregions; i++) { |
|
if (mesh_dim == 2) { |
|
// Output the index, x, y coordinates, attribute (region number) |
|
// and maximum area constraint (maybe -1). |
|
fprintf(fout, "%d %.12g %.12g %.12g %.12g\n", i + firstnumber, regionlist[i * 4], |
|
regionlist[i * 4 + 1], regionlist[i * 4 + 2], regionlist[i * 4 + 3]); |
|
} else { |
|
// Output the index, x, y, z coordinates, attribute (region number) |
|
// and maximum volume constraint (maybe -1). |
|
fprintf(fout, "%d %.12g %.12g %.12g %.12g %.12g\n", i + firstnumber, |
|
regionlist[i * 5], regionlist[i * 5 + 1], regionlist[i * 5 + 2], |
|
regionlist[i * 5 + 3], regionlist[i * 5 + 4]); |
|
} |
|
} |
|
|
|
fclose(fout); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// save_faces2smesh() Save triangular faces to a .smesh file. // |
|
// // |
|
// It only save the facets. No holes and regions. No .node file. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenio::save_faces2smesh(char* filebasename) { |
|
FILE* fout; |
|
char outsmeshfilename[FILENAMESIZE]; |
|
int i, j; |
|
|
|
sprintf(outsmeshfilename, "%s.smesh", filebasename); |
|
printf("Saving faces to %s\n", outsmeshfilename); |
|
fout = fopen(outsmeshfilename, "w"); |
|
|
|
// The zero indicates that the vertices are in a separate .node file. |
|
// Followed by number of dimensions, number of vertex attributes, |
|
// and number of boundary markers (zero or one). |
|
fprintf(fout, "%d %d %d %d\n", 0, mesh_dim, numberofpointattributes, |
|
pointmarkerlist != NULL ? 1 : 0); |
|
|
|
// Number of facets, number of boundary markers (zero or one). |
|
fprintf(fout, "%d %d\n", numberoftrifaces, trifacemarkerlist != NULL ? 1 : 0); |
|
|
|
// Output triangular facets. |
|
for (i = 0; i < numberoftrifaces; i++) { |
|
j = i * 3; |
|
fprintf(fout, "3 %d %d %d", trifacelist[j], trifacelist[j + 1], trifacelist[j + 2]); |
|
if (trifacemarkerlist != NULL) { |
|
fprintf(fout, " %d", trifacemarkerlist[i]); |
|
} |
|
fprintf(fout, "\n"); |
|
} |
|
|
|
// No holes and regions. |
|
fprintf(fout, "0\n"); |
|
fprintf(fout, "0\n"); |
|
|
|
fclose(fout); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// readline() Read a nonempty line from a file. // |
|
// // |
|
// A line is considered "nonempty" if it contains something more than white // |
|
// spaces. If a line is considered empty, it will be dropped and the next // |
|
// line will be read, this process ends until reaching the end-of-file or a // |
|
// non-empty line. Return NULL if it is the end-of-file, otherwise, return // |
|
// a pointer to the first non-whitespace character of the line. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
char* tetgenio::readline(char* string, FILE* infile, int* linenumber) { |
|
char* result; |
|
|
|
// Search for a non-empty line. |
|
do { |
|
result = fgets(string, INPUTLINESIZE - 1, infile); |
|
if (linenumber) (*linenumber)++; |
|
if (result == (char*)NULL) { |
|
return (char*)NULL; |
|
} |
|
// Skip white spaces. |
|
while ((*result == ' ') || (*result == '\t')) |
|
result++; |
|
// If it's end of line, read another line and try again. |
|
} while ((*result == '\0') || (*result == '\r') || (*result == '\n')); |
|
return result; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// findnextfield() Find the next field of a string. // |
|
// // |
|
// Jumps past the current field by searching for whitespace or a comma, then // |
|
// jumps past the whitespace or the comma to find the next field. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
char* tetgenio::findnextfield(char* string) { |
|
char* result; |
|
|
|
result = string; |
|
// Skip the current field. Stop upon reaching whitespace or a comma. |
|
while ((*result != '\0') && (*result != ' ') && (*result != '\t') && (*result != ',') && |
|
(*result != ';')) { |
|
result++; |
|
} |
|
// Now skip the whitespace or the comma, stop at anything else that looks |
|
// like a character, or the end of a line. |
|
while ((*result == ' ') || (*result == '\t') || (*result == ',') || (*result == ';')) { |
|
result++; |
|
} |
|
return result; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// readnumberline() Read a nonempty number line from a file. // |
|
// // |
|
// A line is considered "nonempty" if it contains something that looks like // |
|
// a number. Comments (prefaced by `#') are ignored. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
char* tetgenio::readnumberline(char* string, FILE* infile, char* infilename) { |
|
char* result; |
|
|
|
// Search for something that looks like a number. |
|
do { |
|
result = fgets(string, INPUTLINESIZE, infile); |
|
if (result == (char*)NULL) { |
|
return result; |
|
} |
|
// Skip anything that doesn't look like a number, a comment, |
|
// or the end of a line. |
|
while ((*result != '\0') && (*result != '#') && (*result != '.') && (*result != '+') && |
|
(*result != '-') && ((*result < '0') || (*result > '9'))) { |
|
result++; |
|
} |
|
// If it's a comment or end of line, read another line and try again. |
|
} while ((*result == '#') || (*result == '\0')); |
|
return result; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// findnextnumber() Find the next field of a number string. // |
|
// // |
|
// Jumps past the current field by searching for whitespace or a comma, then // |
|
// jumps past the whitespace or the comma to find the next field that looks // |
|
// like a number. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
char* tetgenio::findnextnumber(char* string) { |
|
char* result; |
|
|
|
result = string; |
|
// Skip the current field. Stop upon reaching whitespace or a comma. |
|
while ((*result != '\0') && (*result != '#') && (*result != ' ') && (*result != '\t') && |
|
(*result != ',')) { |
|
result++; |
|
} |
|
// Now skip the whitespace and anything else that doesn't look like a |
|
// number, a comment, or the end of a line. |
|
while ((*result != '\0') && (*result != '#') && (*result != '.') && (*result != '+') && |
|
(*result != '-') && ((*result < '0') || (*result > '9'))) { |
|
result++; |
|
} |
|
// Check for a comment (prefixed with `#'). |
|
if (*result == '#') { |
|
*result = '\0'; |
|
} |
|
return result; |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// io_cxx /////////////////////////////////////////////////////////////////// |
|
|
|
//// behavior_cxx ///////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// syntax() Print list of command line switches. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenbehavior::syntax() { |
|
printf(" tetgen [-pYrq_Aa_miO_S_T_XMwcdzfenvgkJBNEFICQVh] input_file\n"); |
|
printf(" -p Tetrahedralizes a piecewise linear complex (PLC).\n"); |
|
printf(" -Y Preserves the input surface mesh (does not modify it).\n"); |
|
printf(" -r Reconstructs a previously generated mesh.\n"); |
|
printf(" -q Refines mesh (to improve mesh quality).\n"); |
|
printf(" -R Mesh coarsening (to reduce the mesh elements).\n"); |
|
printf(" -A Assigns attributes to tetrahedra in different regions.\n"); |
|
printf(" -a Applies a maximum tetrahedron volume constraint.\n"); |
|
printf(" -m Applies a mesh sizing function.\n"); |
|
printf(" -i Inserts a list of additional points.\n"); |
|
printf(" -O Specifies the level of mesh optimization.\n"); |
|
printf(" -S Specifies maximum number of added points.\n"); |
|
printf(" -T Sets a tolerance for coplanar test (default 1e-8).\n"); |
|
printf(" -X Suppresses use of exact arithmetic.\n"); |
|
printf(" -M No merge of coplanar facets or very close vertices.\n"); |
|
printf(" -w Generates weighted Delaunay (regular) triangulation.\n"); |
|
printf(" -c Retains the convex hull of the PLC.\n"); |
|
printf(" -d Detects self-intersections of facets of the PLC.\n"); |
|
printf(" -z Numbers all output items starting from zero.\n"); |
|
printf(" -f Outputs all faces to .face file.\n"); |
|
printf(" -e Outputs all edges to .edge file.\n"); |
|
printf(" -n Outputs tetrahedra neighbors to .neigh file.\n"); |
|
printf(" -v Outputs Voronoi diagram to files.\n"); |
|
printf(" -g Outputs mesh to .mesh file for viewing by Medit.\n"); |
|
printf(" -k Outputs mesh to .vtk file for viewing by Paraview.\n"); |
|
printf(" -J No jettison of unused vertices from output .node file.\n"); |
|
printf(" -B Suppresses output of boundary information.\n"); |
|
printf(" -N Suppresses output of .node file.\n"); |
|
printf(" -E Suppresses output of .ele file.\n"); |
|
printf(" -F Suppresses output of .face and .edge file.\n"); |
|
printf(" -I Suppresses mesh iteration numbers.\n"); |
|
printf(" -C Checks the consistency of the final mesh.\n"); |
|
printf(" -Q Quiet: No terminal output except errors.\n"); |
|
printf(" -V Verbose: Detailed information, more terminal output.\n"); |
|
printf(" -h Help: A brief instruction for using TetGen.\n"); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// usage() Print a brief instruction for using TetGen. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenbehavior::usage() { |
|
printf("TetGen\n"); |
|
printf("A Quality Tetrahedral Mesh Generator and 3D Delaunay "); |
|
printf("Triangulator\n"); |
|
printf("Version 1.5\n"); |
|
printf("August 18, 2018\n"); |
|
printf("\n"); |
|
printf("Copyright (C) 2002 - 2018\n"); |
|
printf("\n"); |
|
printf("What Can TetGen Do?\n"); |
|
printf("\n"); |
|
printf(" TetGen generates Delaunay tetrahedralizations, constrained\n"); |
|
printf(" Delaunay tetrahedralizations, and quality tetrahedral meshes.\n"); |
|
printf("\n"); |
|
printf("Command Line Syntax:\n"); |
|
printf("\n"); |
|
printf(" Below is the basic command line syntax of TetGen with a list of "); |
|
printf("short\n"); |
|
printf(" descriptions. Underscores indicate that numbers may optionally\n"); |
|
printf(" follow certain switches. Do not leave any space between a "); |
|
printf("switch\n"); |
|
printf(" and its numeric parameter. \'input_file\' contains input data\n"); |
|
printf(" depending on the switches you supplied which may be a "); |
|
printf(" piecewise\n"); |
|
printf(" linear complex or a list of nodes. File formats and detailed\n"); |
|
printf(" description of command line switches are found in user's "); |
|
printf("manual.\n"); |
|
printf("\n"); |
|
syntax(); |
|
printf("\n"); |
|
printf("Examples of How to Use TetGen:\n"); |
|
printf("\n"); |
|
printf(" \'tetgen object\' reads vertices from object.node, and writes "); |
|
printf("their\n Delaunay tetrahedralization to object.1.node, "); |
|
printf("object.1.ele\n (tetrahedra), and object.1.face"); |
|
printf(" (convex hull faces).\n"); |
|
printf("\n"); |
|
printf(" \'tetgen -p object\' reads a PLC from object.poly or object."); |
|
printf("smesh (and\n possibly object.node) and writes its constrained "); |
|
printf("Delaunay\n tetrahedralization to object.1.node, object.1.ele, "); |
|
printf("object.1.face,\n"); |
|
printf(" (boundary faces) and object.1.edge (boundary edges).\n"); |
|
printf("\n"); |
|
printf(" \'tetgen -pq1.414a.1 object\' reads a PLC from object.poly or\n"); |
|
printf(" object.smesh (and possibly object.node), generates a mesh "); |
|
printf("whose\n tetrahedra have radius-edge ratio smaller than 1.414 and "); |
|
printf("have volume\n of 0.1 or less, and writes the mesh to "); |
|
printf("object.1.node, object.1.ele,\n object.1.face, and object.1.edge\n"); |
|
printf("\n"); |
|
printf("Please send bugs/comments to Hang Si <si@wias-berlin.de>\n"); |
|
terminatetetgen(NULL, 0); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// parse_commandline() Read the command line, identify switches, and set // |
|
// up options and file names. // |
|
// // |
|
// 'argc' and 'argv' are the same parameters passed to the function main() // |
|
// of a C/C++ program. They together represent the command line user invoked // |
|
// from an environment in which TetGen is running. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenbehavior::parse_commandline(int argc, char** argv) { |
|
int startindex; |
|
int increment; |
|
int meshnumber; |
|
int i, j, k; |
|
char workstring[1024]; |
|
|
|
// First determine the input style of the switches. |
|
if (argc == 0) { |
|
startindex = 0; // Switches are given without a dash. |
|
argc = 1; // For running the following for-loop once. |
|
commandline[0] = '\0'; |
|
} else { |
|
startindex = 1; |
|
strcpy(commandline, argv[0]); |
|
strcat(commandline, " "); |
|
} |
|
|
|
for (i = startindex; i < argc; i++) { |
|
// Remember the command line for output. |
|
strcat(commandline, argv[i]); |
|
strcat(commandline, " "); |
|
if (startindex == 1) { |
|
// Is this string a filename? |
|
if (argv[i][0] != '-') { |
|
strncpy(infilename, argv[i], 1024 - 1); |
|
infilename[1024 - 1] = '\0'; |
|
continue; |
|
} |
|
} |
|
// Parse the individual switch from the string. |
|
for (j = startindex; argv[i][j] != '\0'; j++) { |
|
if (argv[i][j] == 'p') { |
|
plc = 1; |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
facet_separate_ang_tol = (REAL)strtod(workstring, (char**)NULL); |
|
} |
|
if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
|
j++; |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || |
|
(argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
facet_overlap_ang_tol = (REAL)strtod(workstring, (char**)NULL); |
|
} |
|
} |
|
if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
|
j++; |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
facet_small_ang_tol = (REAL)strtod(workstring, (char**)NULL); |
|
} |
|
} |
|
} else if (argv[i][j] == 's') { |
|
psc = 1; |
|
} else if (argv[i][j] == 'Y') { |
|
nobisect = 1; |
|
if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
|
nobisect_nomerge = (argv[i][j + 1] - '0'); |
|
j++; |
|
} |
|
if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
|
j++; |
|
if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
|
supsteiner_level = (argv[i][j + 1] - '0'); |
|
j++; |
|
} |
|
} |
|
if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
|
j++; |
|
if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
|
addsteiner_algo = (argv[i][j + 1] - '0'); |
|
j++; |
|
} |
|
} |
|
} else if (argv[i][j] == 'r') { |
|
refine = 1; |
|
} else if (argv[i][j] == 'q') { |
|
quality = 1; |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
minratio = (REAL)strtod(workstring, (char**)NULL); |
|
} |
|
if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
|
j++; |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
mindihedral = (REAL)strtod(workstring, (char**)NULL); |
|
} |
|
} |
|
} else if (argv[i][j] == 'R') { |
|
coarsen = 1; |
|
if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
|
coarsen_param = (argv[i][j + 1] - '0'); |
|
j++; |
|
} |
|
if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
|
j++; |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
coarsen_percent = (REAL)strtod(workstring, (char**)NULL); |
|
} |
|
} |
|
} else if (argv[i][j] == 'w') { |
|
weighted = 1; |
|
if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
|
weighted_param = (argv[i][j + 1] - '0'); |
|
j++; |
|
} |
|
} else if (argv[i][j] == 'b') { |
|
// -b(brio_threshold/brio_ratio/hilbert_limit/hilbert_order) |
|
brio_hilbert = 1; |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
brio_threshold = (int)strtol(workstring, (char**)&workstring, 0); |
|
} |
|
if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
|
j++; |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
brio_ratio = (REAL)strtod(workstring, (char**)NULL); |
|
} |
|
} |
|
if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
|
j++; |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.') || (argv[i][j + 1] == '-')) { |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.') || (argv[i][j + 1] == '-')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
hilbert_limit = (int)strtol(workstring, (char**)&workstring, 0); |
|
} |
|
} |
|
if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
|
j++; |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.') || (argv[i][j + 1] == '-')) { |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.') || (argv[i][j + 1] == '-')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
hilbert_order = (REAL)strtod(workstring, (char**)NULL); |
|
} |
|
} |
|
if (brio_threshold == 0) { // -b0 |
|
brio_hilbert = 0; // Turn off BRIO-Hilbert sorting. |
|
} |
|
if (brio_ratio >= 1.0) { // -b/1 |
|
no_sort = 1; |
|
brio_hilbert = 0; // Turn off BRIO-Hilbert sorting. |
|
} |
|
} else if (argv[i][j] == 'l') { |
|
incrflip = 1; |
|
} else if (argv[i][j] == 'L') { |
|
flipinsert = 1; |
|
} else if (argv[i][j] == 'm') { |
|
metric = 1; |
|
} else if (argv[i][j] == 'a') { |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
fixedvolume = 1; |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || |
|
(argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
maxvolume = (REAL)strtod(workstring, (char**)NULL); |
|
} else { |
|
varvolume = 1; |
|
} |
|
} else if (argv[i][j] == 'A') { |
|
regionattrib = 1; |
|
} else if (argv[i][j] == 'D') { |
|
cdtrefine = 1; |
|
if (argv[i][j + 1] == 'l') { |
|
use_equatorial_lens = 1; |
|
} else if ((argv[i][j + 1] >= '1') && (argv[i][j + 1] <= '3')) { |
|
reflevel = (argv[i][j + 1] - '1') + 1; |
|
j++; |
|
} |
|
} else if (argv[i][j] == 'i') { |
|
insertaddpoints = 1; |
|
} else if (argv[i][j] == 'd') { |
|
diagnose = 1; |
|
} else if (argv[i][j] == 'c') { |
|
convex = 1; |
|
} else if (argv[i][j] == 'M') { |
|
nomergefacet = 1; |
|
nomergevertex = 1; |
|
if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '1')) { |
|
nomergefacet = (argv[i][j + 1] - '0'); |
|
j++; |
|
} |
|
if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
|
j++; |
|
if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '1')) { |
|
nomergevertex = (argv[i][j + 1] - '0'); |
|
j++; |
|
} |
|
} |
|
} else if (argv[i][j] == 'X') { |
|
if (argv[i][j + 1] == '1') { |
|
nostaticfilter = 1; |
|
j++; |
|
} else { |
|
noexact = 1; |
|
} |
|
} else if (argv[i][j] == 'z') { |
|
if (argv[i][j + 1] == '1') { // -z1 |
|
reversetetori = 1; |
|
j++; |
|
} else { |
|
zeroindex = 1; // -z |
|
} |
|
} else if (argv[i][j] == 'f') { |
|
facesout++; |
|
} else if (argv[i][j] == 'e') { |
|
edgesout++; |
|
} else if (argv[i][j] == 'n') { |
|
neighout++; |
|
} else if (argv[i][j] == 'v') { |
|
voroout = 1; |
|
} else if (argv[i][j] == 'g') { |
|
meditview = 1; |
|
} else if (argv[i][j] == 'k') { |
|
vtkview = 1; |
|
} else if (argv[i][j] == 'J') { |
|
nojettison = 1; |
|
} else if (argv[i][j] == 'B') { |
|
nobound = 1; |
|
} else if (argv[i][j] == 'N') { |
|
nonodewritten = 1; |
|
} else if (argv[i][j] == 'E') { |
|
noelewritten = 1; |
|
} else if (argv[i][j] == 'F') { |
|
nofacewritten = 1; |
|
} else if (argv[i][j] == 'I') { |
|
noiterationnum = 1; |
|
} else if (argv[i][j] == 'S') { |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || |
|
(argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
steinerleft = (int)strtol(workstring, (char**)NULL, 0); |
|
} |
|
} else if (argv[i][j] == 'o') { |
|
if (argv[i][j + 1] == '2') { |
|
order = 2; |
|
j++; |
|
} |
|
if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
|
j++; |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
optmaxdihedral = (REAL)strtod(workstring, (char**)NULL); |
|
} |
|
} |
|
} else if (argv[i][j] == 'O') { |
|
if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) { |
|
optlevel = (argv[i][j + 1] - '0'); |
|
j++; |
|
} |
|
if ((argv[i][j + 1] == '/') || (argv[i][j + 1] == ',')) { |
|
j++; |
|
if ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '7')) { |
|
optscheme = (argv[i][j + 1] - '0'); |
|
j++; |
|
} |
|
} |
|
} else if (argv[i][j] == 'T') { |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || |
|
(argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
epsilon = (REAL)strtod(workstring, (char**)NULL); |
|
} |
|
} else if (argv[i][j] == 'C') { |
|
docheck++; |
|
} else if (argv[i][j] == 'Q') { |
|
quiet = 1; |
|
} else if (argv[i][j] == 'V') { |
|
verbose++; |
|
} else if (argv[i][j] == 'x') { |
|
if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.')) { |
|
k = 0; |
|
while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) || |
|
(argv[i][j + 1] == '.') || (argv[i][j + 1] == 'e') || |
|
(argv[i][j + 1] == '-') || (argv[i][j + 1] == '+')) { |
|
j++; |
|
workstring[k] = argv[i][j]; |
|
k++; |
|
} |
|
workstring[k] = '\0'; |
|
tetrahedraperblock = (int)strtol(workstring, (char**)NULL, 0); |
|
if (tetrahedraperblock > 8188) { |
|
vertexperblock = tetrahedraperblock / 2; |
|
shellfaceperblock = vertexperblock / 2; |
|
} else { |
|
tetrahedraperblock = 8188; |
|
} |
|
} |
|
} else if (argv[i][j] == 'H') { |
|
if (argv[i + 1][0] != '-') { |
|
hole_mesh = 1; |
|
// It is a filename following by -H |
|
strncpy(hole_mesh_filename, argv[i + 1], 1024 - 1); |
|
hole_mesh_filename[1024 - 1] = '\0'; |
|
i++; // Skip the next string. |
|
break; // j |
|
} |
|
} else if (argv[i][j] == 'K') { |
|
apply_flow_bc = 1; |
|
} else if ((argv[i][j] == 'h') || // (argv[i][j] == 'H') |
|
(argv[i][j] == '?')) { |
|
usage(); |
|
} else { |
|
printf("Warning: Unknown switch -%c.\n", argv[i][j]); |
|
} |
|
} |
|
} |
|
|
|
if (startindex == 0) { |
|
// Set a temporary filename for debugging output. |
|
strcpy(infilename, "tetgen-tmpfile"); |
|
} else { |
|
if (infilename[0] == '\0') { |
|
// No input file name. Print the syntax and exit. |
|
syntax(); |
|
terminatetetgen(NULL, 0); |
|
} |
|
// Recognize the object from file extension if it is available. |
|
if (!strcmp(&infilename[strlen(infilename) - 5], ".node")) { |
|
infilename[strlen(infilename) - 5] = '\0'; |
|
object = NODES; |
|
} else if (!strcmp(&infilename[strlen(infilename) - 5], ".poly")) { |
|
infilename[strlen(infilename) - 5] = '\0'; |
|
object = POLY; |
|
plc = 1; |
|
} else if (!strcmp(&infilename[strlen(infilename) - 6], ".smesh")) { |
|
infilename[strlen(infilename) - 6] = '\0'; |
|
object = POLY; |
|
plc = 1; |
|
} else if (!strcmp(&infilename[strlen(infilename) - 4], ".off")) { |
|
infilename[strlen(infilename) - 4] = '\0'; |
|
object = OFF; |
|
plc = 1; |
|
} else if (!strcmp(&infilename[strlen(infilename) - 4], ".ply")) { |
|
infilename[strlen(infilename) - 4] = '\0'; |
|
object = PLY; |
|
plc = 1; |
|
} else if (!strcmp(&infilename[strlen(infilename) - 4], ".stl")) { |
|
infilename[strlen(infilename) - 4] = '\0'; |
|
object = STL; |
|
plc = 1; |
|
} else if (!strcmp(&infilename[strlen(infilename) - 5], ".mesh")) { |
|
infilename[strlen(infilename) - 5] = '\0'; |
|
object = MEDIT; |
|
if (!refine) plc = 1; |
|
} else if (!strcmp(&infilename[strlen(infilename) - 4], ".vtk")) { |
|
infilename[strlen(infilename) - 4] = '\0'; |
|
object = VTK; |
|
plc = 1; |
|
} else if (!strcmp(&infilename[strlen(infilename) - 4], ".ele")) { |
|
infilename[strlen(infilename) - 4] = '\0'; |
|
object = MESH; |
|
refine = 1; |
|
} else if (!strcmp(&infilename[strlen(infilename) - 4], ".neu")) { |
|
infilename[strlen(infilename) - 4] = '\0'; |
|
object = NEU_MESH; |
|
refine = 1; |
|
} |
|
} |
|
|
|
if (nobisect && (!plc && !refine)) { // -Y |
|
plc = 1; // Default -p option. |
|
} |
|
if (quality && (!plc && !refine)) { // -q |
|
plc = 1; // Default -p option. |
|
} |
|
if (diagnose && !plc) { // -d |
|
plc = 1; |
|
} |
|
if (refine && !quality) { // -r only |
|
// Reconstruct a mesh, no mesh optimization. |
|
optlevel = 0; |
|
} |
|
if (insertaddpoints && (optlevel == 0)) { // with -i option |
|
optlevel = 2; |
|
} |
|
if (coarsen && (optlevel == 0)) { // with -R option |
|
optlevel = 2; |
|
} |
|
|
|
// Detect improper combinations of switches. |
|
if ((refine || plc) && weighted) { |
|
printf("Error: Switches -w cannot use together with -p or -r.\n"); |
|
return false; |
|
} |
|
|
|
if (convex) { // -c |
|
if (plc && !regionattrib) { |
|
// -A (region attribute) is needed for marking exterior tets (-1). |
|
regionattrib = 1; |
|
} |
|
} |
|
|
|
// Note: -A must not used together with -r option. |
|
// Be careful not to add an extra attribute to each element unless the |
|
// input supports it (PLC in, but not refining a preexisting mesh). |
|
if (refine || !plc) { |
|
regionattrib = 0; |
|
} |
|
// Be careful not to allocate space for element area constraints that |
|
// will never be assigned any value (other than the default -1.0). |
|
if (!refine && !plc) { |
|
varvolume = 0; |
|
} |
|
// If '-a' or '-aa' is in use, enable '-q' option too. |
|
if (fixedvolume || varvolume) { |
|
if (quality == 0) { |
|
quality = 1; |
|
if (!plc && !refine) { |
|
plc = 1; // enable -p. |
|
} |
|
} |
|
} |
|
// No user-specified dihedral angle bound. Use default ones. |
|
if (!quality) { |
|
if (optmaxdihedral < 179.0) { |
|
if (nobisect) { // with -Y option |
|
optmaxdihedral = 179.0; |
|
} else { // -p only |
|
optmaxdihedral = 179.999; |
|
} |
|
} |
|
if (optminsmtdihed < 179.999) { |
|
optminsmtdihed = 179.999; |
|
} |
|
if (optminslidihed < 179.999) { |
|
optminslidihed = 179.999; |
|
} |
|
} |
|
|
|
increment = 0; |
|
strcpy(workstring, infilename); |
|
j = 1; |
|
while (workstring[j] != '\0') { |
|
if ((workstring[j] == '.') && (workstring[j + 1] != '\0')) { |
|
increment = j + 1; |
|
} |
|
j++; |
|
} |
|
meshnumber = 0; |
|
if (increment > 0) { |
|
j = increment; |
|
do { |
|
if ((workstring[j] >= '0') && (workstring[j] <= '9')) { |
|
meshnumber = meshnumber * 10 + (int)(workstring[j] - '0'); |
|
} else { |
|
increment = 0; |
|
} |
|
j++; |
|
} while (workstring[j] != '\0'); |
|
} |
|
if (noiterationnum) { |
|
strcpy(outfilename, infilename); |
|
} else if (increment == 0) { |
|
strcpy(outfilename, infilename); |
|
strcat(outfilename, ".1"); |
|
} else { |
|
workstring[increment] = '%'; |
|
workstring[increment + 1] = 'd'; |
|
workstring[increment + 2] = '\0'; |
|
sprintf(outfilename, workstring, meshnumber + 1); |
|
} |
|
// Additional input file name has the end ".a". |
|
strcpy(addinfilename, infilename); |
|
strcat(addinfilename, ".a"); |
|
// Background filename has the form "*.b.ele", "*.b.node", ... |
|
strcpy(bgmeshfilename, infilename); |
|
strcat(bgmeshfilename, ".b"); |
|
|
|
return true; |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// behavior_cxx ///////////////////////////////////////////////////////////// |
|
|
|
//// mempool_cxx ////////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
// Initialize fast lookup tables for mesh maniplulation primitives. |
|
|
|
int tetgenmesh::bondtbl[12][12] = { |
|
{ |
|
0, |
|
}, |
|
}; |
|
int tetgenmesh::enexttbl[12] = { |
|
0, |
|
}; |
|
int tetgenmesh::eprevtbl[12] = { |
|
0, |
|
}; |
|
int tetgenmesh::enextesymtbl[12] = { |
|
0, |
|
}; |
|
int tetgenmesh::eprevesymtbl[12] = { |
|
0, |
|
}; |
|
int tetgenmesh::eorgoppotbl[12] = { |
|
0, |
|
}; |
|
int tetgenmesh::edestoppotbl[12] = { |
|
0, |
|
}; |
|
int tetgenmesh::fsymtbl[12][12] = { |
|
{ |
|
0, |
|
}, |
|
}; |
|
int tetgenmesh::facepivot1[12] = { |
|
0, |
|
}; |
|
int tetgenmesh::facepivot2[12][12] = { |
|
{ |
|
0, |
|
}, |
|
}; |
|
int tetgenmesh::tsbondtbl[12][6] = { |
|
{ |
|
0, |
|
}, |
|
}; |
|
int tetgenmesh::stbondtbl[12][6] = { |
|
{ |
|
0, |
|
}, |
|
}; |
|
int tetgenmesh::tspivottbl[12][6] = { |
|
{ |
|
0, |
|
}, |
|
}; |
|
int tetgenmesh::stpivottbl[12][6] = { |
|
{ |
|
0, |
|
}, |
|
}; |
|
|
|
// Table 'esymtbl' takes an directed edge (version) as input, returns the |
|
// inversed edge (version) of it. |
|
|
|
int tetgenmesh::esymtbl[12] = {9, 6, 11, 4, 3, 7, 1, 5, 10, 0, 8, 2}; |
|
|
|
// The following four tables give the 12 permutations of the set {0,1,2,3}. |
|
// An offset 4 is added to each element for a direct access of the points |
|
// in the tetrahedron data structure. |
|
|
|
int tetgenmesh::orgpivot[12] = {7, 7, 5, 5, 6, 4, 4, 6, 5, 6, 7, 4}; |
|
int tetgenmesh::destpivot[12] = {6, 4, 4, 6, 5, 6, 7, 4, 7, 7, 5, 5}; |
|
int tetgenmesh::apexpivot[12] = {5, 6, 7, 4, 7, 7, 5, 5, 6, 4, 4, 6}; |
|
int tetgenmesh::oppopivot[12] = {4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, 7}; |
|
|
|
// The twelve versions correspond to six undirected edges. The following two |
|
// tables map a version to an undirected edge and vice versa. |
|
|
|
int tetgenmesh::ver2edge[12] = {0, 1, 2, 3, 3, 5, 1, 5, 4, 0, 4, 2}; |
|
int tetgenmesh::edge2ver[6] = {0, 1, 2, 3, 8, 5}; |
|
|
|
// Edge versions whose apex or opposite may be dummypoint. |
|
|
|
int tetgenmesh::epivot[12] = {4, 5, 2, 11, 4, 5, 2, 11, 4, 5, 2, 11}; |
|
|
|
// Table 'snextpivot' takes an edge version as input, returns the next edge |
|
// version in the same edge ring. |
|
|
|
int tetgenmesh::snextpivot[6] = {2, 5, 4, 1, 0, 3}; |
|
|
|
// The following three tables give the 6 permutations of the set {0,1,2}. |
|
// An offset 3 is added to each element for a direct access of the points |
|
// in the triangle data structure. |
|
|
|
int tetgenmesh::sorgpivot[6] = {3, 4, 4, 5, 5, 3}; |
|
int tetgenmesh::sdestpivot[6] = {4, 3, 5, 4, 3, 5}; |
|
int tetgenmesh::sapexpivot[6] = {5, 5, 3, 3, 4, 4}; |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// inittable() Initialize the look-up tables. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::inittables() { |
|
int soffset, toffset; |
|
int i, j; |
|
|
|
// i = t1.ver; j = t2.ver; |
|
for (i = 0; i < 12; i++) { |
|
for (j = 0; j < 12; j++) { |
|
bondtbl[i][j] = (j & 3) + (((i & 12) + (j & 12)) % 12); |
|
} |
|
} |
|
|
|
// i = t1.ver; j = t2.ver |
|
for (i = 0; i < 12; i++) { |
|
for (j = 0; j < 12; j++) { |
|
fsymtbl[i][j] = (j + 12 - (i & 12)) % 12; |
|
} |
|
} |
|
|
|
for (i = 0; i < 12; i++) { |
|
facepivot1[i] = (esymtbl[i] & 3); |
|
} |
|
|
|
for (i = 0; i < 12; i++) { |
|
for (j = 0; j < 12; j++) { |
|
facepivot2[i][j] = fsymtbl[esymtbl[i]][j]; |
|
} |
|
} |
|
|
|
for (i = 0; i < 12; i++) { |
|
enexttbl[i] = (i + 4) % 12; |
|
eprevtbl[i] = (i + 8) % 12; |
|
} |
|
|
|
for (i = 0; i < 12; i++) { |
|
enextesymtbl[i] = esymtbl[enexttbl[i]]; |
|
eprevesymtbl[i] = esymtbl[eprevtbl[i]]; |
|
} |
|
|
|
for (i = 0; i < 12; i++) { |
|
eorgoppotbl[i] = eprevtbl[esymtbl[enexttbl[i]]]; |
|
edestoppotbl[i] = enexttbl[esymtbl[eprevtbl[i]]]; |
|
} |
|
|
|
// i = t.ver, j = s.shver |
|
for (i = 0; i < 12; i++) { |
|
for (j = 0; j < 6; j++) { |
|
if ((j & 1) == 0) { |
|
soffset = (6 - ((i & 12) >> 1)) % 6; |
|
toffset = (12 - ((j & 6) << 1)) % 12; |
|
} else { |
|
soffset = (i & 12) >> 1; |
|
toffset = (j & 6) << 1; |
|
} |
|
tsbondtbl[i][j] = (j & 1) + (((j & 6) + soffset) % 6); |
|
stbondtbl[i][j] = (i & 3) + (((i & 12) + toffset) % 12); |
|
} |
|
} |
|
|
|
// i = t.ver, j = s.shver |
|
for (i = 0; i < 12; i++) { |
|
for (j = 0; j < 6; j++) { |
|
if ((j & 1) == 0) { |
|
soffset = (i & 12) >> 1; |
|
toffset = (j & 6) << 1; |
|
} else { |
|
soffset = (6 - ((i & 12) >> 1)) % 6; |
|
toffset = (12 - ((j & 6) << 1)) % 12; |
|
} |
|
tspivottbl[i][j] = (j & 1) + (((j & 6) + soffset) % 6); |
|
stpivottbl[i][j] = (i & 3) + (((i & 12) + toffset) % 12); |
|
} |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// restart() Deallocate all objects in this pool. // |
|
// // |
|
// The pool returns to a fresh state, like after it was initialized, except // |
|
// that no memory is freed to the operating system. Rather, the previously // |
|
// allocated blocks are ready to be used. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::arraypool::restart() { objects = 0l; } |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// poolinit() Initialize an arraypool for allocation of objects. // |
|
// // |
|
// Before the pool may be used, it must be initialized by this procedure. // |
|
// After initialization, memory can be allocated and freed in this pool. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::arraypool::poolinit(int sizeofobject, int log2objperblk) { |
|
// Each object must be at least one byte long. |
|
objectbytes = sizeofobject > 1 ? sizeofobject : 1; |
|
|
|
log2objectsperblock = log2objperblk; |
|
// Compute the number of objects in each block. |
|
objectsperblock = ((int)1) << log2objectsperblock; |
|
objectsperblockmark = objectsperblock - 1; |
|
|
|
// No memory has been allocated. |
|
totalmemory = 0l; |
|
// The top array has not been allocated yet. |
|
toparray = (char**)NULL; |
|
toparraylen = 0; |
|
|
|
// Ready all indices to be allocated. |
|
restart(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// arraypool() The constructor and destructor. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
tetgenmesh::arraypool::arraypool(int sizeofobject, int log2objperblk) { |
|
poolinit(sizeofobject, log2objperblk); |
|
} |
|
|
|
tetgenmesh::arraypool::~arraypool() { |
|
int i; |
|
|
|
// Has anything been allocated at all? |
|
if (toparray != (char**)NULL) { |
|
// Walk through the top array. |
|
for (i = 0; i < toparraylen; i++) { |
|
// Check every pointer; NULLs may be scattered randomly. |
|
if (toparray[i] != (char*)NULL) { |
|
// Free an allocated block. |
|
free((void*)toparray[i]); |
|
} |
|
} |
|
// Free the top array. |
|
free((void*)toparray); |
|
} |
|
|
|
// The top array is no longer allocated. |
|
toparray = (char**)NULL; |
|
toparraylen = 0; |
|
objects = 0; |
|
totalmemory = 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// getblock() Return (and perhaps create) the block containing the object // |
|
// with a given index. // |
|
// // |
|
// This function takes care of allocating or resizing the top array if nece- // |
|
// ssary, and of allocating the block if it hasn't yet been allocated. // |
|
// // |
|
// Return a pointer to the beginning of the block (NOT the object). // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
char* tetgenmesh::arraypool::getblock(int objectindex) { |
|
char** newarray; |
|
char* block; |
|
int newsize; |
|
int topindex; |
|
int i; |
|
|
|
// Compute the index in the top array (upper bits). |
|
topindex = objectindex >> log2objectsperblock; |
|
// Does the top array need to be allocated or resized? |
|
if (toparray == (char**)NULL) { |
|
// Allocate the top array big enough to hold 'topindex', and NULL out |
|
// its contents. |
|
newsize = topindex + 128; |
|
toparray = (char**)malloc((size_t)(newsize * sizeof(char*))); |
|
toparraylen = newsize; |
|
for (i = 0; i < newsize; i++) { |
|
toparray[i] = (char*)NULL; |
|
} |
|
// Account for the memory. |
|
totalmemory = newsize * (uintptr_t)sizeof(char*); |
|
} else if (topindex >= toparraylen) { |
|
// Resize the top array, making sure it holds 'topindex'. |
|
newsize = 3 * toparraylen; |
|
if (topindex >= newsize) { |
|
newsize = topindex + 128; |
|
} |
|
// Allocate the new array, copy the contents, NULL out the rest, and |
|
// free the old array. |
|
newarray = (char**)malloc((size_t)(newsize * sizeof(char*))); |
|
for (i = 0; i < toparraylen; i++) { |
|
newarray[i] = toparray[i]; |
|
} |
|
for (i = toparraylen; i < newsize; i++) { |
|
newarray[i] = (char*)NULL; |
|
} |
|
free(toparray); |
|
// Account for the memory. |
|
totalmemory += (newsize - toparraylen) * sizeof(char*); |
|
toparray = newarray; |
|
toparraylen = newsize; |
|
} |
|
|
|
// Find the block, or learn that it hasn't been allocated yet. |
|
block = toparray[topindex]; |
|
if (block == (char*)NULL) { |
|
// Allocate a block at this index. |
|
block = (char*)malloc((size_t)(objectsperblock * objectbytes)); |
|
toparray[topindex] = block; |
|
// Account for the memory. |
|
totalmemory += objectsperblock * objectbytes; |
|
} |
|
|
|
// Return a pointer to the block. |
|
return block; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// lookup() Return the pointer to the object with a given index, or NULL // |
|
// if the object's block doesn't exist yet. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void* tetgenmesh::arraypool::lookup(int objectindex) { |
|
char* block; |
|
int topindex; |
|
|
|
// Has the top array been allocated yet? |
|
if (toparray == (char**)NULL) { |
|
return (void*)NULL; |
|
} |
|
|
|
// Compute the index in the top array (upper bits). |
|
topindex = objectindex >> log2objectsperblock; |
|
// Does the top index fit in the top array? |
|
if (topindex >= toparraylen) { |
|
return (void*)NULL; |
|
} |
|
|
|
// Find the block, or learn that it hasn't been allocated yet. |
|
block = toparray[topindex]; |
|
if (block == (char*)NULL) { |
|
return (void*)NULL; |
|
} |
|
|
|
// Compute a pointer to the object with the given index. Note that |
|
// 'objectsperblock' is a power of two, so the & operation is a bit mask |
|
// that preserves the lower bits. |
|
return (void*)(block + (objectindex & (objectsperblock - 1)) * objectbytes); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// newindex() Allocate space for a fresh object from the pool. // |
|
// // |
|
// 'newptr' returns a pointer to the new object (it must not be a NULL). // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::arraypool::newindex(void** newptr) { |
|
// Allocate an object at index 'firstvirgin'. |
|
int newindex = objects; |
|
*newptr = (void*)(getblock(objects) + (objects & (objectsperblock - 1)) * objectbytes); |
|
objects++; |
|
|
|
return newindex; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// memorypool() The constructors of memorypool. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
tetgenmesh::memorypool::memorypool() { |
|
firstblock = nowblock = (void**)NULL; |
|
nextitem = (void*)NULL; |
|
deaditemstack = (void*)NULL; |
|
pathblock = (void**)NULL; |
|
pathitem = (void*)NULL; |
|
alignbytes = 0; |
|
itembytes = itemwords = 0; |
|
itemsperblock = 0; |
|
items = maxitems = 0l; |
|
unallocateditems = 0; |
|
pathitemsleft = 0; |
|
} |
|
|
|
tetgenmesh::memorypool::memorypool(int bytecount, int itemcount, int wsize, int alignment) { |
|
poolinit(bytecount, itemcount, wsize, alignment); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// ~memorypool() Free to the operating system all memory taken by a pool. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
tetgenmesh::memorypool::~memorypool() { |
|
while (firstblock != (void**)NULL) { |
|
nowblock = (void**)*(firstblock); |
|
free(firstblock); |
|
firstblock = nowblock; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// poolinit() Initialize a pool of memory for allocation of items. // |
|
// // |
|
// A `pool' is created whose records have size at least `bytecount'. Items // |
|
// will be allocated in `itemcount'-item blocks. Each item is assumed to be // |
|
// a collection of words, and either pointers or floating-point values are // |
|
// assumed to be the "primary" word type. (The "primary" word type is used // |
|
// to determine alignment of items.) If `alignment' isn't zero, all items // |
|
// will be `alignment'-byte aligned in memory. `alignment' must be either a // |
|
// multiple or a factor of the primary word size; powers of two are safe. // |
|
// `alignment' is normally used to create a few unused bits at the bottom of // |
|
// each item's pointer, in which information may be stored. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::memorypool::poolinit(int bytecount, int itemcount, int wordsize, int alignment) { |
|
// Find the proper alignment, which must be at least as large as: |
|
// - The parameter `alignment'. |
|
// - The primary word type, to avoid unaligned accesses. |
|
// - sizeof(void *), so the stack of dead items can be maintained |
|
// without unaligned accesses. |
|
if (alignment > wordsize) { |
|
alignbytes = alignment; |
|
} else { |
|
alignbytes = wordsize; |
|
} |
|
if ((int)sizeof(void*) > alignbytes) { |
|
alignbytes = (int)sizeof(void*); |
|
} |
|
itemwords = ((bytecount + alignbytes - 1) / alignbytes) * (alignbytes / wordsize); |
|
itembytes = itemwords * wordsize; |
|
itemsperblock = itemcount; |
|
|
|
// Allocate a block of items. Space for `itemsperblock' items and one |
|
// pointer (to point to the next block) are allocated, as well as space |
|
// to ensure alignment of the items. |
|
firstblock = (void**)malloc(itemsperblock * itembytes + sizeof(void*) + alignbytes); |
|
if (firstblock == (void**)NULL) { |
|
terminatetetgen(NULL, 1); |
|
} |
|
// Set the next block pointer to NULL. |
|
*(firstblock) = (void*)NULL; |
|
restart(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// restart() Deallocate all items in this pool. // |
|
// // |
|
// The pool is returned to its starting state, except that no memory is // |
|
// freed to the operating system. Rather, the previously allocated blocks // |
|
// are ready to be reused. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::memorypool::restart() { |
|
uintptr_t alignptr; |
|
|
|
items = 0; |
|
maxitems = 0; |
|
|
|
// Set the currently active block. |
|
nowblock = firstblock; |
|
// Find the first item in the pool. Increment by the size of (void *). |
|
alignptr = (uintptr_t)(nowblock + 1); |
|
// Align the item on an `alignbytes'-byte boundary. |
|
nextitem = (void*)(alignptr + (uintptr_t)alignbytes - (alignptr % (uintptr_t)alignbytes)); |
|
// There are lots of unallocated items left in this block. |
|
unallocateditems = itemsperblock; |
|
// The stack of deallocated items is empty. |
|
deaditemstack = (void*)NULL; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// alloc() Allocate space for an item. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void* tetgenmesh::memorypool::alloc() { |
|
void* newitem; |
|
void** newblock; |
|
uintptr_t alignptr; |
|
|
|
// First check the linked list of dead items. If the list is not |
|
// empty, allocate an item from the list rather than a fresh one. |
|
if (deaditemstack != (void*)NULL) { |
|
newitem = deaditemstack; // Take first item in list. |
|
deaditemstack = *(void**)deaditemstack; |
|
} else { |
|
// Check if there are any free items left in the current block. |
|
if (unallocateditems == 0) { |
|
// Check if another block must be allocated. |
|
if (*nowblock == (void*)NULL) { |
|
// Allocate a new block of items, pointed to by the previous block. |
|
newblock = (void**)malloc(itemsperblock * itembytes + sizeof(void*) + alignbytes); |
|
if (newblock == (void**)NULL) { |
|
terminatetetgen(NULL, 1); |
|
} |
|
*nowblock = (void*)newblock; |
|
// The next block pointer is NULL. |
|
*newblock = (void*)NULL; |
|
} |
|
// Move to the new block. |
|
nowblock = (void**)*nowblock; |
|
// Find the first item in the block. |
|
// Increment by the size of (void *). |
|
alignptr = (uintptr_t)(nowblock + 1); |
|
// Align the item on an `alignbytes'-byte boundary. |
|
nextitem = |
|
(void*)(alignptr + (uintptr_t)alignbytes - (alignptr % (uintptr_t)alignbytes)); |
|
// There are lots of unallocated items left in this block. |
|
unallocateditems = itemsperblock; |
|
} |
|
// Allocate a new item. |
|
newitem = nextitem; |
|
// Advance `nextitem' pointer to next free item in block. |
|
nextitem = (void*)((uintptr_t)nextitem + itembytes); |
|
unallocateditems--; |
|
maxitems++; |
|
} |
|
items++; |
|
return newitem; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// dealloc() Deallocate space for an item. // |
|
// // |
|
// The deallocated space is stored in a queue for later reuse. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::memorypool::dealloc(void* dyingitem) { |
|
// Push freshly killed item onto stack. |
|
*((void**)dyingitem) = deaditemstack; |
|
deaditemstack = dyingitem; |
|
items--; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// traversalinit() Prepare to traverse the entire list of items. // |
|
// // |
|
// This routine is used in conjunction with traverse(). // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::memorypool::traversalinit() { |
|
uintptr_t alignptr; |
|
|
|
// Begin the traversal in the first block. |
|
pathblock = firstblock; |
|
// Find the first item in the block. Increment by the size of (void *). |
|
alignptr = (uintptr_t)(pathblock + 1); |
|
// Align with item on an `alignbytes'-byte boundary. |
|
pathitem = (void*)(alignptr + (uintptr_t)alignbytes - (alignptr % (uintptr_t)alignbytes)); |
|
// Set the number of items left in the current block. |
|
pathitemsleft = itemsperblock; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// traverse() Find the next item in the list. // |
|
// // |
|
// This routine is used in conjunction with traversalinit(). Be forewarned // |
|
// that this routine successively returns all items in the list, including // |
|
// deallocated ones on the deaditemqueue. It's up to you to figure out which // |
|
// ones are actually dead. It can usually be done more space-efficiently by // |
|
// a routine that knows something about the structure of the item. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void* tetgenmesh::memorypool::traverse() { |
|
void* newitem; |
|
uintptr_t alignptr; |
|
|
|
// Stop upon exhausting the list of items. |
|
if (pathitem == nextitem) { |
|
return (void*)NULL; |
|
} |
|
// Check whether any untraversed items remain in the current block. |
|
if (pathitemsleft == 0) { |
|
// Find the next block. |
|
pathblock = (void**)*pathblock; |
|
// Find the first item in the block. Increment by the size of (void *). |
|
alignptr = (uintptr_t)(pathblock + 1); |
|
// Align with item on an `alignbytes'-byte boundary. |
|
pathitem = (void*)(alignptr + (uintptr_t)alignbytes - (alignptr % (uintptr_t)alignbytes)); |
|
// Set the number of items left in the current block. |
|
pathitemsleft = itemsperblock; |
|
} |
|
newitem = pathitem; |
|
// Find the next item in the block. |
|
pathitem = (void*)((uintptr_t)pathitem + itembytes); |
|
pathitemsleft--; |
|
return newitem; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// makeindex2pointmap() Create a map from index to vertices. // |
|
// // |
|
// 'idx2verlist' returns the created map. Traverse all vertices, a pointer // |
|
// to each vertex is set into the array. The pointer to the first vertex is // |
|
// saved in 'idx2verlist[in->firstnumber]'. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::makeindex2pointmap(point*& idx2verlist) { |
|
point pointloop; |
|
int idx; |
|
|
|
if (b->verbose > 1) { |
|
printf(" Constructing mapping from indices to points.\n"); |
|
} |
|
|
|
idx2verlist = new point[points->items + 1]; |
|
|
|
points->traversalinit(); |
|
pointloop = pointtraverse(); |
|
idx = in->firstnumber; |
|
while (pointloop != (point)NULL) { |
|
idx2verlist[idx++] = pointloop; |
|
pointloop = pointtraverse(); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// makesubfacemap() Create a map from vertex to subfaces incident at it. // |
|
// // |
|
// The map is returned in two arrays 'idx2faclist' and 'facperverlist'. All // |
|
// subfaces incident at i-th vertex (i is counted from 0) are found in the // |
|
// array facperverlist[j], where idx2faclist[i] <= j < idx2faclist[i + 1]. // |
|
// Each entry in facperverlist[j] is a subface whose origin is the vertex. // |
|
// // |
|
// NOTE: These two arrays will be created inside this routine, don't forget // |
|
// to free them after using. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::makepoint2submap(memorypool* pool, int*& idx2faclist, face*& facperverlist) { |
|
face shloop; |
|
int i, j, k; |
|
|
|
if (b->verbose > 1) { |
|
printf(" Making a map from points to subfaces.\n"); |
|
} |
|
|
|
// Initialize 'idx2faclist'. |
|
idx2faclist = new int[points->items + 1]; |
|
for (i = 0; i < points->items + 1; i++) |
|
idx2faclist[i] = 0; |
|
|
|
// Loop all subfaces, counter the number of subfaces incident at a vertex. |
|
pool->traversalinit(); |
|
shloop.sh = shellfacetraverse(pool); |
|
while (shloop.sh != (shellface*)NULL) { |
|
// Increment the number of incident subfaces for each vertex. |
|
j = pointmark((point)shloop.sh[3]) - in->firstnumber; |
|
idx2faclist[j]++; |
|
j = pointmark((point)shloop.sh[4]) - in->firstnumber; |
|
idx2faclist[j]++; |
|
// Skip the third corner if it is a segment. |
|
if (shloop.sh[5] != NULL) { |
|
j = pointmark((point)shloop.sh[5]) - in->firstnumber; |
|
idx2faclist[j]++; |
|
} |
|
shloop.sh = shellfacetraverse(pool); |
|
} |
|
|
|
// Calculate the total length of array 'facperverlist'. |
|
j = idx2faclist[0]; |
|
idx2faclist[0] = 0; // Array starts from 0 element. |
|
for (i = 0; i < points->items; i++) { |
|
k = idx2faclist[i + 1]; |
|
idx2faclist[i + 1] = idx2faclist[i] + j; |
|
j = k; |
|
} |
|
|
|
// The total length is in the last unit of idx2faclist. |
|
facperverlist = new face[idx2faclist[i]]; |
|
|
|
// Loop all subfaces again, remember the subfaces at each vertex. |
|
pool->traversalinit(); |
|
shloop.sh = shellfacetraverse(pool); |
|
while (shloop.sh != (shellface*)NULL) { |
|
j = pointmark((point)shloop.sh[3]) - in->firstnumber; |
|
shloop.shver = 0; // save the origin. |
|
facperverlist[idx2faclist[j]] = shloop; |
|
idx2faclist[j]++; |
|
// Is it a subface or a subsegment? |
|
if (shloop.sh[5] != NULL) { |
|
j = pointmark((point)shloop.sh[4]) - in->firstnumber; |
|
shloop.shver = 2; // save the origin. |
|
facperverlist[idx2faclist[j]] = shloop; |
|
idx2faclist[j]++; |
|
j = pointmark((point)shloop.sh[5]) - in->firstnumber; |
|
shloop.shver = 4; // save the origin. |
|
facperverlist[idx2faclist[j]] = shloop; |
|
idx2faclist[j]++; |
|
} else { |
|
j = pointmark((point)shloop.sh[4]) - in->firstnumber; |
|
shloop.shver = 1; // save the origin. |
|
facperverlist[idx2faclist[j]] = shloop; |
|
idx2faclist[j]++; |
|
} |
|
shloop.sh = shellfacetraverse(pool); |
|
} |
|
|
|
// Contents in 'idx2faclist' are shifted, now shift them back. |
|
for (i = points->items - 1; i >= 0; i--) { |
|
idx2faclist[i + 1] = idx2faclist[i]; |
|
} |
|
idx2faclist[0] = 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// tetrahedrondealloc() Deallocate space for a tet., marking it dead. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::tetrahedrondealloc(tetrahedron* dyingtetrahedron) { |
|
// Set tetrahedron's vertices to NULL. This makes it possible to detect |
|
// dead tetrahedra when traversing the list of all tetrahedra. |
|
dyingtetrahedron[4] = (tetrahedron)NULL; |
|
|
|
// Dealloc the space to subfaces/subsegments. |
|
if (dyingtetrahedron[8] != NULL) { |
|
tet2segpool->dealloc((shellface*)dyingtetrahedron[8]); |
|
} |
|
if (dyingtetrahedron[9] != NULL) { |
|
tet2subpool->dealloc((shellface*)dyingtetrahedron[9]); |
|
} |
|
|
|
tetrahedrons->dealloc((void*)dyingtetrahedron); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// tetrahedrontraverse() Traverse the tetrahedra, skipping dead ones. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
tetgenmesh::tetrahedron* tetgenmesh::tetrahedrontraverse() { |
|
tetrahedron* newtetrahedron; |
|
|
|
do { |
|
newtetrahedron = (tetrahedron*)tetrahedrons->traverse(); |
|
if (newtetrahedron == (tetrahedron*)NULL) { |
|
return (tetrahedron*)NULL; |
|
} |
|
} while ((newtetrahedron[4] == (tetrahedron)NULL) || ((point)newtetrahedron[7] == dummypoint)); |
|
return newtetrahedron; |
|
} |
|
|
|
tetgenmesh::tetrahedron* tetgenmesh::alltetrahedrontraverse() { |
|
tetrahedron* newtetrahedron; |
|
|
|
do { |
|
newtetrahedron = (tetrahedron*)tetrahedrons->traverse(); |
|
if (newtetrahedron == (tetrahedron*)NULL) { |
|
return (tetrahedron*)NULL; |
|
} |
|
} while (newtetrahedron[4] == (tetrahedron)NULL); // Skip dead ones. |
|
return newtetrahedron; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// shellfacedealloc() Deallocate space for a shellface, marking it dead. // |
|
// Used both for dealloc a subface and subsegment. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::shellfacedealloc(memorypool* pool, shellface* dyingsh) { |
|
// Set shellface's vertices to NULL. This makes it possible to detect dead |
|
// shellfaces when traversing the list of all shellfaces. |
|
dyingsh[3] = (shellface)NULL; |
|
pool->dealloc((void*)dyingsh); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// shellfacetraverse() Traverse the subfaces, skipping dead ones. Used // |
|
// for both subfaces and subsegments pool traverse. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
tetgenmesh::shellface* tetgenmesh::shellfacetraverse(memorypool* pool) { |
|
shellface* newshellface; |
|
|
|
do { |
|
newshellface = (shellface*)pool->traverse(); |
|
if (newshellface == (shellface*)NULL) { |
|
return (shellface*)NULL; |
|
} |
|
} while (newshellface[3] == (shellface)NULL); // Skip dead ones. |
|
return newshellface; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// pointdealloc() Deallocate space for a point, marking it dead. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::pointdealloc(point dyingpoint) { |
|
// Mark the point as dead. This makes it possible to detect dead points |
|
// when traversing the list of all points. |
|
setpointtype(dyingpoint, DEADVERTEX); |
|
points->dealloc((void*)dyingpoint); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// pointtraverse() Traverse the points, skipping dead ones. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
tetgenmesh::point tetgenmesh::pointtraverse() { |
|
point newpoint; |
|
|
|
do { |
|
newpoint = (point)points->traverse(); |
|
if (newpoint == (point)NULL) { |
|
return (point)NULL; |
|
} |
|
} while (pointtype(newpoint) == DEADVERTEX); // Skip dead ones. |
|
return newpoint; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// maketetrahedron() Create a new tetrahedron. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::maketetrahedron(triface* newtet) { |
|
newtet->tet = (tetrahedron*)tetrahedrons->alloc(); |
|
|
|
// Initialize the four adjoining tetrahedra to be "outer space". |
|
newtet->tet[0] = NULL; |
|
newtet->tet[1] = NULL; |
|
newtet->tet[2] = NULL; |
|
newtet->tet[3] = NULL; |
|
// Four NULL vertices. |
|
newtet->tet[4] = NULL; |
|
newtet->tet[5] = NULL; |
|
newtet->tet[6] = NULL; |
|
newtet->tet[7] = NULL; |
|
// No attached segments and subfaces yet. |
|
newtet->tet[8] = NULL; |
|
newtet->tet[9] = NULL; |
|
// Initialize the marker (clear all flags). |
|
setelemmarker(newtet->tet, 0); |
|
for (int i = 0; i < numelemattrib; i++) { |
|
setelemattribute(newtet->tet, i, 0.0); |
|
} |
|
if (b->varvolume) { |
|
setvolumebound(newtet->tet, -1.0); |
|
} |
|
|
|
// Initialize the version to be Zero. |
|
newtet->ver = 11; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// makeshellface() Create a new shellface with version zero. Used for // |
|
// both subfaces and subsegments. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::makeshellface(memorypool* pool, face* newface) { |
|
newface->sh = (shellface*)pool->alloc(); |
|
|
|
// No adjointing subfaces. |
|
newface->sh[0] = NULL; |
|
newface->sh[1] = NULL; |
|
newface->sh[2] = NULL; |
|
// Three NULL vertices. |
|
newface->sh[3] = NULL; |
|
newface->sh[4] = NULL; |
|
newface->sh[5] = NULL; |
|
// No adjoining subsegments. |
|
newface->sh[6] = NULL; |
|
newface->sh[7] = NULL; |
|
newface->sh[8] = NULL; |
|
// No adjoining tetrahedra. |
|
newface->sh[9] = NULL; |
|
newface->sh[10] = NULL; |
|
if (checkconstraints) { |
|
// Initialize the maximum area bound. |
|
setareabound(*newface, 0.0); |
|
} |
|
// Set the boundary marker to zero. |
|
setshellmark(*newface, 0); |
|
// Clear the infection and marktest bits. |
|
((int*)(newface->sh))[shmarkindex + 1] = 0; |
|
if (useinsertradius) { |
|
setfacetindex(*newface, 0); |
|
} |
|
|
|
newface->shver = 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// makepoint() Create a new point. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::makepoint(point* pnewpoint, enum verttype vtype) { |
|
int i; |
|
|
|
*pnewpoint = (point)points->alloc(); |
|
|
|
// Initialize the point attributes. |
|
for (i = 0; i < numpointattrib; i++) { |
|
(*pnewpoint)[3 + i] = 0.0; |
|
} |
|
// Initialize the metric tensor. |
|
for (i = 0; i < sizeoftensor; i++) { |
|
(*pnewpoint)[pointmtrindex + i] = 0.0; |
|
} |
|
setpoint2tet(*pnewpoint, NULL); |
|
setpoint2ppt(*pnewpoint, NULL); |
|
if (b->plc || b->refine) { |
|
// Initialize the point-to-simplex field. |
|
setpoint2sh(*pnewpoint, NULL); |
|
if (b->metric && (bgm != NULL)) { |
|
setpoint2bgmtet(*pnewpoint, NULL); |
|
} |
|
} |
|
// Initialize the point marker (starting from in->firstnumber). |
|
setpointmark(*pnewpoint, (int)(points->items) - (!in->firstnumber)); |
|
// Clear all flags. |
|
((int*)(*pnewpoint))[pointmarkindex + 1] = 0; |
|
// Initialize (set) the point type. |
|
setpointtype(*pnewpoint, vtype); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// initializepools() Calculate the sizes of the point, tetrahedron, and // |
|
// subface. Initialize their memory pools. // |
|
// // |
|
// This routine also computes the indices 'pointmarkindex', 'point2simindex',// |
|
// 'point2pbcptindex', 'elemattribindex', and 'volumeboundindex'. They are // |
|
// used to find values within each point and tetrahedron, respectively. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::initializepools() { |
|
int pointsize = 0, elesize = 0, shsize = 0; |
|
int i; |
|
|
|
if (b->verbose) { |
|
printf(" Initializing memorypools.\n"); |
|
printf(" tetrahedron per block: %d.\n", b->tetrahedraperblock); |
|
} |
|
|
|
inittables(); |
|
|
|
// There are three input point lists available, which are in, addin, |
|
// and bgm->in. These point lists may have different number of |
|
// attributes. Decide the maximum number. |
|
numpointattrib = in->numberofpointattributes; |
|
if (bgm != NULL) { |
|
if (bgm->in->numberofpointattributes > numpointattrib) { |
|
numpointattrib = bgm->in->numberofpointattributes; |
|
} |
|
} |
|
if (addin != NULL) { |
|
if (addin->numberofpointattributes > numpointattrib) { |
|
numpointattrib = addin->numberofpointattributes; |
|
} |
|
} |
|
if (b->weighted || b->flipinsert) { // -w or -L. |
|
// The internal number of point attribute needs to be at least 1 |
|
// (for storing point weights). |
|
if (numpointattrib == 0) { |
|
numpointattrib = 1; |
|
} |
|
} |
|
|
|
// Default varconstraint = 0; |
|
if (in->segmentconstraintlist || in->facetconstraintlist) { |
|
checkconstraints = 1; |
|
} |
|
if (b->plc || b->refine) { |
|
// Save the insertion radius for Steiner points if boundaries |
|
// are allowed be split. |
|
if (!b->nobisect || checkconstraints) { |
|
useinsertradius = 1; |
|
} |
|
} |
|
|
|
// The index within each point at which its metric tensor is found. |
|
// Each vertex has three coordinates. |
|
if (b->psc) { |
|
// '-s' option (PSC), the u,v coordinates are provided. |
|
pointmtrindex = 5 + numpointattrib; |
|
// The index within each point at which its u, v coordinates are found. |
|
// Comment: They are saved after the list of point attributes. |
|
pointparamindex = pointmtrindex - 2; |
|
} else { |
|
pointmtrindex = 3 + numpointattrib; |
|
} |
|
// For '-m' option. A tensor field is provided (*.mtr or *.b.mtr file). |
|
if (b->metric) { |
|
// Decide the size (1, 3, or 6) of the metric tensor. |
|
if (bgm != (tetgenmesh*)NULL) { |
|
// A background mesh is allocated. It may not exist though. |
|
sizeoftensor = |
|
(bgm->in != (tetgenio*)NULL) ? bgm->in->numberofpointmtrs : in->numberofpointmtrs; |
|
} else { |
|
// No given background mesh - Itself is a background mesh. |
|
sizeoftensor = in->numberofpointmtrs; |
|
} |
|
// Make sure sizeoftensor is at least 1. |
|
sizeoftensor = (sizeoftensor > 0) ? sizeoftensor : 1; |
|
} else { |
|
// For '-q' option. Make sure to have space for saving a scalar value. |
|
sizeoftensor = b->quality ? 1 : 0; |
|
} |
|
if (useinsertradius) { |
|
// Increase a space (REAL) for saving point insertion radius, it is |
|
// saved directly after the metric. |
|
sizeoftensor++; |
|
} |
|
pointinsradiusindex = pointmtrindex + sizeoftensor - 1; |
|
// The index within each point at which an element pointer is found, where |
|
// the index is measured in pointers. Ensure the index is aligned to a |
|
// sizeof(tetrahedron)-byte address. |
|
point2simindex = ((pointmtrindex + sizeoftensor) * sizeof(REAL) + sizeof(tetrahedron) - 1) / |
|
sizeof(tetrahedron); |
|
if (b->plc || b->refine || b->voroout) { |
|
// Increase the point size by three pointers, which are: |
|
// - a pointer to a tet, read by point2tet(); |
|
// - a pointer to a parent point, read by point2ppt()). |
|
// - a pointer to a subface or segment, read by point2sh(); |
|
if (b->metric && (bgm != (tetgenmesh*)NULL)) { |
|
// Increase one pointer into the background mesh, point2bgmtet(). |
|
pointsize = (point2simindex + 4) * sizeof(tetrahedron); |
|
} else { |
|
pointsize = (point2simindex + 3) * sizeof(tetrahedron); |
|
} |
|
} else { |
|
// Increase the point size by two pointer, which are: |
|
// - a pointer to a tet, read by point2tet(); |
|
// - a pointer to a parent point, read by point2ppt()). -- Used by btree. |
|
pointsize = (point2simindex + 2) * sizeof(tetrahedron); |
|
} |
|
// The index within each point at which the boundary marker is found, |
|
// Ensure the point marker is aligned to a sizeof(int)-byte address. |
|
pointmarkindex = (pointsize + sizeof(int) - 1) / sizeof(int); |
|
// Now point size is the ints (indicated by pointmarkindex) plus: |
|
// - an integer for boundary marker; |
|
// - an integer for vertex type; |
|
// - an integer for geometry tag (optional, -s option). |
|
pointsize = (pointmarkindex + 2 + (b->psc ? 1 : 0)) * sizeof(tetrahedron); |
|
|
|
// Initialize the pool of vertices. |
|
points = new memorypool(pointsize, b->vertexperblock, sizeof(REAL), 0); |
|
|
|
if (b->verbose) { |
|
printf(" Size of a point: %d bytes.\n", points->itembytes); |
|
} |
|
|
|
// Initialize the infinite vertex. |
|
dummypoint = (point) new char[pointsize]; |
|
// Initialize all fields of this point. |
|
dummypoint[0] = 0.0; |
|
dummypoint[1] = 0.0; |
|
dummypoint[2] = 0.0; |
|
for (i = 0; i < numpointattrib; i++) { |
|
dummypoint[3 + i] = 0.0; |
|
} |
|
// Initialize the metric tensor. |
|
for (i = 0; i < sizeoftensor; i++) { |
|
dummypoint[pointmtrindex + i] = 0.0; |
|
} |
|
setpoint2tet(dummypoint, NULL); |
|
setpoint2ppt(dummypoint, NULL); |
|
if (b->plc || b->psc || b->refine) { |
|
// Initialize the point-to-simplex field. |
|
setpoint2sh(dummypoint, NULL); |
|
if (b->metric && (bgm != NULL)) { |
|
setpoint2bgmtet(dummypoint, NULL); |
|
} |
|
} |
|
// Initialize the point marker (starting from in->firstnumber). |
|
setpointmark(dummypoint, -1); // The unique marker for dummypoint. |
|
// Clear all flags. |
|
((int*)(dummypoint))[pointmarkindex + 1] = 0; |
|
// Initialize (set) the point type. |
|
setpointtype(dummypoint, UNUSEDVERTEX); // Does not matter. |
|
|
|
// The number of bytes occupied by a tetrahedron is varying by the user- |
|
// specified options. The contents of the first 12 pointers are listed |
|
// in the following table: |
|
// [0] |__ neighbor at f0 __| |
|
// [1] |__ neighbor at f1 __| |
|
// [2] |__ neighbor at f2 __| |
|
// [3] |__ neighbor at f3 __| |
|
// [4] |_____ vertex p0 ____| |
|
// [5] |_____ vertex p1 ____| |
|
// [6] |_____ vertex p2 ____| |
|
// [7] |_____ vertex p3 ____| |
|
// [8] |__ segments array __| (used by -p) |
|
// [9] |__ subfaces array __| (used by -p) |
|
// [10] |_____ reserved _____| |
|
// [11] |___ elem marker ____| (used as an integer) |
|
|
|
elesize = 12 * sizeof(tetrahedron); |
|
|
|
// The index to find the element markers. An integer containing varies |
|
// flags and element counter. |
|
if (!(sizeof(int) <= sizeof(tetrahedron)) || ((sizeof(tetrahedron) % sizeof(int)))) { |
|
terminatetetgen(this, 2); |
|
} |
|
elemmarkerindex = (elesize - sizeof(tetrahedron)) / sizeof(int); |
|
|
|
// The actual number of element attributes. Note that if the |
|
// `b->regionattrib' flag is set, an additional attribute will be added. |
|
numelemattrib = in->numberoftetrahedronattributes + (b->regionattrib > 0); |
|
|
|
// The index within each element at which its attributes are found, where |
|
// the index is measured in REALs. |
|
elemattribindex = (elesize + sizeof(REAL) - 1) / sizeof(REAL); |
|
// The index within each element at which the maximum volume bound is |
|
// found, where the index is measured in REALs. |
|
volumeboundindex = elemattribindex + numelemattrib; |
|
// If element attributes or an constraint are needed, increase the number |
|
// of bytes occupied by an element. |
|
if (b->varvolume) { |
|
elesize = (volumeboundindex + 1) * sizeof(REAL); |
|
} else if (numelemattrib > 0) { |
|
elesize = volumeboundindex * sizeof(REAL); |
|
} |
|
|
|
// Having determined the memory size of an element, initialize the pool. |
|
tetrahedrons = new memorypool(elesize, b->tetrahedraperblock, sizeof(void*), 16); |
|
|
|
if (b->verbose) { |
|
printf(" Size of a tetrahedron: %d (%d) bytes.\n", elesize, tetrahedrons->itembytes); |
|
} |
|
|
|
if (b->plc || b->refine) { // if (b->useshelles) { |
|
// The number of bytes occupied by a subface. The list of pointers |
|
// stored in a subface are: three to other subfaces, three to corners, |
|
// three to subsegments, two to tetrahedra. |
|
shsize = 11 * sizeof(shellface); |
|
// The index within each subface at which the maximum area bound is |
|
// found, where the index is measured in REALs. |
|
areaboundindex = (shsize + sizeof(REAL) - 1) / sizeof(REAL); |
|
// If -q switch is in use, increase the number of bytes occupied by |
|
// a subface for saving maximum area bound. |
|
if (checkconstraints) { |
|
shsize = (areaboundindex + 1) * sizeof(REAL); |
|
} else { |
|
shsize = areaboundindex * sizeof(REAL); |
|
} |
|
// The index within subface at which the facet marker is found. Ensure |
|
// the marker is aligned to a sizeof(int)-byte address. |
|
shmarkindex = (shsize + sizeof(int) - 1) / sizeof(int); |
|
// Increase the number of bytes by two or three integers, one for facet |
|
// marker, one for shellface type and flags, and optionally one |
|
// for storing facet index (for mesh refinement). |
|
shsize = (shmarkindex + 2 + useinsertradius) * sizeof(shellface); |
|
|
|
// Initialize the pool of subfaces. Each subface record is eight-byte |
|
// aligned so it has room to store an edge version (from 0 to 5) in |
|
// the least three bits. |
|
subfaces = new memorypool(shsize, b->shellfaceperblock, sizeof(void*), 8); |
|
|
|
if (b->verbose) { |
|
printf(" Size of a shellface: %d (%d) bytes.\n", shsize, subfaces->itembytes); |
|
} |
|
|
|
// Initialize the pool of subsegments. The subsegment's record is same |
|
// with subface. |
|
subsegs = new memorypool(shsize, b->shellfaceperblock, sizeof(void*), 8); |
|
|
|
// Initialize the pool for tet-subseg connections. |
|
tet2segpool = new memorypool(6 * sizeof(shellface), b->shellfaceperblock, sizeof(void*), 0); |
|
// Initialize the pool for tet-subface connections. |
|
tet2subpool = new memorypool(4 * sizeof(shellface), b->shellfaceperblock, sizeof(void*), 0); |
|
|
|
// Initialize arraypools for segment & facet recovery. |
|
subsegstack = new arraypool(sizeof(face), 10); |
|
subfacstack = new arraypool(sizeof(face), 10); |
|
subvertstack = new arraypool(sizeof(point), 8); |
|
|
|
// Initialize arraypools for surface point insertion/deletion. |
|
caveshlist = new arraypool(sizeof(face), 8); |
|
caveshbdlist = new arraypool(sizeof(face), 8); |
|
cavesegshlist = new arraypool(sizeof(face), 4); |
|
|
|
cavetetshlist = new arraypool(sizeof(face), 8); |
|
cavetetseglist = new arraypool(sizeof(face), 8); |
|
caveencshlist = new arraypool(sizeof(face), 8); |
|
caveencseglist = new arraypool(sizeof(face), 8); |
|
} |
|
|
|
// Initialize the pools for flips. |
|
flippool = new memorypool(sizeof(badface), 1024, sizeof(void*), 0); |
|
unflipqueue = new arraypool(sizeof(badface), 10); |
|
|
|
// Initialize the arraypools for point insertion. |
|
cavetetlist = new arraypool(sizeof(triface), 10); |
|
cavebdrylist = new arraypool(sizeof(triface), 10); |
|
caveoldtetlist = new arraypool(sizeof(triface), 10); |
|
cavetetvertlist = new arraypool(sizeof(point), 10); |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// mempool_cxx ////////////////////////////////////////////////////////////// |
|
|
|
//// geom_cxx ///////////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
// PI is the ratio of a circle's circumference to its diameter. |
|
REAL tetgenmesh::PI = 3.14159265358979323846264338327950288419716939937510582; |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// insphere_s() Insphere test with symbolic perturbation. // |
|
// // |
|
// Given four points pa, pb, pc, and pd, test if the point pe lies inside or // |
|
// outside the circumscribed sphere of the four points. // |
|
// // |
|
// Here we assume that the 3d orientation of the point sequence {pa, pb, pc, // |
|
// pd} is positive (NOT zero), i.e., pd lies above the plane passing through // |
|
// points pa, pb, and pc. Otherwise, the returned sign is flipped. // |
|
// // |
|
// Return a positive value (> 0) if pe lies inside, a negative value (< 0) // |
|
// if pe lies outside the sphere, the returned value will not be zero. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
REAL tetgenmesh::insphere_s(REAL* pa, REAL* pb, REAL* pc, REAL* pd, REAL* pe) { |
|
REAL sign; |
|
|
|
sign = insphere(pa, pb, pc, pd, pe); |
|
if (sign != 0.0) { |
|
return sign; |
|
} |
|
|
|
// Symbolic perturbation. |
|
point pt[5], swappt; |
|
REAL oriA, oriB; |
|
int swaps, count; |
|
int n, i; |
|
|
|
pt[0] = pa; |
|
pt[1] = pb; |
|
pt[2] = pc; |
|
pt[3] = pd; |
|
pt[4] = pe; |
|
|
|
// Sort the five points such that their indices are in the increasing |
|
// order. An optimized bubble sort algorithm is used, i.e., it has |
|
// the worst case O(n^2) runtime, but it is usually much faster. |
|
swaps = 0; // Record the total number of swaps. |
|
n = 5; |
|
do { |
|
count = 0; |
|
n = n - 1; |
|
for (i = 0; i < n; i++) { |
|
if (pointmark(pt[i]) > pointmark(pt[i + 1])) { |
|
swappt = pt[i]; |
|
pt[i] = pt[i + 1]; |
|
pt[i + 1] = swappt; |
|
count++; |
|
} |
|
} |
|
swaps += count; |
|
} while (count > 0); // Continue if some points are swapped. |
|
|
|
oriA = orient3d(pt[1], pt[2], pt[3], pt[4]); |
|
if (oriA != 0.0) { |
|
// Flip the sign if there are odd number of swaps. |
|
if ((swaps % 2) != 0) oriA = -oriA; |
|
return oriA; |
|
} |
|
|
|
oriB = -orient3d(pt[0], pt[2], pt[3], pt[4]); |
|
if (oriB == 0.0) { |
|
terminatetetgen(this, 2); |
|
} |
|
// Flip the sign if there are odd number of swaps. |
|
if ((swaps % 2) != 0) oriB = -oriB; |
|
return oriB; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// orient4d_s() 4d orientation test with symbolic perturbation. // |
|
// // |
|
// Given four lifted points pa', pb', pc', and pd' in R^4,test if the lifted // |
|
// point pe' in R^4 lies below or above the hyperplane passing through the // |
|
// four points pa', pb', pc', and pd'. // |
|
// // |
|
// Here we assume that the 3d orientation of the point sequence {pa, pb, pc, // |
|
// pd} is positive (NOT zero), i.e., pd lies above the plane passing through // |
|
// the points pa, pb, and pc. Otherwise, the returned sign is flipped. // |
|
// // |
|
// Return a positive value (> 0) if pe' lies below, a negative value (< 0) // |
|
// if pe' lies above the hyperplane, the returned value should not be zero. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
REAL tetgenmesh::orient4d_s(REAL* pa, REAL* pb, REAL* pc, REAL* pd, REAL* pe, REAL aheight, |
|
REAL bheight, REAL cheight, REAL dheight, REAL eheight) { |
|
REAL sign; |
|
|
|
sign = orient4d(pa, pb, pc, pd, pe, aheight, bheight, cheight, dheight, eheight); |
|
if (sign != 0.0) { |
|
return sign; |
|
} |
|
|
|
// Symbolic perturbation. |
|
point pt[5], swappt; |
|
REAL oriA, oriB; |
|
int swaps, count; |
|
int n, i; |
|
|
|
pt[0] = pa; |
|
pt[1] = pb; |
|
pt[2] = pc; |
|
pt[3] = pd; |
|
pt[4] = pe; |
|
|
|
// Sort the five points such that their indices are in the increasing |
|
// order. An optimized bubble sort algorithm is used, i.e., it has |
|
// the worst case O(n^2) runtime, but it is usually much faster. |
|
swaps = 0; // Record the total number of swaps. |
|
n = 5; |
|
do { |
|
count = 0; |
|
n = n - 1; |
|
for (i = 0; i < n; i++) { |
|
if (pointmark(pt[i]) > pointmark(pt[i + 1])) { |
|
swappt = pt[i]; |
|
pt[i] = pt[i + 1]; |
|
pt[i + 1] = swappt; |
|
count++; |
|
} |
|
} |
|
swaps += count; |
|
} while (count > 0); // Continue if some points are swapped. |
|
|
|
oriA = orient3d(pt[1], pt[2], pt[3], pt[4]); |
|
if (oriA != 0.0) { |
|
// Flip the sign if there are odd number of swaps. |
|
if ((swaps % 2) != 0) oriA = -oriA; |
|
return oriA; |
|
} |
|
|
|
oriB = -orient3d(pt[0], pt[2], pt[3], pt[4]); |
|
if (oriB == 0.0) { |
|
terminatetetgen(this, 2); |
|
} |
|
// Flip the sign if there are odd number of swaps. |
|
if ((swaps % 2) != 0) oriB = -oriB; |
|
return oriB; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// tri_edge_test() Triangle-edge intersection test. // |
|
// // |
|
// This routine takes a triangle T (with vertices A, B, C) and an edge E (P, // |
|
// Q) in 3D, and tests if they intersect each other. // |
|
// // |
|
// If the point 'R' is not NULL, it lies strictly above the plane defined by // |
|
// A, B, C. It is used in test when T and E are coplanar. // |
|
// // |
|
// If T and E intersect each other, they may intersect in different ways. If // |
|
// 'level' > 0, their intersection type will be reported 'types' and 'pos'. // |
|
// // |
|
// The return value indicates one of the following cases: // |
|
// - 0, T and E are disjoint. // |
|
// - 1, T and E intersect each other. // |
|
// - 2, T and E are not coplanar. They intersect at a single point. // |
|
// - 4, T and E are coplanar. They intersect at a single point or a line // |
|
// segment (if types[1] != DISJOINT). // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
#define SETVECTOR3(V, a0, a1, a2) \ |
|
(V)[0] = (a0); \ |
|
(V)[1] = (a1); \ |
|
(V)[2] = (a2) |
|
|
|
#define SWAP2(a0, a1, tmp) \ |
|
(tmp) = (a0); \ |
|
(a0) = (a1); \ |
|
(a1) = (tmp) |
|
|
|
int tetgenmesh::tri_edge_2d(point A, point B, point C, point P, point Q, point R, int level, |
|
int* types, int* pos) { |
|
point U[3], V[3]; // The permuted vectors of points. |
|
int pu[3], pv[3]; // The original positions of points. |
|
REAL abovept[3]; |
|
REAL sA, sB, sC; |
|
REAL s1, s2, s3, s4; |
|
int z1; |
|
|
|
if (R == NULL) { |
|
// Calculate a lift point. |
|
if (1) { |
|
REAL n[3], len; |
|
// Calculate a lift point, saved in dummypoint. |
|
facenormal(A, B, C, n, 1, NULL); |
|
len = sqrt(dot(n, n)); |
|
if (len != 0) { |
|
n[0] /= len; |
|
n[1] /= len; |
|
n[2] /= len; |
|
len = distance(A, B); |
|
len += distance(B, C); |
|
len += distance(C, A); |
|
len /= 3.0; |
|
R = abovept; // dummypoint; |
|
R[0] = A[0] + len * n[0]; |
|
R[1] = A[1] + len * n[1]; |
|
R[2] = A[2] + len * n[2]; |
|
} else { |
|
// The triangle [A,B,C] is (nearly) degenerate, i.e., it is (close) |
|
// to a line. We need a line-line intersection test. |
|
// !!! A non-save return value.!!! |
|
return 0; // DISJOINT |
|
} |
|
} |
|
} |
|
|
|
// Test A's, B's, and C's orientations wrt plane PQR. |
|
sA = orient3d(P, Q, R, A); |
|
sB = orient3d(P, Q, R, B); |
|
sC = orient3d(P, Q, R, C); |
|
|
|
if (sA < 0) { |
|
if (sB < 0) { |
|
if (sC < 0) { // (---). |
|
return 0; |
|
} else { |
|
if (sC > 0) { // (--+). |
|
// All points are in the right positions. |
|
SETVECTOR3(U, A, B, C); // I3 |
|
SETVECTOR3(V, P, Q, R); // I2 |
|
SETVECTOR3(pu, 0, 1, 2); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 0; |
|
} else { // (--0). |
|
SETVECTOR3(U, A, B, C); // I3 |
|
SETVECTOR3(V, P, Q, R); // I2 |
|
SETVECTOR3(pu, 0, 1, 2); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 1; |
|
} |
|
} |
|
} else { |
|
if (sB > 0) { |
|
if (sC < 0) { // (-+-). |
|
SETVECTOR3(U, C, A, B); // PT = ST |
|
SETVECTOR3(V, P, Q, R); // I2 |
|
SETVECTOR3(pu, 2, 0, 1); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 0; |
|
} else { |
|
if (sC > 0) { // (-++). |
|
SETVECTOR3(U, B, C, A); // PT = ST x ST |
|
SETVECTOR3(V, Q, P, R); // PL = SL |
|
SETVECTOR3(pu, 1, 2, 0); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 0; |
|
} else { // (-+0). |
|
SETVECTOR3(U, C, A, B); // PT = ST |
|
SETVECTOR3(V, P, Q, R); // I2 |
|
SETVECTOR3(pu, 2, 0, 1); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 2; |
|
} |
|
} |
|
} else { |
|
if (sC < 0) { // (-0-). |
|
SETVECTOR3(U, C, A, B); // PT = ST |
|
SETVECTOR3(V, P, Q, R); // I2 |
|
SETVECTOR3(pu, 2, 0, 1); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 1; |
|
} else { |
|
if (sC > 0) { // (-0+). |
|
SETVECTOR3(U, B, C, A); // PT = ST x ST |
|
SETVECTOR3(V, Q, P, R); // PL = SL |
|
SETVECTOR3(pu, 1, 2, 0); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 2; |
|
} else { // (-00). |
|
SETVECTOR3(U, B, C, A); // PT = ST x ST |
|
SETVECTOR3(V, Q, P, R); // PL = SL |
|
SETVECTOR3(pu, 1, 2, 0); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 3; |
|
} |
|
} |
|
} |
|
} |
|
} else { |
|
if (sA > 0) { |
|
if (sB < 0) { |
|
if (sC < 0) { // (+--). |
|
SETVECTOR3(U, B, C, A); // PT = ST x ST |
|
SETVECTOR3(V, P, Q, R); // I2 |
|
SETVECTOR3(pu, 1, 2, 0); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 0; |
|
} else { |
|
if (sC > 0) { // (+-+). |
|
SETVECTOR3(U, C, A, B); // PT = ST |
|
SETVECTOR3(V, Q, P, R); // PL = SL |
|
SETVECTOR3(pu, 2, 0, 1); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 0; |
|
} else { // (+-0). |
|
SETVECTOR3(U, C, A, B); // PT = ST |
|
SETVECTOR3(V, Q, P, R); // PL = SL |
|
SETVECTOR3(pu, 2, 0, 1); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 2; |
|
} |
|
} |
|
} else { |
|
if (sB > 0) { |
|
if (sC < 0) { // (++-). |
|
SETVECTOR3(U, A, B, C); // I3 |
|
SETVECTOR3(V, Q, P, R); // PL = SL |
|
SETVECTOR3(pu, 0, 1, 2); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 0; |
|
} else { |
|
if (sC > 0) { // (+++). |
|
return 0; |
|
} else { // (++0). |
|
SETVECTOR3(U, A, B, C); // I3 |
|
SETVECTOR3(V, Q, P, R); // PL = SL |
|
SETVECTOR3(pu, 0, 1, 2); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 1; |
|
} |
|
} |
|
} else { // (+0#) |
|
if (sC < 0) { // (+0-). |
|
SETVECTOR3(U, B, C, A); // PT = ST x ST |
|
SETVECTOR3(V, P, Q, R); // I2 |
|
SETVECTOR3(pu, 1, 2, 0); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 2; |
|
} else { |
|
if (sC > 0) { // (+0+). |
|
SETVECTOR3(U, C, A, B); // PT = ST |
|
SETVECTOR3(V, Q, P, R); // PL = SL |
|
SETVECTOR3(pu, 2, 0, 1); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 1; |
|
} else { // (+00). |
|
SETVECTOR3(U, B, C, A); // PT = ST x ST |
|
SETVECTOR3(V, P, Q, R); // I2 |
|
SETVECTOR3(pu, 1, 2, 0); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 3; |
|
} |
|
} |
|
} |
|
} |
|
} else { |
|
if (sB < 0) { |
|
if (sC < 0) { // (0--). |
|
SETVECTOR3(U, B, C, A); // PT = ST x ST |
|
SETVECTOR3(V, P, Q, R); // I2 |
|
SETVECTOR3(pu, 1, 2, 0); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 1; |
|
} else { |
|
if (sC > 0) { // (0-+). |
|
SETVECTOR3(U, A, B, C); // I3 |
|
SETVECTOR3(V, P, Q, R); // I2 |
|
SETVECTOR3(pu, 0, 1, 2); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 2; |
|
} else { // (0-0). |
|
SETVECTOR3(U, C, A, B); // PT = ST |
|
SETVECTOR3(V, Q, P, R); // PL = SL |
|
SETVECTOR3(pu, 2, 0, 1); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 3; |
|
} |
|
} |
|
} else { |
|
if (sB > 0) { |
|
if (sC < 0) { // (0+-). |
|
SETVECTOR3(U, A, B, C); // I3 |
|
SETVECTOR3(V, Q, P, R); // PL = SL |
|
SETVECTOR3(pu, 0, 1, 2); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 2; |
|
} else { |
|
if (sC > 0) { // (0++). |
|
SETVECTOR3(U, B, C, A); // PT = ST x ST |
|
SETVECTOR3(V, Q, P, R); // PL = SL |
|
SETVECTOR3(pu, 1, 2, 0); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 1; |
|
} else { // (0+0). |
|
SETVECTOR3(U, C, A, B); // PT = ST |
|
SETVECTOR3(V, P, Q, R); // I2 |
|
SETVECTOR3(pu, 2, 0, 1); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 3; |
|
} |
|
} |
|
} else { // (00#) |
|
if (sC < 0) { // (00-). |
|
SETVECTOR3(U, A, B, C); // I3 |
|
SETVECTOR3(V, Q, P, R); // PL = SL |
|
SETVECTOR3(pu, 0, 1, 2); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 3; |
|
} else { |
|
if (sC > 0) { // (00+). |
|
SETVECTOR3(U, A, B, C); // I3 |
|
SETVECTOR3(V, P, Q, R); // I2 |
|
SETVECTOR3(pu, 0, 1, 2); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 3; |
|
} else { // (000) |
|
// Not possible unless ABC is degenerate. |
|
// Avoiding compiler warnings. |
|
SETVECTOR3(U, A, B, C); // I3 |
|
SETVECTOR3(V, P, Q, R); // I2 |
|
SETVECTOR3(pu, 0, 1, 2); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 4; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
s1 = orient3d(U[0], U[2], R, V[1]); // A, C, R, Q |
|
s2 = orient3d(U[1], U[2], R, V[0]); // B, C, R, P |
|
|
|
if (s1 > 0) { |
|
return 0; |
|
} |
|
if (s2 < 0) { |
|
return 0; |
|
} |
|
|
|
if (level == 0) { |
|
return 1; // They are intersected. |
|
} |
|
|
|
if (z1 == 1) { |
|
if (s1 == 0) { // (0###) |
|
// C = Q. |
|
types[0] = (int)SHAREVERT; |
|
pos[0] = pu[2]; // C |
|
pos[1] = pv[1]; // Q |
|
types[1] = (int)DISJOINT; |
|
} else { |
|
if (s2 == 0) { // (#0##) |
|
// C = P. |
|
types[0] = (int)SHAREVERT; |
|
pos[0] = pu[2]; // C |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)DISJOINT; |
|
} else { // (-+##) |
|
// C in [P, Q]. |
|
types[0] = (int)ACROSSVERT; |
|
pos[0] = pu[2]; // C |
|
pos[1] = pv[0]; // [P, Q] |
|
types[1] = (int)DISJOINT; |
|
} |
|
} |
|
return 4; |
|
} |
|
|
|
s3 = orient3d(U[0], U[2], R, V[0]); // A, C, R, P |
|
s4 = orient3d(U[1], U[2], R, V[1]); // B, C, R, Q |
|
|
|
if (z1 == 0) { // (tritri-03) |
|
if (s1 < 0) { |
|
if (s3 > 0) { |
|
if (s4 > 0) { |
|
// [P, Q] overlaps [k, l] (-+++). |
|
types[0] = (int)ACROSSEDGE; |
|
pos[0] = pu[2]; // [C, A] |
|
pos[1] = pv[0]; // [P, Q] |
|
types[1] = (int)TOUCHFACE; |
|
pos[2] = 3; // [A, B, C] |
|
pos[3] = pv[1]; // Q |
|
} else { |
|
if (s4 == 0) { |
|
// Q = l, [P, Q] contains [k, l] (-++0). |
|
types[0] = (int)ACROSSEDGE; |
|
pos[0] = pu[2]; // [C, A] |
|
pos[1] = pv[0]; // [P, Q] |
|
types[1] = (int)TOUCHEDGE; |
|
pos[2] = pu[1]; // [B, C] |
|
pos[3] = pv[1]; // Q |
|
} else { // s4 < 0 |
|
// [P, Q] contains [k, l] (-++-). |
|
types[0] = (int)ACROSSEDGE; |
|
pos[0] = pu[2]; // [C, A] |
|
pos[1] = pv[0]; // [P, Q] |
|
types[1] = (int)ACROSSEDGE; |
|
pos[2] = pu[1]; // [B, C] |
|
pos[3] = pv[0]; // [P, Q] |
|
} |
|
} |
|
} else { |
|
if (s3 == 0) { |
|
if (s4 > 0) { |
|
// P = k, [P, Q] in [k, l] (-+0+). |
|
types[0] = (int)TOUCHEDGE; |
|
pos[0] = pu[2]; // [C, A] |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)TOUCHFACE; |
|
pos[2] = 3; // [A, B, C] |
|
pos[3] = pv[1]; // Q |
|
} else { |
|
if (s4 == 0) { |
|
// [P, Q] = [k, l] (-+00). |
|
types[0] = (int)TOUCHEDGE; |
|
pos[0] = pu[2]; // [C, A] |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)TOUCHEDGE; |
|
pos[2] = pu[1]; // [B, C] |
|
pos[3] = pv[1]; // Q |
|
} else { |
|
// P = k, [P, Q] contains [k, l] (-+0-). |
|
types[0] = (int)TOUCHEDGE; |
|
pos[0] = pu[2]; // [C, A] |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)ACROSSEDGE; |
|
pos[2] = pu[1]; // [B, C] |
|
pos[3] = pv[0]; // [P, Q] |
|
} |
|
} |
|
} else { // s3 < 0 |
|
if (s2 > 0) { |
|
if (s4 > 0) { |
|
// [P, Q] in [k, l] (-+-+). |
|
types[0] = (int)TOUCHFACE; |
|
pos[0] = 3; // [A, B, C] |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)TOUCHFACE; |
|
pos[2] = 3; // [A, B, C] |
|
pos[3] = pv[1]; // Q |
|
} else { |
|
if (s4 == 0) { |
|
// Q = l, [P, Q] in [k, l] (-+-0). |
|
types[0] = (int)TOUCHFACE; |
|
pos[0] = 3; // [A, B, C] |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)TOUCHEDGE; |
|
pos[2] = pu[1]; // [B, C] |
|
pos[3] = pv[1]; // Q |
|
} else { // s4 < 0 |
|
// [P, Q] overlaps [k, l] (-+--). |
|
types[0] = (int)TOUCHFACE; |
|
pos[0] = 3; // [A, B, C] |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)ACROSSEDGE; |
|
pos[2] = pu[1]; // [B, C] |
|
pos[3] = pv[0]; // [P, Q] |
|
} |
|
} |
|
} else { // s2 == 0 |
|
// P = l (#0##). |
|
types[0] = (int)TOUCHEDGE; |
|
pos[0] = pu[1]; // [B, C] |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)DISJOINT; |
|
} |
|
} |
|
} |
|
} else { // s1 == 0 |
|
// Q = k (0####) |
|
types[0] = (int)TOUCHEDGE; |
|
pos[0] = pu[2]; // [C, A] |
|
pos[1] = pv[1]; // Q |
|
types[1] = (int)DISJOINT; |
|
} |
|
} else if (z1 == 2) { // (tritri-23) |
|
if (s1 < 0) { |
|
if (s3 > 0) { |
|
if (s4 > 0) { |
|
// [P, Q] overlaps [A, l] (-+++). |
|
types[0] = (int)ACROSSVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = pv[0]; // [P, Q] |
|
types[1] = (int)TOUCHFACE; |
|
pos[2] = 3; // [A, B, C] |
|
pos[3] = pv[1]; // Q |
|
} else { |
|
if (s4 == 0) { |
|
// Q = l, [P, Q] contains [A, l] (-++0). |
|
types[0] = (int)ACROSSVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = pv[0]; // [P, Q] |
|
types[1] = (int)TOUCHEDGE; |
|
pos[2] = pu[1]; // [B, C] |
|
pos[3] = pv[1]; // Q |
|
} else { // s4 < 0 |
|
// [P, Q] contains [A, l] (-++-). |
|
types[0] = (int)ACROSSVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = pv[0]; // [P, Q] |
|
types[1] = (int)ACROSSEDGE; |
|
pos[2] = pu[1]; // [B, C] |
|
pos[3] = pv[0]; // [P, Q] |
|
} |
|
} |
|
} else { |
|
if (s3 == 0) { |
|
if (s4 > 0) { |
|
// P = A, [P, Q] in [A, l] (-+0+). |
|
types[0] = (int)SHAREVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)TOUCHFACE; |
|
pos[2] = 3; // [A, B, C] |
|
pos[3] = pv[1]; // Q |
|
} else { |
|
if (s4 == 0) { |
|
// [P, Q] = [A, l] (-+00). |
|
types[0] = (int)SHAREVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)TOUCHEDGE; |
|
pos[2] = pu[1]; // [B, C] |
|
pos[3] = pv[1]; // Q |
|
} else { // s4 < 0 |
|
// Q = l, [P, Q] in [A, l] (-+0-). |
|
types[0] = (int)SHAREVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)ACROSSEDGE; |
|
pos[2] = pu[1]; // [B, C] |
|
pos[3] = pv[0]; // [P, Q] |
|
} |
|
} |
|
} else { // s3 < 0 |
|
if (s2 > 0) { |
|
if (s4 > 0) { |
|
// [P, Q] in [A, l] (-+-+). |
|
types[0] = (int)TOUCHFACE; |
|
pos[0] = 3; // [A, B, C] |
|
pos[1] = pv[0]; // P |
|
types[0] = (int)TOUCHFACE; |
|
pos[0] = 3; // [A, B, C] |
|
pos[1] = pv[1]; // Q |
|
} else { |
|
if (s4 == 0) { |
|
// Q = l, [P, Q] in [A, l] (-+-0). |
|
types[0] = (int)TOUCHFACE; |
|
pos[0] = 3; // [A, B, C] |
|
pos[1] = pv[0]; // P |
|
types[0] = (int)TOUCHEDGE; |
|
pos[0] = pu[1]; // [B, C] |
|
pos[1] = pv[1]; // Q |
|
} else { // s4 < 0 |
|
// [P, Q] overlaps [A, l] (-+--). |
|
types[0] = (int)TOUCHFACE; |
|
pos[0] = 3; // [A, B, C] |
|
pos[1] = pv[0]; // P |
|
types[0] = (int)ACROSSEDGE; |
|
pos[0] = pu[1]; // [B, C] |
|
pos[1] = pv[0]; // [P, Q] |
|
} |
|
} |
|
} else { // s2 == 0 |
|
// P = l (#0##). |
|
types[0] = (int)TOUCHEDGE; |
|
pos[0] = pu[1]; // [B, C] |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)DISJOINT; |
|
} |
|
} |
|
} |
|
} else { // s1 == 0 |
|
// Q = A (0###). |
|
types[0] = (int)SHAREVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = pv[1]; // Q |
|
types[1] = (int)DISJOINT; |
|
} |
|
} else if (z1 == 3) { // (tritri-33) |
|
if (s1 < 0) { |
|
if (s3 > 0) { |
|
if (s4 > 0) { |
|
// [P, Q] overlaps [A, B] (-+++). |
|
types[0] = (int)ACROSSVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = pv[0]; // [P, Q] |
|
types[1] = (int)TOUCHEDGE; |
|
pos[2] = pu[0]; // [A, B] |
|
pos[3] = pv[1]; // Q |
|
} else { |
|
if (s4 == 0) { |
|
// Q = B, [P, Q] contains [A, B] (-++0). |
|
types[0] = (int)ACROSSVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = pv[0]; // [P, Q] |
|
types[1] = (int)SHAREVERT; |
|
pos[2] = pu[1]; // B |
|
pos[3] = pv[1]; // Q |
|
} else { // s4 < 0 |
|
// [P, Q] contains [A, B] (-++-). |
|
types[0] = (int)ACROSSVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = pv[0]; // [P, Q] |
|
types[1] = (int)ACROSSVERT; |
|
pos[2] = pu[1]; // B |
|
pos[3] = pv[0]; // [P, Q] |
|
} |
|
} |
|
} else { |
|
if (s3 == 0) { |
|
if (s4 > 0) { |
|
// P = A, [P, Q] in [A, B] (-+0+). |
|
types[0] = (int)SHAREVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)TOUCHEDGE; |
|
pos[2] = pu[0]; // [A, B] |
|
pos[3] = pv[1]; // Q |
|
} else { |
|
if (s4 == 0) { |
|
// [P, Q] = [A, B] (-+00). |
|
types[0] = (int)SHAREEDGE; |
|
pos[0] = pu[0]; // [A, B] |
|
pos[1] = pv[0]; // [P, Q] |
|
types[1] = (int)DISJOINT; |
|
} else { // s4 < 0 |
|
// P= A, [P, Q] in [A, B] (-+0-). |
|
types[0] = (int)SHAREVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)ACROSSVERT; |
|
pos[2] = pu[1]; // B |
|
pos[3] = pv[0]; // [P, Q] |
|
} |
|
} |
|
} else { // s3 < 0 |
|
if (s2 > 0) { |
|
if (s4 > 0) { |
|
// [P, Q] in [A, B] (-+-+). |
|
types[0] = (int)TOUCHEDGE; |
|
pos[0] = pu[0]; // [A, B] |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)TOUCHEDGE; |
|
pos[2] = pu[0]; // [A, B] |
|
pos[3] = pv[1]; // Q |
|
} else { |
|
if (s4 == 0) { |
|
// Q = B, [P, Q] in [A, B] (-+-0). |
|
types[0] = (int)TOUCHEDGE; |
|
pos[0] = pu[0]; // [A, B] |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)SHAREVERT; |
|
pos[2] = pu[1]; // B |
|
pos[3] = pv[1]; // Q |
|
} else { // s4 < 0 |
|
// [P, Q] overlaps [A, B] (-+--). |
|
types[0] = (int)TOUCHEDGE; |
|
pos[0] = pu[0]; // [A, B] |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)ACROSSVERT; |
|
pos[2] = pu[1]; // B |
|
pos[3] = pv[0]; // [P, Q] |
|
} |
|
} |
|
} else { // s2 == 0 |
|
// P = B (#0##). |
|
types[0] = (int)SHAREVERT; |
|
pos[0] = pu[1]; // B |
|
pos[1] = pv[0]; // P |
|
types[1] = (int)DISJOINT; |
|
} |
|
} |
|
} |
|
} else { // s1 == 0 |
|
// Q = A (0###). |
|
types[0] = (int)SHAREVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = pv[1]; // Q |
|
types[1] = (int)DISJOINT; |
|
} |
|
} |
|
|
|
return 4; |
|
} |
|
|
|
int tetgenmesh::tri_edge_tail(point A, point B, point C, point P, point Q, point R, REAL sP, |
|
REAL sQ, int level, int* types, int* pos) { |
|
point U[3], V[3]; //, Ptmp; |
|
int pu[3], pv[3]; //, itmp; |
|
REAL s1, s2, s3; |
|
int z1; |
|
|
|
if (sP < 0) { |
|
if (sQ < 0) { // (--) disjoint |
|
return 0; |
|
} else { |
|
if (sQ > 0) { // (-+) |
|
SETVECTOR3(U, A, B, C); |
|
SETVECTOR3(V, P, Q, R); |
|
SETVECTOR3(pu, 0, 1, 2); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 0; |
|
} else { // (-0) |
|
SETVECTOR3(U, A, B, C); |
|
SETVECTOR3(V, P, Q, R); |
|
SETVECTOR3(pu, 0, 1, 2); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 1; |
|
} |
|
} |
|
} else { |
|
if (sP > 0) { // (+-) |
|
if (sQ < 0) { |
|
SETVECTOR3(U, A, B, C); |
|
SETVECTOR3(V, Q, P, R); // P and Q are flipped. |
|
SETVECTOR3(pu, 0, 1, 2); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 0; |
|
} else { |
|
if (sQ > 0) { // (++) disjoint |
|
return 0; |
|
} else { // (+0) |
|
SETVECTOR3(U, B, A, C); // A and B are flipped. |
|
SETVECTOR3(V, P, Q, R); |
|
SETVECTOR3(pu, 1, 0, 2); |
|
SETVECTOR3(pv, 0, 1, 2); |
|
z1 = 1; |
|
} |
|
} |
|
} else { // sP == 0 |
|
if (sQ < 0) { // (0-) |
|
SETVECTOR3(U, A, B, C); |
|
SETVECTOR3(V, Q, P, R); // P and Q are flipped. |
|
SETVECTOR3(pu, 0, 1, 2); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 1; |
|
} else { |
|
if (sQ > 0) { // (0+) |
|
SETVECTOR3(U, B, A, C); // A and B are flipped. |
|
SETVECTOR3(V, Q, P, R); // P and Q are flipped. |
|
SETVECTOR3(pu, 1, 0, 2); |
|
SETVECTOR3(pv, 1, 0, 2); |
|
z1 = 1; |
|
} else { // (00) |
|
// A, B, C, P, and Q are coplanar. |
|
z1 = 2; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (z1 == 2) { |
|
// The triangle and the edge are coplanar. |
|
return tri_edge_2d(A, B, C, P, Q, R, level, types, pos); |
|
} |
|
|
|
s1 = orient3d(U[0], U[1], V[0], V[1]); |
|
if (s1 < 0) { |
|
return 0; |
|
} |
|
|
|
s2 = orient3d(U[1], U[2], V[0], V[1]); |
|
if (s2 < 0) { |
|
return 0; |
|
} |
|
|
|
s3 = orient3d(U[2], U[0], V[0], V[1]); |
|
if (s3 < 0) { |
|
return 0; |
|
} |
|
|
|
if (level == 0) { |
|
return 1; // The are intersected. |
|
} |
|
|
|
types[1] = (int)DISJOINT; // No second intersection point. |
|
|
|
if (z1 == 0) { |
|
if (s1 > 0) { |
|
if (s2 > 0) { |
|
if (s3 > 0) { // (+++) |
|
// [P, Q] passes interior of [A, B, C]. |
|
types[0] = (int)ACROSSFACE; |
|
pos[0] = 3; // interior of [A, B, C] |
|
pos[1] = 0; // [P, Q] |
|
} else { // s3 == 0 (++0) |
|
// [P, Q] intersects [C, A]. |
|
types[0] = (int)ACROSSEDGE; |
|
pos[0] = pu[2]; // [C, A] |
|
pos[1] = 0; // [P, Q] |
|
} |
|
} else { // s2 == 0 |
|
if (s3 > 0) { // (+0+) |
|
// [P, Q] intersects [B, C]. |
|
types[0] = (int)ACROSSEDGE; |
|
pos[0] = pu[1]; // [B, C] |
|
pos[1] = 0; // [P, Q] |
|
} else { // s3 == 0 (+00) |
|
// [P, Q] passes C. |
|
types[0] = (int)ACROSSVERT; |
|
pos[0] = pu[2]; // C |
|
pos[1] = 0; // [P, Q] |
|
} |
|
} |
|
} else { // s1 == 0 |
|
if (s2 > 0) { |
|
if (s3 > 0) { // (0++) |
|
// [P, Q] intersects [A, B]. |
|
types[0] = (int)ACROSSEDGE; |
|
pos[0] = pu[0]; // [A, B] |
|
pos[1] = 0; // [P, Q] |
|
} else { // s3 == 0 (0+0) |
|
// [P, Q] passes A. |
|
types[0] = (int)ACROSSVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = 0; // [P, Q] |
|
} |
|
} else { // s2 == 0 |
|
if (s3 > 0) { // (00+) |
|
// [P, Q] passes B. |
|
types[0] = (int)ACROSSVERT; |
|
pos[0] = pu[1]; // B |
|
pos[1] = 0; // [P, Q] |
|
} |
|
} |
|
} |
|
} else { // z1 == 1 |
|
if (s1 > 0) { |
|
if (s2 > 0) { |
|
if (s3 > 0) { // (+++) |
|
// Q lies in [A, B, C]. |
|
types[0] = (int)TOUCHFACE; |
|
pos[0] = 0; // [A, B, C] |
|
pos[1] = pv[1]; // Q |
|
} else { // s3 == 0 (++0) |
|
// Q lies on [C, A]. |
|
types[0] = (int)TOUCHEDGE; |
|
pos[0] = pu[2]; // [C, A] |
|
pos[1] = pv[1]; // Q |
|
} |
|
} else { // s2 == 0 |
|
if (s3 > 0) { // (+0+) |
|
// Q lies on [B, C]. |
|
types[0] = (int)TOUCHEDGE; |
|
pos[0] = pu[1]; // [B, C] |
|
pos[1] = pv[1]; // Q |
|
} else { // s3 == 0 (+00) |
|
// Q = C. |
|
types[0] = (int)SHAREVERT; |
|
pos[0] = pu[2]; // C |
|
pos[1] = pv[1]; // Q |
|
} |
|
} |
|
} else { // s1 == 0 |
|
if (s2 > 0) { |
|
if (s3 > 0) { // (0++) |
|
// Q lies on [A, B]. |
|
types[0] = (int)TOUCHEDGE; |
|
pos[0] = pu[0]; // [A, B] |
|
pos[1] = pv[1]; // Q |
|
} else { // s3 == 0 (0+0) |
|
// Q = A. |
|
types[0] = (int)SHAREVERT; |
|
pos[0] = pu[0]; // A |
|
pos[1] = pv[1]; // Q |
|
} |
|
} else { // s2 == 0 |
|
if (s3 > 0) { // (00+) |
|
// Q = B. |
|
types[0] = (int)SHAREVERT; |
|
pos[0] = pu[1]; // B |
|
pos[1] = pv[1]; // Q |
|
} |
|
} |
|
} |
|
} |
|
|
|
// T and E intersect in a single point. |
|
return 2; |
|
} |
|
|
|
int tetgenmesh::tri_edge_test(point A, point B, point C, point P, point Q, point R, int level, |
|
int* types, int* pos) { |
|
REAL sP, sQ; |
|
|
|
// Test the locations of P and Q with respect to ABC. |
|
sP = orient3d(A, B, C, P); |
|
sQ = orient3d(A, B, C, Q); |
|
|
|
return tri_edge_tail(A, B, C, P, Q, R, sP, sQ, level, types, pos); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// tri_tri_inter() Test whether two triangle (abc) and (opq) are // |
|
// intersecting or not. // |
|
// // |
|
// Return 0 if they are disjoint. Otherwise, return 1. 'type' returns one of // |
|
// the four cases: SHAREVERTEX, SHAREEDGE, SHAREFACE, and INTERSECT. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::tri_edge_inter_tail(REAL* A, REAL* B, REAL* C, REAL* P, REAL* Q, REAL s_p, |
|
REAL s_q) { |
|
int types[2], pos[4]; |
|
int ni; // =0, 2, 4 |
|
|
|
ni = tri_edge_tail(A, B, C, P, Q, NULL, s_p, s_q, 1, types, pos); |
|
|
|
if (ni > 0) { |
|
if (ni == 2) { |
|
// Get the intersection type. |
|
if (types[0] == (int)SHAREVERT) { |
|
return (int)SHAREVERT; |
|
} else { |
|
return (int)INTERSECT; |
|
} |
|
} else if (ni == 4) { |
|
// There may be two intersections. |
|
if (types[0] == (int)SHAREVERT) { |
|
if (types[1] == (int)DISJOINT) { |
|
return (int)SHAREVERT; |
|
} else { |
|
return (int)INTERSECT; |
|
} |
|
} else { |
|
if (types[0] == (int)SHAREEDGE) { |
|
return (int)SHAREEDGE; |
|
} else { |
|
return (int)INTERSECT; |
|
} |
|
} |
|
} |
|
} |
|
|
|
return (int)DISJOINT; |
|
} |
|
|
|
int tetgenmesh::tri_tri_inter(REAL* A, REAL* B, REAL* C, REAL* O, REAL* P, REAL* Q) { |
|
REAL s_o, s_p, s_q; |
|
REAL s_a, s_b, s_c; |
|
|
|
s_o = orient3d(A, B, C, O); |
|
s_p = orient3d(A, B, C, P); |
|
s_q = orient3d(A, B, C, Q); |
|
if ((s_o * s_p > 0.0) && (s_o * s_q > 0.0)) { |
|
// o, p, q are all in the same halfspace of ABC. |
|
return 0; // DISJOINT; |
|
} |
|
|
|
s_a = orient3d(O, P, Q, A); |
|
s_b = orient3d(O, P, Q, B); |
|
s_c = orient3d(O, P, Q, C); |
|
if ((s_a * s_b > 0.0) && (s_a * s_c > 0.0)) { |
|
// a, b, c are all in the same halfspace of OPQ. |
|
return 0; // DISJOINT; |
|
} |
|
|
|
int abcop, abcpq, abcqo; |
|
int shareedge = 0; |
|
|
|
abcop = tri_edge_inter_tail(A, B, C, O, P, s_o, s_p); |
|
if (abcop == (int)INTERSECT) { |
|
return (int)INTERSECT; |
|
} else if (abcop == (int)SHAREEDGE) { |
|
shareedge++; |
|
} |
|
abcpq = tri_edge_inter_tail(A, B, C, P, Q, s_p, s_q); |
|
if (abcpq == (int)INTERSECT) { |
|
return (int)INTERSECT; |
|
} else if (abcpq == (int)SHAREEDGE) { |
|
shareedge++; |
|
} |
|
abcqo = tri_edge_inter_tail(A, B, C, Q, O, s_q, s_o); |
|
if (abcqo == (int)INTERSECT) { |
|
return (int)INTERSECT; |
|
} else if (abcqo == (int)SHAREEDGE) { |
|
shareedge++; |
|
} |
|
if (shareedge == 3) { |
|
// opq are coincident with abc. |
|
return (int)SHAREFACE; |
|
} |
|
|
|
// Continue to detect whether opq and abc are intersecting or not. |
|
int opqab, opqbc, opqca; |
|
|
|
opqab = tri_edge_inter_tail(O, P, Q, A, B, s_a, s_b); |
|
if (opqab == (int)INTERSECT) { |
|
return (int)INTERSECT; |
|
} |
|
opqbc = tri_edge_inter_tail(O, P, Q, B, C, s_b, s_c); |
|
if (opqbc == (int)INTERSECT) { |
|
return (int)INTERSECT; |
|
} |
|
opqca = tri_edge_inter_tail(O, P, Q, C, A, s_c, s_a); |
|
if (opqca == (int)INTERSECT) { |
|
return (int)INTERSECT; |
|
} |
|
|
|
// At this point, two triangles are not intersecting and not coincident. |
|
// They may be share an edge, or share a vertex, or disjoint. |
|
if (abcop == (int)SHAREEDGE) { |
|
// op is coincident with an edge of abc. |
|
return (int)SHAREEDGE; |
|
} |
|
if (abcpq == (int)SHAREEDGE) { |
|
// pq is coincident with an edge of abc. |
|
return (int)SHAREEDGE; |
|
} |
|
if (abcqo == (int)SHAREEDGE) { |
|
// qo is coincident with an edge of abc. |
|
return (int)SHAREEDGE; |
|
} |
|
|
|
// They may share a vertex or disjoint. |
|
if (abcop == (int)SHAREVERT) { |
|
return (int)SHAREVERT; |
|
} |
|
if (abcpq == (int)SHAREVERT) { |
|
// q is the coincident vertex. |
|
return (int)SHAREVERT; |
|
} |
|
|
|
// They are disjoint. |
|
return (int)DISJOINT; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// lu_decmp() Compute the LU decomposition of a matrix. // |
|
// // |
|
// Compute the LU decomposition of a (non-singular) square matrix A using // |
|
// partial pivoting and implicit row exchanges. The result is: // |
|
// A = P * L * U, // |
|
// where P is a permutation matrix, L is unit lower triangular, and U is // |
|
// upper triangular. The factored form of A is used in combination with // |
|
// 'lu_solve()' to solve linear equations: Ax = b, or invert a matrix. // |
|
// // |
|
// The inputs are a square matrix 'lu[N..n+N-1][N..n+N-1]', it's size is 'n'.// |
|
// On output, 'lu' is replaced by the LU decomposition of a rowwise permuta- // |
|
// tion of itself, 'ps[N..n+N-1]' is an output vector that records the row // |
|
// permutation effected by the partial pivoting, effectively, 'ps' array // |
|
// tells the user what the permutation matrix P is; 'd' is output as +1/-1 // |
|
// depending on whether the number of row interchanges was even or odd, // |
|
// respectively. // |
|
// // |
|
// Return true if the LU decomposition is successfully computed, otherwise, // |
|
// return false in case that A is a singular matrix. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenmesh::lu_decmp(REAL lu[4][4], int n, int* ps, REAL* d, int N) { |
|
REAL scales[4]; |
|
REAL pivot, biggest, mult, tempf; |
|
int pivotindex = 0; |
|
int i, j, k; |
|
|
|
*d = 1.0; // No row interchanges yet. |
|
|
|
for (i = N; i < n + N; i++) { // For each row. |
|
// Find the largest element in each row for row equilibration |
|
biggest = 0.0; |
|
for (j = N; j < n + N; j++) |
|
if (biggest < (tempf = fabs(lu[i][j]))) biggest = tempf; |
|
if (biggest != 0.0) |
|
scales[i] = 1.0 / biggest; |
|
else { |
|
scales[i] = 0.0; |
|
return false; // Zero row: singular matrix. |
|
} |
|
ps[i] = i; // Initialize pivot sequence. |
|
} |
|
|
|
for (k = N; k < n + N - 1; k++) { // For each column. |
|
// Find the largest element in each column to pivot around. |
|
biggest = 0.0; |
|
for (i = k; i < n + N; i++) { |
|
if (biggest < (tempf = fabs(lu[ps[i]][k]) * scales[ps[i]])) { |
|
biggest = tempf; |
|
pivotindex = i; |
|
} |
|
} |
|
if (biggest == 0.0) { |
|
return false; // Zero column: singular matrix. |
|
} |
|
if (pivotindex != k) { // Update pivot sequence. |
|
j = ps[k]; |
|
ps[k] = ps[pivotindex]; |
|
ps[pivotindex] = j; |
|
*d = -(*d); // ...and change the parity of d. |
|
} |
|
|
|
// Pivot, eliminating an extra variable each time |
|
pivot = lu[ps[k]][k]; |
|
for (i = k + 1; i < n + N; i++) { |
|
lu[ps[i]][k] = mult = lu[ps[i]][k] / pivot; |
|
if (mult != 0.0) { |
|
for (j = k + 1; j < n + N; j++) |
|
lu[ps[i]][j] -= mult * lu[ps[k]][j]; |
|
} |
|
} |
|
} |
|
|
|
// (lu[ps[n + N - 1]][n + N - 1] == 0.0) ==> A is singular. |
|
return lu[ps[n + N - 1]][n + N - 1] != 0.0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// lu_solve() Solves the linear equation: Ax = b, after the matrix A // |
|
// has been decomposed into the lower and upper triangular // |
|
// matrices L and U, where A = LU. // |
|
// // |
|
// 'lu[N..n+N-1][N..n+N-1]' is input, not as the matrix 'A' but rather as // |
|
// its LU decomposition, computed by the routine 'lu_decmp'; 'ps[N..n+N-1]' // |
|
// is input as the permutation vector returned by 'lu_decmp'; 'b[N..n+N-1]' // |
|
// is input as the right-hand side vector, and returns with the solution // |
|
// vector. 'lu', 'n', and 'ps' are not modified by this routine and can be // |
|
// left in place for successive calls with different right-hand sides 'b'. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::lu_solve(REAL lu[4][4], int n, int* ps, REAL* b, int N) { |
|
int i, j; |
|
REAL X[4], dot; |
|
|
|
for (i = N; i < n + N; i++) |
|
X[i] = 0.0; |
|
|
|
// Vector reduction using U triangular matrix. |
|
for (i = N; i < n + N; i++) { |
|
dot = 0.0; |
|
for (j = N; j < i + N; j++) |
|
dot += lu[ps[i]][j] * X[j]; |
|
X[i] = b[ps[i]] - dot; |
|
} |
|
|
|
// Back substitution, in L triangular matrix. |
|
for (i = n + N - 1; i >= N; i--) { |
|
dot = 0.0; |
|
for (j = i + 1; j < n + N; j++) |
|
dot += lu[ps[i]][j] * X[j]; |
|
X[i] = (X[i] - dot) / lu[ps[i]][i]; |
|
} |
|
|
|
for (i = N; i < n + N; i++) |
|
b[i] = X[i]; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// incircle3d() 3D in-circle test. // |
|
// // |
|
// Return a negative value if pd is inside the circumcircle of the triangle // |
|
// pa, pb, and pc. // |
|
// // |
|
// IMPORTANT: It assumes that [a,b] is the common edge, i.e., the two input // |
|
// triangles are [a,b,c] and [b,a,d]. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
REAL tetgenmesh::incircle3d(point pa, point pb, point pc, point pd) { |
|
REAL area2[2], n1[3], n2[3], c[3]; |
|
REAL sign, r, d; |
|
|
|
// Calculate the areas of the two triangles [a, b, c] and [b, a, d]. |
|
facenormal(pa, pb, pc, n1, 1, NULL); |
|
area2[0] = dot(n1, n1); |
|
facenormal(pb, pa, pd, n2, 1, NULL); |
|
area2[1] = dot(n2, n2); |
|
|
|
if (area2[0] > area2[1]) { |
|
// Choose [a, b, c] as the base triangle. |
|
circumsphere(pa, pb, pc, NULL, c, &r); |
|
d = distance(c, pd); |
|
} else { |
|
// Choose [b, a, d] as the base triangle. |
|
if (area2[1] > 0) { |
|
circumsphere(pb, pa, pd, NULL, c, &r); |
|
d = distance(c, pc); |
|
} else { |
|
// The four points are collinear. This case only happens on the boundary. |
|
return 0; // Return "not inside". |
|
} |
|
} |
|
|
|
sign = d - r; |
|
if (fabs(sign) / r < b->epsilon) { |
|
sign = 0; |
|
} |
|
|
|
return sign; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// facenormal() Calculate the normal of the face. // |
|
// // |
|
// The normal of the face abc can be calculated by the cross product of 2 of // |
|
// its 3 edge vectors. A better choice of two edge vectors will reduce the // |
|
// numerical error during the calculation. Burdakov proved that the optimal // |
|
// basis problem is equivalent to the minimum spanning tree problem with the // |
|
// edge length be the functional, see Burdakov, "A greedy algorithm for the // |
|
// optimal basis problem", BIT 37:3 (1997), 591-599. If 'pivot' > 0, the two // |
|
// short edges in abc are chosen for the calculation. // |
|
// // |
|
// If 'lav' is not NULL and if 'pivot' is set, the average edge length of // |
|
// the edges of the face [a,b,c] is returned. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::facenormal(point pa, point pb, point pc, REAL* n, int pivot, REAL* lav) { |
|
REAL v1[3], v2[3], v3[3], *pv1, *pv2; |
|
REAL L1, L2, L3; |
|
|
|
v1[0] = pb[0] - pa[0]; // edge vector v1: a->b |
|
v1[1] = pb[1] - pa[1]; |
|
v1[2] = pb[2] - pa[2]; |
|
v2[0] = pa[0] - pc[0]; // edge vector v2: c->a |
|
v2[1] = pa[1] - pc[1]; |
|
v2[2] = pa[2] - pc[2]; |
|
|
|
// Default, normal is calculated by: v1 x (-v2) (see Fig. fnormal). |
|
if (pivot > 0) { |
|
// Choose edge vectors by Burdakov's algorithm. |
|
v3[0] = pc[0] - pb[0]; // edge vector v3: b->c |
|
v3[1] = pc[1] - pb[1]; |
|
v3[2] = pc[2] - pb[2]; |
|
L1 = dot(v1, v1); |
|
L2 = dot(v2, v2); |
|
L3 = dot(v3, v3); |
|
// Sort the three edge lengths. |
|
if (L1 < L2) { |
|
if (L2 < L3) { |
|
pv1 = v1; |
|
pv2 = v2; // n = v1 x (-v2). |
|
} else { |
|
pv1 = v3; |
|
pv2 = v1; // n = v3 x (-v1). |
|
} |
|
} else { |
|
if (L1 < L3) { |
|
pv1 = v1; |
|
pv2 = v2; // n = v1 x (-v2). |
|
} else { |
|
pv1 = v2; |
|
pv2 = v3; // n = v2 x (-v3). |
|
} |
|
} |
|
if (lav) { |
|
// return the average edge length. |
|
*lav = (sqrt(L1) + sqrt(L2) + sqrt(L3)) / 3.0; |
|
} |
|
} else { |
|
pv1 = v1; |
|
pv2 = v2; // n = v1 x (-v2). |
|
} |
|
|
|
// Calculate the face normal. |
|
cross(pv1, pv2, n); |
|
// Inverse the direction; |
|
n[0] = -n[0]; |
|
n[1] = -n[1]; |
|
n[2] = -n[2]; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// shortdistance() Returns the shortest distance from point p to a line // |
|
// defined by two points e1 and e2. // |
|
// // |
|
// First compute the projection length l_p of the vector v1 = p - e1 along // |
|
// the vector v2 = e2 - e1. Then Pythagoras' Theorem is used to compute the // |
|
// shortest distance. // |
|
// // |
|
// This routine allows that p is collinear with the line. In this case, the // |
|
// return value is zero. The two points e1 and e2 should not be identical. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
REAL tetgenmesh::shortdistance(REAL* p, REAL* e1, REAL* e2) { |
|
REAL v1[3], v2[3]; |
|
REAL len, l_p; |
|
|
|
v1[0] = e2[0] - e1[0]; |
|
v1[1] = e2[1] - e1[1]; |
|
v1[2] = e2[2] - e1[2]; |
|
v2[0] = p[0] - e1[0]; |
|
v2[1] = p[1] - e1[1]; |
|
v2[2] = p[2] - e1[2]; |
|
|
|
len = sqrt(dot(v1, v1)); |
|
|
|
v1[0] /= len; |
|
v1[1] /= len; |
|
v1[2] /= len; |
|
l_p = dot(v1, v2); |
|
|
|
return sqrt(dot(v2, v2) - l_p * l_p); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// triarea() Return the area of a triangle. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
REAL tetgenmesh::triarea(REAL* pa, REAL* pb, REAL* pc) { |
|
REAL A[4][4]; |
|
|
|
// Compute the coefficient matrix A (3x3). |
|
A[0][0] = pb[0] - pa[0]; |
|
A[0][1] = pb[1] - pa[1]; |
|
A[0][2] = pb[2] - pa[2]; // vector V1 (pa->pb) |
|
A[1][0] = pc[0] - pa[0]; |
|
A[1][1] = pc[1] - pa[1]; |
|
A[1][2] = pc[2] - pa[2]; // vector V2 (pa->pc) |
|
|
|
cross(A[0], A[1], A[2]); // vector V3 (V1 X V2) |
|
|
|
return 0.5 * sqrt(dot(A[2], A[2])); // The area of [a,b,c]. |
|
} |
|
|
|
REAL tetgenmesh::orient3dfast(REAL* pa, REAL* pb, REAL* pc, REAL* pd) { |
|
REAL adx, bdx, cdx; |
|
REAL ady, bdy, cdy; |
|
REAL adz, bdz, cdz; |
|
|
|
adx = pa[0] - pd[0]; |
|
bdx = pb[0] - pd[0]; |
|
cdx = pc[0] - pd[0]; |
|
ady = pa[1] - pd[1]; |
|
bdy = pb[1] - pd[1]; |
|
cdy = pc[1] - pd[1]; |
|
adz = pa[2] - pd[2]; |
|
bdz = pb[2] - pd[2]; |
|
cdz = pc[2] - pd[2]; |
|
|
|
return adx * (bdy * cdz - bdz * cdy) + bdx * (cdy * adz - cdz * ady) + |
|
cdx * (ady * bdz - adz * bdy); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// interiorangle() Return the interior angle (0 - 2 * PI) between vectors // |
|
// o->p1 and o->p2. // |
|
// // |
|
// 'n' is the normal of the plane containing face (o, p1, p2). The interior // |
|
// angle is the total angle rotating from o->p1 around n to o->p2. Exchange // |
|
// the position of p1 and p2 will get the complement angle of the other one. // |
|
// i.e., interiorangle(o, p1, p2) = 2 * PI - interiorangle(o, p2, p1). Set // |
|
// 'n' be NULL if you only want the interior angle between 0 - PI. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
REAL tetgenmesh::interiorangle(REAL* o, REAL* p1, REAL* p2, REAL* n) { |
|
REAL v1[3], v2[3], np[3]; |
|
REAL theta, costheta, lenlen; |
|
REAL ori, len1, len2; |
|
|
|
// Get the interior angle (0 - PI) between o->p1, and o->p2. |
|
v1[0] = p1[0] - o[0]; |
|
v1[1] = p1[1] - o[1]; |
|
v1[2] = p1[2] - o[2]; |
|
v2[0] = p2[0] - o[0]; |
|
v2[1] = p2[1] - o[1]; |
|
v2[2] = p2[2] - o[2]; |
|
len1 = sqrt(dot(v1, v1)); |
|
len2 = sqrt(dot(v2, v2)); |
|
lenlen = len1 * len2; |
|
|
|
costheta = dot(v1, v2) / lenlen; |
|
if (costheta > 1.0) { |
|
costheta = 1.0; // Roundoff. |
|
} else if (costheta < -1.0) { |
|
costheta = -1.0; // Roundoff. |
|
} |
|
theta = acos(costheta); |
|
if (n != NULL) { |
|
// Get a point above the face (o, p1, p2); |
|
np[0] = o[0] + n[0]; |
|
np[1] = o[1] + n[1]; |
|
np[2] = o[2] + n[2]; |
|
// Adjust theta (0 - 2 * PI). |
|
ori = orient3d(p1, o, np, p2); |
|
if (ori > 0.0) { |
|
theta = 2 * PI - theta; |
|
} |
|
} |
|
|
|
return theta; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// projpt2edge() Return the projection point from a point to an edge. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::projpt2edge(REAL* p, REAL* e1, REAL* e2, REAL* prj) { |
|
REAL v1[3], v2[3]; |
|
REAL len, l_p; |
|
|
|
v1[0] = e2[0] - e1[0]; |
|
v1[1] = e2[1] - e1[1]; |
|
v1[2] = e2[2] - e1[2]; |
|
v2[0] = p[0] - e1[0]; |
|
v2[1] = p[1] - e1[1]; |
|
v2[2] = p[2] - e1[2]; |
|
|
|
len = sqrt(dot(v1, v1)); |
|
v1[0] /= len; |
|
v1[1] /= len; |
|
v1[2] /= len; |
|
l_p = dot(v1, v2); |
|
|
|
prj[0] = e1[0] + l_p * v1[0]; |
|
prj[1] = e1[1] + l_p * v1[1]; |
|
prj[2] = e1[2] + l_p * v1[2]; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// projpt2face() Return the projection point from a point to a face. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::projpt2face(REAL* p, REAL* f1, REAL* f2, REAL* f3, REAL* prj) { |
|
REAL fnormal[3], v1[3]; |
|
REAL len, dist; |
|
|
|
// Get the unit face normal. |
|
facenormal(f1, f2, f3, fnormal, 1, NULL); |
|
len = sqrt(fnormal[0] * fnormal[0] + fnormal[1] * fnormal[1] + fnormal[2] * fnormal[2]); |
|
fnormal[0] /= len; |
|
fnormal[1] /= len; |
|
fnormal[2] /= len; |
|
// Get the vector v1 = |p - f1|. |
|
v1[0] = p[0] - f1[0]; |
|
v1[1] = p[1] - f1[1]; |
|
v1[2] = p[2] - f1[2]; |
|
// Get the project distance. |
|
dist = dot(fnormal, v1); |
|
|
|
// Get the project point. |
|
prj[0] = p[0] - dist * fnormal[0]; |
|
prj[1] = p[1] - dist * fnormal[1]; |
|
prj[2] = p[2] - dist * fnormal[2]; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// tetalldihedral() Get all (six) dihedral angles of a tet. // |
|
// // |
|
// If 'cosdd' is not NULL, it returns the cosines of the 6 dihedral angles, // |
|
// the edge indices are given in the global array 'edge2ver'. If 'cosmaxd' // |
|
// (or 'cosmind') is not NULL, it returns the cosine of the maximal (or // |
|
// minimal) dihedral angle. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenmesh::tetalldihedral(point pa, point pb, point pc, point pd, REAL* cosdd, REAL* cosmaxd, |
|
REAL* cosmind) { |
|
REAL N[4][3], vol, cosd, len; |
|
int f1 = 0, f2 = 0, i, j; |
|
|
|
vol = 0; // Check if the tet is valid or not. |
|
|
|
// Get four normals of faces of the tet. |
|
tetallnormal(pa, pb, pc, pd, N, &vol); |
|
|
|
if (vol > 0) { |
|
// Normalize the normals. |
|
for (i = 0; i < 4; i++) { |
|
len = sqrt(dot(N[i], N[i])); |
|
if (len != 0.0) { |
|
for (j = 0; j < 3; j++) |
|
N[i][j] /= len; |
|
} else { |
|
// There are degeneracies, such as duplicated vertices. |
|
vol = 0; // assert(0); |
|
} |
|
} |
|
} |
|
|
|
if (vol <= 0) { // if (vol == 0.0) { |
|
// A degenerated tet or an inverted tet. |
|
facenormal(pc, pb, pd, N[0], 1, NULL); |
|
facenormal(pa, pc, pd, N[1], 1, NULL); |
|
facenormal(pb, pa, pd, N[2], 1, NULL); |
|
facenormal(pa, pb, pc, N[3], 1, NULL); |
|
// Normalize the normals. |
|
for (i = 0; i < 4; i++) { |
|
len = sqrt(dot(N[i], N[i])); |
|
if (len != 0.0) { |
|
for (j = 0; j < 3; j++) |
|
N[i][j] /= len; |
|
} else { |
|
// There are degeneracies, such as duplicated vertices. |
|
break; // Not a valid normal. |
|
} |
|
} |
|
if (i < 4) { |
|
// Do not calculate dihedral angles. |
|
// Set all angles be 0 degree. There will be no quality optimization for |
|
// this tet! Use volume optimization to correct it. |
|
if (cosdd != NULL) { |
|
for (i = 0; i < 6; i++) { |
|
cosdd[i] = -1.0; // 180 degree. |
|
} |
|
} |
|
// This tet has zero volume. |
|
if (cosmaxd != NULL) { |
|
*cosmaxd = -1.0; // 180 degree. |
|
} |
|
if (cosmind != NULL) { |
|
*cosmind = -1.0; // 180 degree. |
|
} |
|
return false; |
|
} |
|
} |
|
|
|
// Calculate the cosine of the dihedral angles of the edges. |
|
for (i = 0; i < 6; i++) { |
|
switch (i) { |
|
case 0: |
|
f1 = 0; |
|
f2 = 1; |
|
break; // [c,d]. |
|
case 1: |
|
f1 = 1; |
|
f2 = 2; |
|
break; // [a,d]. |
|
case 2: |
|
f1 = 2; |
|
f2 = 3; |
|
break; // [a,b]. |
|
case 3: |
|
f1 = 0; |
|
f2 = 3; |
|
break; // [b,c]. |
|
case 4: |
|
f1 = 2; |
|
f2 = 0; |
|
break; // [b,d]. |
|
case 5: |
|
f1 = 1; |
|
f2 = 3; |
|
break; // [a,c]. |
|
} |
|
cosd = -dot(N[f1], N[f2]); |
|
if (cosd < -1.0) cosd = -1.0; // Rounding. |
|
if (cosd > 1.0) cosd = 1.0; // Rounding. |
|
if (cosdd) cosdd[i] = cosd; |
|
if (cosmaxd || cosmind) { |
|
if (i == 0) { |
|
if (cosmaxd) *cosmaxd = cosd; |
|
if (cosmind) *cosmind = cosd; |
|
} else { |
|
if (cosmaxd) *cosmaxd = cosd < *cosmaxd ? cosd : *cosmaxd; |
|
if (cosmind) *cosmind = cosd > *cosmind ? cosd : *cosmind; |
|
} |
|
} |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// tetallnormal() Get the in-normals of the four faces of a given tet. // |
|
// // |
|
// Let tet be abcd. N[4][3] returns the four normals, which are: N[0] cbd, // |
|
// N[1] acd, N[2] bad, N[3] abc (exactly corresponding to the face indices // |
|
// of the mesh data structure). These normals are unnormalized. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::tetallnormal(point pa, point pb, point pc, point pd, REAL N[4][3], REAL* volume) { |
|
REAL A[4][4], rhs[4], D; |
|
int indx[4]; |
|
int i, j; |
|
|
|
// get the entries of A[3][3]. |
|
for (i = 0; i < 3; i++) |
|
A[0][i] = pa[i] - pd[i]; // d->a vec |
|
for (i = 0; i < 3; i++) |
|
A[1][i] = pb[i] - pd[i]; // d->b vec |
|
for (i = 0; i < 3; i++) |
|
A[2][i] = pc[i] - pd[i]; // d->c vec |
|
|
|
// Compute the inverse of matrix A, to get 3 normals of the 4 faces. |
|
if (lu_decmp(A, 3, indx, &D, 0)) { // Decompose the matrix just once. |
|
if (volume != NULL) { |
|
// Get the volume of the tet. |
|
*volume = fabs((A[indx[0]][0] * A[indx[1]][1] * A[indx[2]][2])) / 6.0; |
|
} |
|
for (j = 0; j < 3; j++) { |
|
for (i = 0; i < 3; i++) |
|
rhs[i] = 0.0; |
|
rhs[j] = 1.0; // Positive means the inside direction |
|
lu_solve(A, 3, indx, rhs, 0); |
|
for (i = 0; i < 3; i++) |
|
N[j][i] = rhs[i]; |
|
} |
|
// Get the fourth normal by summing up the first three. |
|
for (i = 0; i < 3; i++) |
|
N[3][i] = -N[0][i] - N[1][i] - N[2][i]; |
|
} else { |
|
// The tet is degenerated. |
|
if (volume != NULL) { |
|
*volume = 0; |
|
} |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// tetaspectratio() Calculate the aspect ratio of the tetrahedron. // |
|
// // |
|
// The aspect ratio of a tet is L/h, where L is the longest edge length, and // |
|
// h is the shortest height of the tet. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
REAL tetgenmesh::tetaspectratio(point pa, point pb, point pc, point pd) { |
|
REAL V[6][3], edgelength[6], longlen; |
|
REAL vda[3], vdb[3], vdc[3]; |
|
REAL N[4][3], A[4][4], rhs[4], D; |
|
REAL H[4], volume, minheightinv; |
|
int indx[4]; |
|
int i, j; |
|
|
|
// Set the edge vectors: V[0], ..., V[5] |
|
for (i = 0; i < 3; i++) |
|
V[0][i] = pa[i] - pd[i]; |
|
for (i = 0; i < 3; i++) |
|
V[1][i] = pb[i] - pd[i]; |
|
for (i = 0; i < 3; i++) |
|
V[2][i] = pc[i] - pd[i]; |
|
for (i = 0; i < 3; i++) |
|
V[3][i] = pb[i] - pa[i]; |
|
for (i = 0; i < 3; i++) |
|
V[4][i] = pc[i] - pb[i]; |
|
for (i = 0; i < 3; i++) |
|
V[5][i] = pa[i] - pc[i]; |
|
|
|
// Get the squares of the edge lengths. |
|
for (i = 0; i < 6; i++) |
|
edgelength[i] = dot(V[i], V[i]); |
|
|
|
// Calculate the longest and shortest edge length. |
|
longlen = edgelength[0]; |
|
for (i = 1; i < 6; i++) { |
|
longlen = edgelength[i] > longlen ? edgelength[i] : longlen; |
|
} |
|
|
|
// Set the matrix A = [vda, vdb, vdc]^T. |
|
for (i = 0; i < 3; i++) |
|
A[0][i] = vda[i] = pa[i] - pd[i]; |
|
for (i = 0; i < 3; i++) |
|
A[1][i] = vdb[i] = pb[i] - pd[i]; |
|
for (i = 0; i < 3; i++) |
|
A[2][i] = vdc[i] = pc[i] - pd[i]; |
|
// Lu-decompose the matrix A. |
|
lu_decmp(A, 3, indx, &D, 0); |
|
// Get the volume of abcd. |
|
volume = (A[indx[0]][0] * A[indx[1]][1] * A[indx[2]][2]) / 6.0; |
|
// Check if it is zero. |
|
if (volume == 0.0) return 1.0e+200; // A degenerate tet. |
|
|
|
// Compute the 4 face normals (N[0], ..., N[3]). |
|
for (j = 0; j < 3; j++) { |
|
for (i = 0; i < 3; i++) |
|
rhs[i] = 0.0; |
|
rhs[j] = 1.0; // Positive means the inside direction |
|
lu_solve(A, 3, indx, rhs, 0); |
|
for (i = 0; i < 3; i++) |
|
N[j][i] = rhs[i]; |
|
} |
|
// Get the fourth normal by summing up the first three. |
|
for (i = 0; i < 3; i++) |
|
N[3][i] = -N[0][i] - N[1][i] - N[2][i]; |
|
// Normalized the normals. |
|
for (i = 0; i < 4; i++) { |
|
// H[i] is the inverse of the height of its corresponding face. |
|
H[i] = sqrt(dot(N[i], N[i])); |
|
// if (H[i] > 0.0) { |
|
// for (j = 0; j < 3; j++) N[i][j] /= H[i]; |
|
// } |
|
} |
|
// Get the radius of the inscribed sphere. |
|
// insradius = 1.0 / (H[0] + H[1] + H[2] + H[3]); |
|
// Get the biggest H[i] (corresponding to the smallest height). |
|
minheightinv = H[0]; |
|
for (i = 1; i < 4; i++) { |
|
if (H[i] > minheightinv) minheightinv = H[i]; |
|
} |
|
|
|
return sqrt(longlen) * minheightinv; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// circumsphere() Calculate the smallest circumsphere (center and radius) // |
|
// of the given three or four points. // |
|
// // |
|
// The circumsphere of four points (a tetrahedron) is unique if they are not // |
|
// degenerate. If 'pd = NULL', the smallest circumsphere of three points is // |
|
// the diametral sphere of the triangle if they are not degenerate. // |
|
// // |
|
// Return TRUE if the input points are not degenerate and the circumcenter // |
|
// and circumradius are returned in 'cent' and 'radius' respectively if they // |
|
// are not NULLs. Otherwise, return FALSE, the four points are co-planar. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenmesh::circumsphere(REAL* pa, REAL* pb, REAL* pc, REAL* pd, REAL* cent, REAL* radius) { |
|
REAL A[4][4], rhs[4], D; |
|
int indx[4]; |
|
|
|
// Compute the coefficient matrix A (3x3). |
|
A[0][0] = pb[0] - pa[0]; |
|
A[0][1] = pb[1] - pa[1]; |
|
A[0][2] = pb[2] - pa[2]; |
|
A[1][0] = pc[0] - pa[0]; |
|
A[1][1] = pc[1] - pa[1]; |
|
A[1][2] = pc[2] - pa[2]; |
|
if (pd != NULL) { |
|
A[2][0] = pd[0] - pa[0]; |
|
A[2][1] = pd[1] - pa[1]; |
|
A[2][2] = pd[2] - pa[2]; |
|
} else { |
|
cross(A[0], A[1], A[2]); |
|
} |
|
|
|
// Compute the right hand side vector b (3x1). |
|
rhs[0] = 0.5 * dot(A[0], A[0]); |
|
rhs[1] = 0.5 * dot(A[1], A[1]); |
|
if (pd != NULL) { |
|
rhs[2] = 0.5 * dot(A[2], A[2]); |
|
} else { |
|
rhs[2] = 0.0; |
|
} |
|
|
|
// Solve the 3 by 3 equations use LU decomposition with partial pivoting |
|
// and backward and forward substitute.. |
|
if (!lu_decmp(A, 3, indx, &D, 0)) { |
|
if (radius != (REAL*)NULL) *radius = 0.0; |
|
return false; |
|
} |
|
lu_solve(A, 3, indx, rhs, 0); |
|
if (cent != (REAL*)NULL) { |
|
cent[0] = pa[0] + rhs[0]; |
|
cent[1] = pa[1] + rhs[1]; |
|
cent[2] = pa[2] + rhs[2]; |
|
} |
|
if (radius != (REAL*)NULL) { |
|
*radius = sqrt(rhs[0] * rhs[0] + rhs[1] * rhs[1] + rhs[2] * rhs[2]); |
|
} |
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// orthosphere() Calulcate the orthosphere of four weighted points. // |
|
// // |
|
// A weighted point (p, P^2) can be interpreted as a sphere centered at the // |
|
// point 'p' with a radius 'P'. The 'height' of 'p' is pheight = p[0]^2 + // |
|
// p[1]^2 + p[2]^2 - P^2. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenmesh::orthosphere(REAL* pa, REAL* pb, REAL* pc, REAL* pd, REAL aheight, REAL bheight, |
|
REAL cheight, REAL dheight, REAL* orthocent, REAL* radius) { |
|
REAL A[4][4], rhs[4], D; |
|
int indx[4]; |
|
|
|
// Set the coefficient matrix A (4 x 4). |
|
A[0][0] = 1.0; |
|
A[0][1] = pa[0]; |
|
A[0][2] = pa[1]; |
|
A[0][3] = pa[2]; |
|
A[1][0] = 1.0; |
|
A[1][1] = pb[0]; |
|
A[1][2] = pb[1]; |
|
A[1][3] = pb[2]; |
|
A[2][0] = 1.0; |
|
A[2][1] = pc[0]; |
|
A[2][2] = pc[1]; |
|
A[2][3] = pc[2]; |
|
A[3][0] = 1.0; |
|
A[3][1] = pd[0]; |
|
A[3][2] = pd[1]; |
|
A[3][3] = pd[2]; |
|
|
|
// Set the right hand side vector (4 x 1). |
|
rhs[0] = 0.5 * aheight; |
|
rhs[1] = 0.5 * bheight; |
|
rhs[2] = 0.5 * cheight; |
|
rhs[3] = 0.5 * dheight; |
|
|
|
// Solve the 4 by 4 equations use LU decomposition with partial pivoting |
|
// and backward and forward substitute.. |
|
if (!lu_decmp(A, 4, indx, &D, 0)) { |
|
if (radius != (REAL*)NULL) *radius = 0.0; |
|
return false; |
|
} |
|
lu_solve(A, 4, indx, rhs, 0); |
|
|
|
if (orthocent != (REAL*)NULL) { |
|
orthocent[0] = rhs[1]; |
|
orthocent[1] = rhs[2]; |
|
orthocent[2] = rhs[3]; |
|
} |
|
if (radius != (REAL*)NULL) { |
|
// rhs[0] = - rheight / 2; |
|
// rheight = - 2 * rhs[0]; |
|
// = r[0]^2 + r[1]^2 + r[2]^2 - radius^2 |
|
// radius^2 = r[0]^2 + r[1]^2 + r[2]^2 -rheight |
|
// = r[0]^2 + r[1]^2 + r[2]^2 + 2 * rhs[0] |
|
*radius = sqrt(rhs[1] * rhs[1] + rhs[2] * rhs[2] + rhs[3] * rhs[3] + 2.0 * rhs[0]); |
|
} |
|
return true; |
|
} |
|
|
|
void tetgenmesh::tetcircumcenter(point tetorg, point tetdest, point tetfapex, point tettapex, |
|
REAL* circumcenter, REAL* radius) { |
|
REAL xot, yot, zot, xdt, ydt, zdt, xft, yft, zft; |
|
REAL otlength, dtlength, ftlength; |
|
REAL xcrossdf, ycrossdf, zcrossdf; |
|
REAL xcrossfo, ycrossfo, zcrossfo; |
|
REAL xcrossod, ycrossod, zcrossod; |
|
REAL denominator; |
|
REAL xct, yct, zct; |
|
|
|
// tetcircumcentercount++; |
|
|
|
/* Use coordinates relative to the apex of the tetrahedron. */ |
|
xot = tetorg[0] - tettapex[0]; |
|
yot = tetorg[1] - tettapex[1]; |
|
zot = tetorg[2] - tettapex[2]; |
|
xdt = tetdest[0] - tettapex[0]; |
|
ydt = tetdest[1] - tettapex[1]; |
|
zdt = tetdest[2] - tettapex[2]; |
|
xft = tetfapex[0] - tettapex[0]; |
|
yft = tetfapex[1] - tettapex[1]; |
|
zft = tetfapex[2] - tettapex[2]; |
|
/* Squares of lengths of the origin, destination, and face apex edges. */ |
|
otlength = xot * xot + yot * yot + zot * zot; |
|
dtlength = xdt * xdt + ydt * ydt + zdt * zdt; |
|
ftlength = xft * xft + yft * yft + zft * zft; |
|
/* Cross products of the origin, destination, and face apex vectors. */ |
|
xcrossdf = ydt * zft - yft * zdt; |
|
ycrossdf = zdt * xft - zft * xdt; |
|
zcrossdf = xdt * yft - xft * ydt; |
|
xcrossfo = yft * zot - yot * zft; |
|
ycrossfo = zft * xot - zot * xft; |
|
zcrossfo = xft * yot - xot * yft; |
|
xcrossod = yot * zdt - ydt * zot; |
|
ycrossod = zot * xdt - zdt * xot; |
|
zcrossod = xot * ydt - xdt * yot; |
|
|
|
/* Calculate the denominator of all the formulae. */ |
|
// if (noexact) { |
|
// denominator = 0.5 / (xot * xcrossdf + yot * ycrossdf + zot * zcrossdf); |
|
//} else { |
|
/* Use the orient3d() routine to ensure a positive (and */ |
|
/* reasonably accurate) result, avoiding any possibility */ |
|
/* of division by zero. */ |
|
denominator = 0.5 / orient3d(tetorg, tetdest, tetfapex, tettapex); |
|
/* Don't count the above as an orientation test. */ |
|
// orientcount--; |
|
//} |
|
|
|
/* Calculate offset (from apex) of circumcenter. */ |
|
xct = (otlength * xcrossdf + dtlength * xcrossfo + ftlength * xcrossod) * denominator; |
|
yct = (otlength * ycrossdf + dtlength * ycrossfo + ftlength * ycrossod) * denominator; |
|
zct = (otlength * zcrossdf + dtlength * zcrossfo + ftlength * zcrossod) * denominator; |
|
|
|
circumcenter[0] = xct + tettapex[0]; |
|
circumcenter[1] = yct + tettapex[1]; |
|
circumcenter[2] = zct + tettapex[2]; |
|
|
|
if (radius != NULL) { |
|
*radius = sqrt(xct * xct + yct * yct + zct * zct); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// planelineint() Calculate the intersection of a line and a plane. // |
|
// // |
|
// The equation of a plane (points P are on the plane with normal N and P3 // |
|
// on the plane) can be written as: N dot (P - P3) = 0. The equation of the // |
|
// line (points P on the line passing through P1 and P2) can be written as: // |
|
// P = P1 + u (P2 - P1). The intersection of these two occurs when: // |
|
// N dot (P1 + u (P2 - P1)) = N dot P3. // |
|
// Solving for u gives: // |
|
// N dot (P3 - P1) // |
|
// u = ------------------. // |
|
// N dot (P2 - P1) // |
|
// If the denominator is 0 then N (the normal to the plane) is perpendicular // |
|
// to the line. Thus the line is either parallel to the plane and there are // |
|
// no solutions or the line is on the plane in which case there are an infi- // |
|
// nite number of solutions. // |
|
// // |
|
// The plane is given by three points pa, pb, and pc, e1 and e2 defines the // |
|
// line. If u is non-zero, The intersection point (if exists) returns in ip. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::planelineint(REAL* pa, REAL* pb, REAL* pc, REAL* e1, REAL* e2, REAL* ip, REAL* u) { |
|
REAL n[3], det, det1; |
|
|
|
// Calculate N. |
|
facenormal(pa, pb, pc, n, 1, NULL); |
|
// Calculate N dot (e2 - e1). |
|
det = n[0] * (e2[0] - e1[0]) + n[1] * (e2[1] - e1[1]) + n[2] * (e2[2] - e1[2]); |
|
if (det != 0.0) { |
|
// Calculate N dot (pa - e1) |
|
det1 = n[0] * (pa[0] - e1[0]) + n[1] * (pa[1] - e1[1]) + n[2] * (pa[2] - e1[2]); |
|
*u = det1 / det; |
|
ip[0] = e1[0] + *u * (e2[0] - e1[0]); |
|
ip[1] = e1[1] + *u * (e2[1] - e1[1]); |
|
ip[2] = e1[2] + *u * (e2[2] - e1[2]); |
|
} else { |
|
*u = 0.0; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// linelineint() Calculate the intersection(s) of two line segments. // |
|
// // |
|
// Calculate the line segment [P, Q] that is the shortest route between two // |
|
// lines from A to B and C to D. Calculate also the values of tp and tq // |
|
// where: P = A + tp (B - A), and Q = C + tq (D - C). // |
|
// // |
|
// Return 1 if the line segment exists. Otherwise, return 0. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::linelineint(REAL* A, REAL* B, REAL* C, REAL* D, REAL* P, REAL* Q, REAL* tp, |
|
REAL* tq) { |
|
REAL vab[3], vcd[3], vca[3]; |
|
REAL vab_vab, vcd_vcd, vab_vcd; |
|
REAL vca_vab, vca_vcd; |
|
REAL det, eps; |
|
int i; |
|
|
|
for (i = 0; i < 3; i++) { |
|
vab[i] = B[i] - A[i]; |
|
vcd[i] = D[i] - C[i]; |
|
vca[i] = A[i] - C[i]; |
|
} |
|
|
|
vab_vab = dot(vab, vab); |
|
vcd_vcd = dot(vcd, vcd); |
|
vab_vcd = dot(vab, vcd); |
|
|
|
det = vab_vab * vcd_vcd - vab_vcd * vab_vcd; |
|
// Round the result. |
|
eps = det / (fabs(vab_vab * vcd_vcd) + fabs(vab_vcd * vab_vcd)); |
|
if (eps < b->epsilon) { |
|
return 0; |
|
} |
|
|
|
vca_vab = dot(vca, vab); |
|
vca_vcd = dot(vca, vcd); |
|
|
|
*tp = (vcd_vcd * (-vca_vab) + vab_vcd * vca_vcd) / det; |
|
*tq = (vab_vcd * (-vca_vab) + vab_vab * vca_vcd) / det; |
|
|
|
for (i = 0; i < 3; i++) |
|
P[i] = A[i] + (*tp) * vab[i]; |
|
for (i = 0; i < 3; i++) |
|
Q[i] = C[i] + (*tq) * vcd[i]; |
|
|
|
return 1; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// tetprismvol() Calculate the volume of a tetrahedral prism in 4D. // |
|
// // |
|
// A tetrahedral prism is a convex uniform polychoron (four dimensional poly-// |
|
// tope). It has 6 polyhedral cells: 2 tetrahedra connected by 4 triangular // |
|
// prisms. It has 14 faces: 8 triangular and 6 square. It has 16 edges and 8 // |
|
// vertices. (Wikipedia). // |
|
// // |
|
// Let 'p0', ..., 'p3' be four affinely independent points in R^3. They form // |
|
// the lower tetrahedral facet of the prism. The top tetrahedral facet is // |
|
// formed by four vertices, 'p4', ..., 'p7' in R^4, which is obtained by // |
|
// lifting each vertex of the lower facet into R^4 by a weight (height). A // |
|
// canonical choice of the weights is the square of Euclidean norm of of the // |
|
// points (vectors). // |
|
// // |
|
// // |
|
// The return value is (4!) 24 times of the volume of the tetrahedral prism. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
REAL tetgenmesh::tetprismvol(REAL* p0, REAL* p1, REAL* p2, REAL* p3) { |
|
REAL *p4, *p5, *p6, *p7; |
|
REAL w4, w5, w6, w7; |
|
REAL vol[4]; |
|
|
|
p4 = p0; |
|
p5 = p1; |
|
p6 = p2; |
|
p7 = p3; |
|
|
|
// TO DO: these weights can be pre-calculated! |
|
w4 = dot(p0, p0); |
|
w5 = dot(p1, p1); |
|
w6 = dot(p2, p2); |
|
w7 = dot(p3, p3); |
|
|
|
// Calculate the volume of the tet-prism. |
|
vol[0] = orient4d(p5, p6, p4, p3, p7, w5, w6, w4, 0, w7); |
|
vol[1] = orient4d(p3, p6, p2, p0, p1, 0, w6, 0, 0, 0); |
|
vol[2] = orient4d(p4, p6, p3, p0, p1, w4, w6, 0, 0, 0); |
|
vol[3] = orient4d(p6, p5, p4, p3, p1, w6, w5, w4, 0, 0); |
|
|
|
return fabs(vol[0]) + fabs(vol[1]) + fabs(vol[2]) + fabs(vol[3]); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// calculateabovepoint() Calculate a point above a facet in 'dummypoint'. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenmesh::calculateabovepoint(arraypool* facpoints, point* ppa, point* ppb, point* ppc) { |
|
point *ppt, pa, pb, pc; |
|
REAL v1[3], v2[3], n[3]; |
|
REAL lab, len, A, area; |
|
REAL x, y, z; |
|
int i; |
|
|
|
ppt = (point*)fastlookup(facpoints, 0); |
|
pa = *ppt; // a is the first point. |
|
pb = pc = NULL; // Avoid compiler warnings. |
|
|
|
// Get a point b s.t. the length of [a, b] is maximal. |
|
lab = 0; |
|
for (i = 1; i < facpoints->objects; i++) { |
|
ppt = (point*)fastlookup(facpoints, i); |
|
x = (*ppt)[0] - pa[0]; |
|
y = (*ppt)[1] - pa[1]; |
|
z = (*ppt)[2] - pa[2]; |
|
len = x * x + y * y + z * z; |
|
if (len > lab) { |
|
lab = len; |
|
pb = *ppt; |
|
} |
|
} |
|
lab = sqrt(lab); |
|
if (lab == 0) { |
|
if (!b->quiet) { |
|
printf("Warning: All points of a facet are coincident with %d.\n", pointmark(pa)); |
|
} |
|
return false; |
|
} |
|
|
|
// Get a point c s.t. the area of [a, b, c] is maximal. |
|
v1[0] = pb[0] - pa[0]; |
|
v1[1] = pb[1] - pa[1]; |
|
v1[2] = pb[2] - pa[2]; |
|
A = 0; |
|
for (i = 1; i < facpoints->objects; i++) { |
|
ppt = (point*)fastlookup(facpoints, i); |
|
v2[0] = (*ppt)[0] - pa[0]; |
|
v2[1] = (*ppt)[1] - pa[1]; |
|
v2[2] = (*ppt)[2] - pa[2]; |
|
cross(v1, v2, n); |
|
area = dot(n, n); |
|
if (area > A) { |
|
A = area; |
|
pc = *ppt; |
|
} |
|
} |
|
if (A == 0) { |
|
// All points are collinear. No above point. |
|
if (!b->quiet) { |
|
printf("Warning: All points of a facet are collinaer with [%d, %d].\n", pointmark(pa), |
|
pointmark(pb)); |
|
} |
|
return false; |
|
} |
|
|
|
// Calculate an above point of this facet. |
|
facenormal(pa, pb, pc, n, 1, NULL); |
|
len = sqrt(dot(n, n)); |
|
n[0] /= len; |
|
n[1] /= len; |
|
n[2] /= len; |
|
lab /= 2.0; // Half the maximal length. |
|
dummypoint[0] = pa[0] + lab * n[0]; |
|
dummypoint[1] = pa[1] + lab * n[1]; |
|
dummypoint[2] = pa[2] + lab * n[2]; |
|
|
|
if (ppa != NULL) { |
|
// Return the three points. |
|
*ppa = pa; |
|
*ppb = pb; |
|
*ppc = pc; |
|
} |
|
|
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// Calculate an above point. It lies above the plane containing the subface // |
|
// [a,b,c], and save it in dummypoint. Moreover, the vector pa->dummypoint // |
|
// is the normal of the plane. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::calculateabovepoint4(point pa, point pb, point pc, point pd) { |
|
REAL n1[3], n2[3], *norm; |
|
REAL len, len1, len2; |
|
|
|
// Select a base. |
|
facenormal(pa, pb, pc, n1, 1, NULL); |
|
len1 = sqrt(dot(n1, n1)); |
|
facenormal(pa, pb, pd, n2, 1, NULL); |
|
len2 = sqrt(dot(n2, n2)); |
|
if (len1 > len2) { |
|
norm = n1; |
|
len = len1; |
|
} else { |
|
norm = n2; |
|
len = len2; |
|
} |
|
norm[0] /= len; |
|
norm[1] /= len; |
|
norm[2] /= len; |
|
len = distance(pa, pb); |
|
dummypoint[0] = pa[0] + len * norm[0]; |
|
dummypoint[1] = pa[1] + len * norm[1]; |
|
dummypoint[2] = pa[2] + len * norm[2]; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// report_overlapping_facets() Report two overlapping facets. // |
|
// // |
|
// Two subfaces, f1 [a, b, c] and f2 [a, b, d], share the same edge [a, b]. // |
|
// 'dihedang' is the dihedral angle between these two facets. It must less // |
|
// than the variable 'b->facet_overlap_angle_tol'. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::report_overlapping_facets(face* f1, face* f2, REAL dihedang) { |
|
point pa, pb, pc, pd; |
|
|
|
pa = sorg(*f1); |
|
pb = sdest(*f1); |
|
pc = sapex(*f1); |
|
pd = sapex(*f2); |
|
|
|
if (pc != pd) { |
|
printf("Found two %s self-intersecting facets.\n", dihedang > 0 ? "nearly" : "exactly"); |
|
printf(" 1st: [%d, %d, %d] #%d\n", pointmark(pa), pointmark(pb), pointmark(pc), |
|
shellmark(*f1)); |
|
printf(" 2nd: [%d, %d, %d] #%d\n", pointmark(pa), pointmark(pb), pointmark(pd), |
|
shellmark(*f2)); |
|
if (dihedang > 0) { |
|
printf("The dihedral angle between them is %g degree.\n", dihedang / PI * 180.0); |
|
printf("Hint: You may use -p/# to decrease the dihedral angle"); |
|
printf(" tolerance %g (degree).\n", b->facet_overlap_ang_tol); |
|
} |
|
} else { |
|
if (shellmark(*f1) != shellmark(*f2)) { |
|
// Two identical faces from two different facet. |
|
printf("Found two overlapping facets.\n"); |
|
} else { |
|
printf("Found two duplicated facets.\n"); |
|
} |
|
printf(" 1st: [%d, %d, %d] #%d\n", pointmark(pa), pointmark(pb), pointmark(pc), |
|
shellmark(*f1)); |
|
printf(" 2nd: [%d, %d, %d] #%d\n", pointmark(pa), pointmark(pb), pointmark(pd), |
|
shellmark(*f2)); |
|
} |
|
|
|
// Return the information |
|
sevent.e_type = 6; |
|
sevent.f_marker1 = shellmark(*f1); |
|
sevent.f_vertices1[0] = pointmark(pa); |
|
sevent.f_vertices1[1] = pointmark(pb); |
|
sevent.f_vertices1[2] = pointmark(pc); |
|
sevent.f_marker2 = shellmark(*f2); |
|
sevent.f_vertices2[0] = pointmark(pa); |
|
sevent.f_vertices2[1] = pointmark(pb); |
|
sevent.f_vertices2[2] = pointmark(pd); |
|
|
|
terminatetetgen(this, 3); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// report_selfint_edge() Report a self-intersection at an edge. // |
|
// // |
|
// The edge 'e1'->'e2' and the tetrahedron 'itet' intersect. 'dir' indicates // |
|
// that the edge intersects the tet at its origin vertex (ACROSSVERTEX), or // |
|
// its current face (ACROSSFACE), or its current edge (ACROSSEDGE). // |
|
// If 'iedge' is not NULL, it is either a segment or a subface that contains // |
|
// the edge 'e1'->'e2'. It is used to report the geometry entity. // |
|
// // |
|
// Since it is a self-intersection, the vertex, edge or face of 'itet' that // |
|
// is intersecting with this edge must be an input vertex, a segment, or a // |
|
// subface, respectively. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::report_selfint_edge(point e1, point e2, face* iedge, triface* itet, |
|
enum interresult dir) { |
|
point forg = NULL, fdest = NULL, fapex = NULL; |
|
int etype = 0, geomtag = 0, facemark = 0; |
|
|
|
if (iedge != NULL) { |
|
if (iedge->sh[5] != NULL) { |
|
etype = 2; // A subface |
|
forg = e1; |
|
fdest = e2; |
|
fapex = sapex(*iedge); |
|
facemark = shellmark(*iedge); |
|
} else { |
|
etype = 1; // A segment |
|
forg = farsorg(*iedge); |
|
fdest = farsdest(*iedge); |
|
// Get a facet containing this segment. |
|
face parentsh; |
|
spivot(*iedge, parentsh); |
|
if (parentsh.sh != NULL) { |
|
facemark = shellmark(parentsh); |
|
} |
|
} |
|
geomtag = shellmark(*iedge); |
|
} |
|
|
|
if (dir == SHAREEDGE) { |
|
// Two edges (segments) are coincide. |
|
face colseg; |
|
tsspivot1(*itet, colseg); |
|
if (etype == 1) { |
|
if (colseg.sh != iedge->sh) { |
|
face parentsh; |
|
spivot(colseg, parentsh); |
|
printf("PLC Error: Two segments are overlapping.\n"); |
|
printf(" Segment 1: [%d, %d] #%d (%d)\n", pointmark(sorg(colseg)), |
|
pointmark(sdest(colseg)), shellmark(colseg), |
|
parentsh.sh ? shellmark(parentsh) : 0); |
|
printf(" Segment 2: [%d, %d] #%d (%d)\n", pointmark(forg), pointmark(fdest), |
|
geomtag, facemark); |
|
sevent.e_type = 4; |
|
sevent.f_marker1 = (parentsh.sh ? shellmark(parentsh) : 0); |
|
sevent.s_marker1 = shellmark(colseg); |
|
sevent.f_vertices1[0] = pointmark(sorg(colseg)); |
|
sevent.f_vertices1[1] = pointmark(sdest(colseg)); |
|
sevent.f_vertices1[2] = 0; |
|
sevent.f_marker2 = facemark; |
|
sevent.s_marker2 = geomtag; |
|
sevent.f_vertices2[0] = pointmark(forg); |
|
sevent.f_vertices2[1] = pointmark(fdest); |
|
sevent.f_vertices2[2] = 0; |
|
} else { |
|
// Two identical segments. Why report it? |
|
terminatetetgen(this, 2); |
|
} |
|
} else if (etype == 2) { |
|
printf("PLC Error: A segment lies in a facet.\n"); |
|
printf(" Segment: [%d, %d] #%d\n", pointmark(sorg(colseg)), pointmark(sdest(colseg)), |
|
shellmark(colseg)); |
|
printf(" Facet: [%d,%d,%d] #%d\n", pointmark(forg), pointmark(fdest), |
|
pointmark(fapex), geomtag); |
|
sevent.e_type = 5; |
|
sevent.f_marker1 = 0; |
|
sevent.s_marker1 = shellmark(colseg); |
|
sevent.f_vertices1[0] = pointmark(sorg(colseg)); |
|
sevent.f_vertices1[1] = pointmark(sdest(colseg)); |
|
sevent.f_vertices1[2] = 0; |
|
sevent.f_marker2 = geomtag; |
|
sevent.s_marker2 = 0; |
|
sevent.f_vertices2[0] = pointmark(forg); |
|
sevent.f_vertices2[1] = pointmark(fdest); |
|
sevent.f_vertices2[2] = pointmark(fapex); |
|
} |
|
} else if (dir == SHAREFACE) { |
|
// Two triangles (subfaces) are coincide. |
|
face colface; |
|
tspivot(*itet, colface); |
|
if (etype == 2) { |
|
if (colface.sh != iedge->sh) { |
|
printf("PLC Error: Two facets are overlapping.\n"); |
|
printf(" Facet 1: [%d,%d,%d] #%d\n", pointmark(forg), pointmark(fdest), |
|
pointmark(fapex), geomtag); |
|
printf(" Facet 2: [%d,%d,%d] #%d\n", pointmark(sorg(colface)), |
|
pointmark(sdest(colface)), pointmark(sapex(colface)), shellmark(colface)); |
|
sevent.e_type = 6; |
|
sevent.f_marker1 = geomtag; |
|
sevent.s_marker1 = 0; |
|
sevent.f_vertices1[0] = pointmark(forg); |
|
sevent.f_vertices1[1] = pointmark(fdest); |
|
sevent.f_vertices1[2] = pointmark(fapex); |
|
sevent.f_marker2 = shellmark(colface); |
|
sevent.s_marker2 = 0; |
|
sevent.f_vertices2[0] = pointmark(sorg(colface)); |
|
sevent.f_vertices2[1] = pointmark(sdest(colface)); |
|
sevent.f_vertices2[2] = pointmark(sapex(colface)); |
|
} else { |
|
// Two identical subfaces. Why report it? |
|
terminatetetgen(this, 2); |
|
} |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
} else if (dir == ACROSSVERT) { |
|
point pp = dest(*itet); |
|
if ((pointtype(pp) == RIDGEVERTEX) || (pointtype(pp) == FACETVERTEX) || |
|
(pointtype(pp) == VOLVERTEX)) { |
|
if (etype == 1) { |
|
printf("PLC Error: A vertex lies in a segment.\n"); |
|
printf(" Vertex: [%d] (%g,%g,%g).\n", pointmark(pp), pp[0], pp[1], pp[2]); |
|
printf(" Segment: [%d, %d] #%d (%d)\n", pointmark(forg), pointmark(fdest), geomtag, |
|
facemark); |
|
sevent.e_type = 7; |
|
sevent.f_marker1 = 0; |
|
sevent.s_marker1 = 0; |
|
sevent.f_vertices1[0] = pointmark(pp); |
|
sevent.f_vertices1[1] = 0; |
|
sevent.f_vertices1[2] = 0; |
|
sevent.f_marker2 = facemark; |
|
sevent.s_marker2 = geomtag; |
|
sevent.f_vertices2[0] = pointmark(forg); |
|
sevent.f_vertices2[1] = pointmark(fdest); |
|
sevent.f_vertices2[2] = 0; |
|
sevent.int_point[0] = pp[0]; |
|
sevent.int_point[1] = pp[1]; |
|
sevent.int_point[2] = pp[2]; |
|
} else if (etype == 2) { |
|
printf("PLC Error: A vertex lies in a facet.\n"); |
|
printf(" Vertex: [%d] (%g,%g,%g).\n", pointmark(pp), pp[0], pp[1], pp[2]); |
|
printf(" Facet: [%d,%d,%d] #%d\n", pointmark(forg), pointmark(fdest), |
|
pointmark(fapex), geomtag); |
|
sevent.e_type = 8; |
|
sevent.f_marker1 = 0; |
|
sevent.s_marker1 = 0; |
|
sevent.f_vertices1[0] = pointmark(pp); |
|
sevent.f_vertices1[1] = 0; |
|
sevent.f_vertices1[2] = 0; |
|
sevent.f_marker2 = geomtag; |
|
sevent.s_marker2 = 0; |
|
sevent.f_vertices2[0] = pointmark(forg); |
|
sevent.f_vertices2[1] = pointmark(fdest); |
|
sevent.f_vertices2[2] = pointmark(fapex); |
|
sevent.int_point[0] = pp[0]; |
|
sevent.int_point[1] = pp[1]; |
|
sevent.int_point[2] = pp[2]; |
|
} |
|
} else if (pointtype(pp) == FREESEGVERTEX) { |
|
face parentseg, parentsh; |
|
sdecode(point2sh(pp), parentseg); |
|
spivot(parentseg, parentsh); |
|
if (parentseg.sh != NULL) { |
|
point p1 = farsorg(parentseg); |
|
point p2 = farsdest(parentseg); |
|
if (etype == 1) { |
|
printf("PLC Error: Two segments intersect at point (%g,%g,%g).\n", pp[0], |
|
pp[1], pp[2]); |
|
printf(" Segment 1: [%d, %d], #%d (%d)\n", pointmark(forg), pointmark(fdest), |
|
geomtag, facemark); |
|
printf(" Segment 2: [%d, %d], #%d (%d)\n", pointmark(p1), pointmark(p2), |
|
shellmark(parentseg), parentsh.sh ? shellmark(parentsh) : 0); |
|
sevent.e_type = 1; |
|
sevent.f_marker1 = facemark; |
|
sevent.s_marker1 = geomtag; |
|
sevent.f_vertices1[0] = pointmark(forg); |
|
sevent.f_vertices1[1] = pointmark(fdest); |
|
sevent.f_vertices1[2] = 0; |
|
sevent.f_marker2 = (parentsh.sh ? shellmark(parentsh) : 0); |
|
sevent.s_marker2 = shellmark(parentseg); |
|
sevent.f_vertices2[0] = pointmark(p1); |
|
sevent.f_vertices2[1] = pointmark(p2); |
|
sevent.f_vertices2[2] = 0; |
|
sevent.int_point[0] = pp[0]; |
|
sevent.int_point[1] = pp[1]; |
|
sevent.int_point[2] = pp[2]; |
|
} else if (etype == 2) { |
|
printf("PLC Error: A segment and a facet intersect at point"); |
|
printf(" (%g,%g,%g).\n", pp[0], pp[1], pp[2]); |
|
printf(" Segment: [%d, %d], #%d (%d)\n", pointmark(p1), pointmark(p2), |
|
shellmark(parentseg), parentsh.sh ? shellmark(parentsh) : 0); |
|
printf(" Facet: [%d,%d,%d] #%d\n", pointmark(forg), pointmark(fdest), |
|
pointmark(fapex), geomtag); |
|
sevent.e_type = 2; |
|
sevent.f_marker1 = (parentsh.sh ? shellmark(parentsh) : 0); |
|
sevent.s_marker1 = shellmark(parentseg); |
|
sevent.f_vertices1[0] = pointmark(p1); |
|
sevent.f_vertices1[1] = pointmark(p2); |
|
sevent.f_vertices1[2] = 0; |
|
sevent.f_marker2 = geomtag; |
|
sevent.s_marker2 = 0; |
|
sevent.f_vertices2[0] = pointmark(forg); |
|
sevent.f_vertices2[1] = pointmark(fdest); |
|
sevent.f_vertices2[2] = pointmark(fapex); |
|
sevent.int_point[0] = pp[0]; |
|
sevent.int_point[1] = pp[1]; |
|
sevent.int_point[2] = pp[2]; |
|
} |
|
} else { |
|
terminatetetgen(this, 2); // Report a bug. |
|
} |
|
} else if (pointtype(pp) == FREEFACETVERTEX) { |
|
face parentsh; |
|
sdecode(point2sh(pp), parentsh); |
|
if (parentsh.sh != NULL) { |
|
point p1 = sorg(parentsh); |
|
point p2 = sdest(parentsh); |
|
point p3 = sapex(parentsh); |
|
if (etype == 1) { |
|
printf("PLC Error: A segment and a facet intersect at point"); |
|
printf(" (%g,%g,%g).\n", pp[0], pp[1], pp[2]); |
|
printf(" Segment : [%d, %d], #%d (%d)\n", pointmark(forg), pointmark(fdest), |
|
geomtag, facemark); |
|
printf(" Facet : [%d, %d, %d] #%d.\n", pointmark(p1), pointmark(p2), |
|
pointmark(p3), shellmark(parentsh)); |
|
sevent.e_type = 2; |
|
sevent.f_marker1 = facemark; |
|
sevent.s_marker1 = geomtag; |
|
sevent.f_vertices1[0] = pointmark(forg); |
|
sevent.f_vertices1[1] = pointmark(fdest); |
|
sevent.f_vertices1[2] = 0; |
|
sevent.f_marker2 = shellmark(parentsh); |
|
sevent.s_marker2 = 0; |
|
sevent.f_vertices2[0] = pointmark(p1); |
|
sevent.f_vertices2[1] = pointmark(p2); |
|
sevent.f_vertices2[2] = pointmark(p3); |
|
sevent.int_point[0] = pp[0]; |
|
sevent.int_point[1] = pp[1]; |
|
sevent.int_point[2] = pp[2]; |
|
} else if (etype == 2) { |
|
printf("PLC Error: Two facets intersect at point (%g,%g,%g).\n", pp[0], pp[1], |
|
pp[2]); |
|
printf(" Facet 1: [%d, %d, %d] #%d.\n", pointmark(forg), pointmark(fdest), |
|
pointmark(fapex), geomtag); |
|
printf(" Facet 2: [%d, %d, %d] #%d.\n", pointmark(p1), pointmark(p2), |
|
pointmark(p3), shellmark(parentsh)); |
|
sevent.e_type = 3; |
|
sevent.f_marker1 = geomtag; |
|
sevent.s_marker1 = 0; |
|
sevent.f_vertices1[0] = pointmark(forg); |
|
sevent.f_vertices1[1] = pointmark(fdest); |
|
sevent.f_vertices1[2] = pointmark(fapex); |
|
sevent.f_marker2 = shellmark(parentsh); |
|
sevent.s_marker2 = 0; |
|
sevent.f_vertices2[0] = pointmark(p1); |
|
sevent.f_vertices2[1] = pointmark(p2); |
|
sevent.f_vertices2[2] = pointmark(p3); |
|
sevent.int_point[0] = pp[0]; |
|
sevent.int_point[1] = pp[1]; |
|
sevent.int_point[2] = pp[2]; |
|
} |
|
} else { |
|
terminatetetgen(this, 2); // Report a bug. |
|
} |
|
} else if (pointtype(pp) == FREEVOLVERTEX) { |
|
// This is not a PLC error. |
|
// We should shift the vertex. |
|
// not down yet. |
|
terminatetetgen(this, 2); // Report a bug. |
|
} else { |
|
terminatetetgen(this, 2); // Report a bug. |
|
} |
|
terminatetetgen(this, 3); |
|
} else if (dir == ACROSSEDGE) { |
|
if (issubseg(*itet)) { |
|
face checkseg; |
|
tsspivot1(*itet, checkseg); |
|
face parentsh; |
|
spivot(checkseg, parentsh); |
|
// Calulcate the intersecting point. |
|
point p1 = sorg(checkseg); |
|
point p2 = sdest(checkseg); |
|
REAL P[3], Q[3], tp = 0, tq = 0; |
|
linelineint(e1, e2, p1, p2, P, Q, &tp, &tq); |
|
if (etype == 1) { |
|
printf("PLC Error: Two segments intersect at point (%g,%g,%g).\n", P[0], P[1], |
|
P[2]); |
|
printf(" Segment 1: [%d, %d] #%d (%d)\n", pointmark(forg), pointmark(fdest), |
|
geomtag, facemark); |
|
printf(" Segment 2: [%d, %d] #%d (%d)\n", pointmark(p1), pointmark(p2), |
|
shellmark(checkseg), parentsh.sh ? shellmark(parentsh) : 0); |
|
sevent.e_type = 1; |
|
sevent.f_marker1 = facemark; |
|
sevent.s_marker1 = geomtag; |
|
sevent.f_vertices1[0] = pointmark(forg); |
|
sevent.f_vertices1[1] = pointmark(fdest); |
|
sevent.f_vertices1[2] = 0; |
|
sevent.f_marker2 = (parentsh.sh ? shellmark(parentsh) : 0); |
|
sevent.s_marker2 = shellmark(checkseg); |
|
sevent.f_vertices2[0] = pointmark(p1); |
|
sevent.f_vertices2[1] = pointmark(p2); |
|
sevent.f_vertices2[2] = 0; |
|
sevent.int_point[0] = P[0]; |
|
sevent.int_point[1] = P[1]; |
|
sevent.int_point[2] = P[2]; |
|
} else if (etype == 2) { |
|
printf("PLC Error: A segment and a facet intersect at point"); |
|
printf(" (%g,%g,%g).\n", P[0], P[1], P[2]); |
|
printf(" Segment: [%d, %d] #%d (%d)\n", pointmark(p1), pointmark(p2), |
|
shellmark(checkseg), parentsh.sh ? shellmark(parentsh) : 0); |
|
printf(" Facet: [%d, %d, %d] #%d.\n", pointmark(forg), pointmark(fdest), |
|
pointmark(fapex), geomtag); |
|
sevent.e_type = 2; |
|
sevent.f_marker1 = (parentsh.sh ? shellmark(parentsh) : 0); |
|
sevent.s_marker1 = shellmark(checkseg); |
|
sevent.f_vertices1[0] = pointmark(p1); |
|
sevent.f_vertices1[1] = pointmark(p2); |
|
sevent.f_vertices1[2] = 0; |
|
sevent.f_marker2 = geomtag; |
|
sevent.s_marker2 = 0; |
|
sevent.f_vertices2[0] = pointmark(forg); |
|
sevent.f_vertices2[1] = pointmark(fdest); |
|
sevent.f_vertices2[2] = pointmark(fapex); |
|
sevent.int_point[0] = P[0]; |
|
sevent.int_point[1] = P[1]; |
|
sevent.int_point[2] = P[2]; |
|
} |
|
terminatetetgen(this, 3); |
|
} |
|
} else if (dir == ACROSSFACE) { |
|
if (issubface(*itet)) { |
|
face checksh; |
|
tspivot(*itet, checksh); |
|
point p1 = sorg(checksh); |
|
point p2 = sdest(checksh); |
|
point p3 = sapex(checksh); |
|
REAL ip[3], u = 0; |
|
planelineint(p1, p2, p3, e1, e2, ip, &u); |
|
if (etype == 1) { |
|
printf("PLC Error: A segment and a facet intersect at point"); |
|
printf(" (%g,%g,%g).\n", ip[0], ip[1], ip[2]); |
|
printf(" Segment: [%d, %d] #%d (%d)\n", pointmark(forg), pointmark(fdest), geomtag, |
|
facemark); |
|
printf(" Facet: [%d, %d, %d] #%d.\n", pointmark(p1), pointmark(p2), |
|
pointmark(p3), shellmark(checksh)); |
|
sevent.e_type = 2; |
|
sevent.f_marker1 = facemark; |
|
sevent.s_marker1 = geomtag; |
|
sevent.f_vertices1[0] = pointmark(forg); |
|
sevent.f_vertices1[1] = pointmark(fdest); |
|
sevent.f_vertices1[2] = 0; |
|
sevent.f_marker2 = shellmark(checksh); |
|
sevent.s_marker2 = 0; |
|
sevent.f_vertices2[0] = pointmark(p1); |
|
sevent.f_vertices2[1] = pointmark(p2); |
|
sevent.f_vertices2[2] = pointmark(p3); |
|
sevent.int_point[0] = ip[0]; |
|
sevent.int_point[1] = ip[1]; |
|
sevent.int_point[2] = ip[2]; |
|
} else if (etype == 2) { |
|
printf("PLC Error: Two facets intersect at point (%g,%g,%g).\n", ip[0], ip[1], |
|
ip[2]); |
|
printf(" Facet 1: [%d, %d, %d] #%d.\n", pointmark(forg), pointmark(fdest), |
|
pointmark(fapex), geomtag); |
|
printf(" Facet 2: [%d, %d, %d] #%d.\n", pointmark(p1), pointmark(p2), |
|
pointmark(p3), shellmark(checksh)); |
|
sevent.e_type = 3; |
|
sevent.f_marker1 = geomtag; |
|
sevent.s_marker1 = 0; |
|
sevent.f_vertices1[0] = pointmark(forg); |
|
sevent.f_vertices1[1] = pointmark(fdest); |
|
sevent.f_vertices1[2] = pointmark(fapex); |
|
sevent.f_marker2 = shellmark(checksh); |
|
sevent.s_marker2 = 0; |
|
sevent.f_vertices2[0] = pointmark(p1); |
|
sevent.f_vertices2[1] = pointmark(p2); |
|
sevent.f_vertices2[2] = pointmark(p3); |
|
sevent.int_point[0] = ip[0]; |
|
sevent.int_point[1] = ip[1]; |
|
sevent.int_point[2] = ip[2]; |
|
} |
|
terminatetetgen(this, 3); |
|
} |
|
} else { |
|
// An unknown 'dir'. |
|
terminatetetgen(this, 2); |
|
} |
|
return 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// report_selfint_face() Report a self-intersection at a facet. // |
|
// // |
|
// The triangle with vertices 'p1', 'p2', and 'p3' intersects with the edge // |
|
// of the tetrahedra 'iedge'. The intersection type is reported by 'intflag',// |
|
// 'types', and 'poss'. // |
|
// // |
|
// This routine ASSUMES (1) the triangle (p1,p2,p3) must belong to a facet, // |
|
// 'sface' is a subface of the same facet; and (2) 'iedge' must be either a // |
|
// segment or an edge of another facet. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::report_selfint_face(point p1, point p2, point p3, face* sface, triface* iedge, |
|
int intflag, int* types, int* poss) { |
|
face iface; |
|
point e1 = NULL, e2 = NULL, e3 = NULL; |
|
int etype = 0, geomtag = 0, facemark = 0; |
|
|
|
geomtag = shellmark(*sface); |
|
|
|
if (issubface(*iedge)) { |
|
tspivot(*iedge, iface); |
|
e1 = sorg(iface); |
|
e2 = sdest(iface); |
|
e3 = sapex(iface); |
|
etype = 2; |
|
facemark = geomtag; |
|
} else if (issubseg(*iedge)) { |
|
tsspivot1(*iedge, iface); |
|
e1 = farsorg(iface); |
|
e2 = farsdest(iface); |
|
etype = 1; |
|
face parentsh; |
|
spivot(iface, parentsh); |
|
facemark = shellmark(parentsh); |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
|
|
if (intflag == 2) { |
|
// The triangle and the edge intersect only at one point. |
|
REAL ip[3], u = 0; |
|
planelineint(p1, p2, p3, e1, e2, ip, &u); |
|
if ((types[0] == (int)ACROSSFACE) || (types[0] == (int)ACROSSEDGE)) { |
|
// The triangle and the edge intersect in their interiors. |
|
if (etype == 1) { |
|
printf("PLC Error: A segment and a facet intersect at point"); |
|
printf(" (%g,%g,%g).\n", ip[0], ip[1], ip[2]); |
|
printf(" Segment: [%d,%d] #%d (%d)\n", pointmark(e1), pointmark(e2), |
|
shellmark(iface), facemark); |
|
printf(" Facet: [%d,%d,%d] #%d\n", pointmark(p1), pointmark(p2), pointmark(p3), |
|
geomtag); |
|
sevent.e_type = 2; |
|
sevent.f_marker1 = facemark; |
|
sevent.s_marker1 = shellmark(iface); |
|
sevent.f_vertices1[0] = pointmark(e1); |
|
sevent.f_vertices1[1] = pointmark(e2); |
|
sevent.f_vertices1[2] = 0; |
|
sevent.f_marker2 = geomtag; |
|
sevent.s_marker2 = 0; |
|
sevent.f_vertices2[0] = pointmark(p1); |
|
sevent.f_vertices2[1] = pointmark(p2); |
|
sevent.f_vertices2[2] = pointmark(p3); |
|
sevent.int_point[0] = ip[0]; |
|
sevent.int_point[1] = ip[1]; |
|
sevent.int_point[2] = ip[2]; |
|
} else { |
|
printf("PLC Error: Two facets intersect at point"); |
|
printf(" (%g,%g,%g).\n", ip[0], ip[1], ip[2]); |
|
printf(" Facet 1: [%d,%d,%d] #%d\n", pointmark(e1), pointmark(e2), |
|
pointmark(sorg(iface)), shellmark(iface)); |
|
printf(" Facet 2: [%d,%d,%d] #%d\n", pointmark(p1), pointmark(p2), pointmark(p3), |
|
geomtag); |
|
sevent.e_type = 3; |
|
sevent.f_marker1 = shellmark(iface); |
|
sevent.s_marker1 = 0; |
|
sevent.f_vertices1[0] = pointmark(e1); |
|
sevent.f_vertices1[1] = pointmark(e2); |
|
sevent.f_vertices1[2] = pointmark(sorg(iface)); |
|
sevent.f_marker2 = geomtag; |
|
sevent.s_marker2 = 0; |
|
sevent.f_vertices2[0] = pointmark(p1); |
|
sevent.f_vertices2[1] = pointmark(p2); |
|
sevent.f_vertices2[2] = pointmark(p3); |
|
sevent.int_point[0] = ip[0]; |
|
sevent.int_point[1] = ip[1]; |
|
sevent.int_point[2] = ip[2]; |
|
} |
|
} else if (types[0] == (int)ACROSSVERT) { |
|
// A vertex of the triangle and the edge intersect. |
|
point crosspt = NULL; |
|
if (poss[0] == 0) { |
|
crosspt = p1; |
|
} else if (poss[0] == 1) { |
|
crosspt = p2; |
|
} else if (poss[0] == 2) { |
|
crosspt = p3; |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
if (!issteinerpoint(crosspt)) { |
|
if (etype == 1) { |
|
printf("PLC Error: A vertex and a segment intersect at (%g,%g,%g)\n", |
|
crosspt[0], crosspt[1], crosspt[2]); |
|
printf(" Vertex: #%d\n", pointmark(crosspt)); |
|
printf(" Segment: [%d,%d] #%d (%d)\n", pointmark(e1), pointmark(e2), |
|
shellmark(iface), facemark); |
|
sevent.e_type = 7; |
|
sevent.f_marker1 = 0; |
|
sevent.s_marker1 = 0; |
|
sevent.f_vertices1[0] = pointmark(crosspt); |
|
sevent.f_vertices1[1] = 0; |
|
sevent.f_vertices1[2] = 0; |
|
sevent.f_marker2 = facemark; |
|
sevent.s_marker2 = shellmark(iface); |
|
sevent.f_vertices2[0] = pointmark(e1); |
|
sevent.f_vertices2[1] = pointmark(e2); |
|
sevent.f_vertices2[2] = 0; |
|
sevent.int_point[0] = crosspt[0]; |
|
sevent.int_point[1] = crosspt[1]; |
|
sevent.int_point[2] = crosspt[2]; |
|
} else { |
|
printf("PLC Error: A vertex and a facet intersect at (%g,%g,%g)\n", crosspt[0], |
|
crosspt[1], crosspt[2]); |
|
printf(" Vertex: #%d\n", pointmark(crosspt)); |
|
printf(" Facet: [%d,%d,%d] #%d\n", pointmark(p1), pointmark(p2), |
|
pointmark(p3), geomtag); |
|
sevent.e_type = 8; |
|
sevent.f_marker1 = 0; |
|
sevent.s_marker1 = 0; |
|
sevent.f_vertices1[0] = pointmark(crosspt); |
|
sevent.f_vertices1[1] = 0; |
|
sevent.f_vertices1[2] = 0; |
|
sevent.f_marker2 = geomtag; |
|
sevent.s_marker2 = 0; |
|
sevent.f_vertices2[0] = pointmark(p1); |
|
sevent.f_vertices2[1] = pointmark(p2); |
|
sevent.f_vertices2[2] = pointmark(p3); |
|
sevent.int_point[0] = crosspt[0]; |
|
sevent.int_point[1] = crosspt[1]; |
|
sevent.int_point[2] = crosspt[2]; |
|
} |
|
} else { |
|
// It is a Steiner point. To be processed. |
|
terminatetetgen(this, 2); |
|
} |
|
} else if ((types[0] == (int)TOUCHFACE) || (types[0] == (int)TOUCHEDGE)) { |
|
// The triangle and a vertex of the edge intersect. |
|
point touchpt = NULL; |
|
if (poss[1] == 0) { |
|
touchpt = org(*iedge); |
|
} else if (poss[1] == 1) { |
|
touchpt = dest(*iedge); |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
if (!issteinerpoint(touchpt)) { |
|
printf("PLC Error: A vertex and a facet intersect at (%g,%g,%g)\n", touchpt[0], |
|
touchpt[1], touchpt[2]); |
|
printf(" Vertex: #%d\n", pointmark(touchpt)); |
|
printf(" Facet: [%d,%d,%d] #%d\n", pointmark(p1), pointmark(p2), pointmark(p3), |
|
geomtag); |
|
sevent.e_type = 8; |
|
sevent.f_marker1 = 0; |
|
sevent.s_marker1 = 0; |
|
sevent.f_vertices1[0] = pointmark(touchpt); |
|
sevent.f_vertices1[1] = 0; |
|
sevent.f_vertices1[2] = 0; |
|
sevent.f_marker2 = geomtag; |
|
sevent.s_marker2 = 0; |
|
sevent.f_vertices2[0] = pointmark(p1); |
|
sevent.f_vertices2[1] = pointmark(p2); |
|
sevent.f_vertices2[2] = pointmark(p3); |
|
sevent.int_point[0] = touchpt[0]; |
|
sevent.int_point[1] = touchpt[1]; |
|
sevent.int_point[2] = touchpt[2]; |
|
} else { |
|
// It is a Steiner point. To be processed. |
|
terminatetetgen(this, 2); |
|
} |
|
} else if (types[0] == (int)SHAREVERT) { |
|
terminatetetgen(this, 2); |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
} else if (intflag == 4) { |
|
if (types[0] == (int)SHAREFACE) { |
|
printf("PLC Error: Two facets are overlapping.\n"); |
|
printf(" Facet 1: [%d,%d,%d] #%d\n", pointmark(e1), pointmark(e2), pointmark(e3), |
|
facemark); |
|
printf(" Facet 2: [%d,%d,%d] #%d\n", pointmark(p1), pointmark(p2), pointmark(p3), |
|
geomtag); |
|
sevent.e_type = 6; |
|
sevent.f_marker1 = facemark; |
|
sevent.s_marker1 = 0; |
|
sevent.f_vertices1[0] = pointmark(e1); |
|
sevent.f_vertices1[1] = pointmark(e2); |
|
sevent.f_vertices1[2] = pointmark(e3); |
|
sevent.f_marker2 = geomtag; |
|
sevent.s_marker2 = 0; |
|
sevent.f_vertices2[0] = pointmark(p1); |
|
sevent.f_vertices2[1] = pointmark(p2); |
|
sevent.f_vertices2[2] = pointmark(p3); |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
|
|
terminatetetgen(this, 3); |
|
return 0; |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// geom_cxx ///////////////////////////////////////////////////////////////// |
|
|
|
//// flip_cxx ///////////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// flip23() Perform a 2-to-3 flip (face-to-edge flip). // |
|
// // |
|
// 'fliptets' is an array of three tets (handles), where the [0] and [1] are // |
|
// [a,b,c,d] and [b,a,c,e]. The three new tets: [e,d,a,b], [e,d,b,c], and // |
|
// [e,d,c,a] are returned in [0], [1], and [2] of 'fliptets'. As a result, // |
|
// The face [a,b,c] is removed, and the edge [d,e] is created. // |
|
// // |
|
// If 'hullflag' > 0, hull tets may be involved in this flip, i.e., one of // |
|
// the five vertices may be 'dummypoint'. There are two canonical cases: // |
|
// (1) d is 'dummypoint', then all three new tets are hull tets. If e is // |
|
// 'dummypoint', we reconfigure e to d, i.e., turn it up-side down. // |
|
// (2) c is 'dummypoint', then two new tets: [e,d,b,c] and [e,d,c,a], are // |
|
// hull tets. If a or b is 'dummypoint', we reconfigure it to c, i.e., // |
|
// rotate the three input tets counterclockwisely (right-hand rule) // |
|
// until a or b is in c's position. // |
|
// // |
|
// If 'fc->enqflag' is set, convex hull faces will be queued for flipping. // |
|
// In particular, if 'fc->enqflag' is 1, it is called by incrementalflip() // |
|
// after the insertion of a new point. It is assumed that 'd' is the new // |
|
// point. IN this case, only link faces of 'd' are queued. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::flip23(triface* fliptets, int hullflag, flipconstraints* fc) { |
|
triface topcastets[3], botcastets[3]; |
|
triface newface, casface; |
|
point pa, pb, pc, pd, pe; |
|
REAL attrib, volume; |
|
int dummyflag = 0; // range = {-1, 0, 1, 2}. |
|
int i; |
|
|
|
if (hullflag > 0) { |
|
// Check if e is dummypoint. |
|
if (oppo(fliptets[1]) == dummypoint) { |
|
// Swap the two old tets. |
|
newface = fliptets[0]; |
|
fliptets[0] = fliptets[1]; |
|
fliptets[1] = newface; |
|
dummyflag = -1; // d is dummypoint. |
|
} else { |
|
// Check if either a or b is dummypoint. |
|
if (org(fliptets[0]) == dummypoint) { |
|
dummyflag = 1; // a is dummypoint. |
|
enextself(fliptets[0]); |
|
eprevself(fliptets[1]); |
|
} else if (dest(fliptets[0]) == dummypoint) { |
|
dummyflag = 2; // b is dummypoint. |
|
eprevself(fliptets[0]); |
|
enextself(fliptets[1]); |
|
} else { |
|
dummyflag = 0; // either c or d may be dummypoint. |
|
} |
|
} |
|
} |
|
|
|
pa = org(fliptets[0]); |
|
pb = dest(fliptets[0]); |
|
pc = apex(fliptets[0]); |
|
pd = oppo(fliptets[0]); |
|
pe = oppo(fliptets[1]); |
|
|
|
flip23count++; |
|
|
|
// Get the outer boundary faces. |
|
for (i = 0; i < 3; i++) { |
|
fnext(fliptets[0], topcastets[i]); |
|
enextself(fliptets[0]); |
|
} |
|
for (i = 0; i < 3; i++) { |
|
fnext(fliptets[1], botcastets[i]); |
|
eprevself(fliptets[1]); |
|
} |
|
|
|
// Re-use fliptets[0] and fliptets[1]. |
|
fliptets[0].ver = 11; |
|
fliptets[1].ver = 11; |
|
setelemmarker(fliptets[0].tet, 0); // Clear all flags. |
|
setelemmarker(fliptets[1].tet, 0); |
|
// NOTE: the element attributes and volume constraint remain unchanged. |
|
if (checksubsegflag) { |
|
// Dealloc the space to subsegments. |
|
if (fliptets[0].tet[8] != NULL) { |
|
tet2segpool->dealloc((shellface*)fliptets[0].tet[8]); |
|
fliptets[0].tet[8] = NULL; |
|
} |
|
if (fliptets[1].tet[8] != NULL) { |
|
tet2segpool->dealloc((shellface*)fliptets[1].tet[8]); |
|
fliptets[1].tet[8] = NULL; |
|
} |
|
} |
|
if (checksubfaceflag) { |
|
// Dealloc the space to subfaces. |
|
if (fliptets[0].tet[9] != NULL) { |
|
tet2subpool->dealloc((shellface*)fliptets[0].tet[9]); |
|
fliptets[0].tet[9] = NULL; |
|
} |
|
if (fliptets[1].tet[9] != NULL) { |
|
tet2subpool->dealloc((shellface*)fliptets[1].tet[9]); |
|
fliptets[1].tet[9] = NULL; |
|
} |
|
} |
|
// Create a new tet. |
|
maketetrahedron(&(fliptets[2])); |
|
// The new tet have the same attributes from the old tet. |
|
for (i = 0; i < numelemattrib; i++) { |
|
attrib = elemattribute(fliptets[0].tet, i); |
|
setelemattribute(fliptets[2].tet, i, attrib); |
|
} |
|
if (b->varvolume) { |
|
volume = volumebound(fliptets[0].tet); |
|
setvolumebound(fliptets[2].tet, volume); |
|
} |
|
|
|
if (hullflag > 0) { |
|
// Check if d is dummytet. |
|
if (pd != dummypoint) { |
|
setvertices(fliptets[0], pe, pd, pa, pb); // [e,d,a,b] * |
|
setvertices(fliptets[1], pe, pd, pb, pc); // [e,d,b,c] * |
|
// Check if c is dummypoint. |
|
if (pc != dummypoint) { |
|
setvertices(fliptets[2], pe, pd, pc, pa); // [e,d,c,a] * |
|
} else { |
|
setvertices(fliptets[2], pd, pe, pa, pc); // [d,e,a,c] |
|
esymself(fliptets[2]); // [e,d,c,a] * |
|
} |
|
// The hullsize does not change. |
|
} else { |
|
// d is dummypoint. |
|
setvertices(fliptets[0], pa, pb, pe, pd); // [a,b,e,d] |
|
setvertices(fliptets[1], pb, pc, pe, pd); // [b,c,e,d] |
|
setvertices(fliptets[2], pc, pa, pe, pd); // [c,a,e,d] |
|
// Adjust the faces to [e,d,a,b], [e,d,b,c], [e,d,c,a] * |
|
for (i = 0; i < 3; i++) { |
|
eprevesymself(fliptets[i]); |
|
enextself(fliptets[i]); |
|
} |
|
// We deleted one hull tet, and created three hull tets. |
|
hullsize += 2; |
|
} |
|
} else { |
|
setvertices(fliptets[0], pe, pd, pa, pb); // [e,d,a,b] * |
|
setvertices(fliptets[1], pe, pd, pb, pc); // [e,d,b,c] * |
|
setvertices(fliptets[2], pe, pd, pc, pa); // [e,d,c,a] * |
|
} |
|
|
|
if (fc->remove_ndelaunay_edge) { // calc_tetprism_vol |
|
REAL volneg[2], volpos[3], vol_diff; |
|
if (pd != dummypoint) { |
|
if (pc != dummypoint) { |
|
volpos[0] = tetprismvol(pe, pd, pa, pb); |
|
volpos[1] = tetprismvol(pe, pd, pb, pc); |
|
volpos[2] = tetprismvol(pe, pd, pc, pa); |
|
volneg[0] = tetprismvol(pa, pb, pc, pd); |
|
volneg[1] = tetprismvol(pb, pa, pc, pe); |
|
} else { // pc == dummypoint |
|
volpos[0] = tetprismvol(pe, pd, pa, pb); |
|
volpos[1] = 0.; |
|
volpos[2] = 0.; |
|
volneg[0] = 0.; |
|
volneg[1] = 0.; |
|
} |
|
} else { // pd == dummypoint. |
|
volpos[0] = 0.; |
|
volpos[1] = 0.; |
|
volpos[2] = 0.; |
|
volneg[0] = 0.; |
|
volneg[1] = tetprismvol(pb, pa, pc, pe); |
|
} |
|
vol_diff = volpos[0] + volpos[1] + volpos[2] - volneg[0] - volneg[1]; |
|
fc->tetprism_vol_sum += vol_diff; // Update the total sum. |
|
} |
|
|
|
// Bond three new tets together. |
|
for (i = 0; i < 3; i++) { |
|
esym(fliptets[i], newface); |
|
bond(newface, fliptets[(i + 1) % 3]); |
|
} |
|
// Bond to top outer boundary faces (at [a,b,c,d]). |
|
for (i = 0; i < 3; i++) { |
|
eorgoppo(fliptets[i], newface); // At edges [b,a], [c,b], [a,c]. |
|
bond(newface, topcastets[i]); |
|
} |
|
// Bond bottom outer boundary faces (at [b,a,c,e]). |
|
for (i = 0; i < 3; i++) { |
|
edestoppo(fliptets[i], newface); // At edges [a,b], [b,c], [c,a]. |
|
bond(newface, botcastets[i]); |
|
} |
|
|
|
if (checksubsegflag) { |
|
// Bond subsegments if there are. |
|
// Each new tet has 5 edges to be checked (except the edge [e,d]). |
|
face checkseg; |
|
// The middle three: [a,b], [b,c], [c,a]. |
|
for (i = 0; i < 3; i++) { |
|
if (issubseg(topcastets[i])) { |
|
tsspivot1(topcastets[i], checkseg); |
|
eorgoppo(fliptets[i], newface); |
|
tssbond1(newface, checkseg); |
|
sstbond1(checkseg, newface); |
|
if (fc->chkencflag & 1) { |
|
enqueuesubface(badsubsegs, &checkseg); |
|
} |
|
} |
|
} |
|
// The top three: [d,a], [d,b], [d,c]. Two tets per edge. |
|
for (i = 0; i < 3; i++) { |
|
eprev(topcastets[i], casface); |
|
if (issubseg(casface)) { |
|
tsspivot1(casface, checkseg); |
|
enext(fliptets[i], newface); |
|
tssbond1(newface, checkseg); |
|
sstbond1(checkseg, newface); |
|
esym(fliptets[(i + 2) % 3], newface); |
|
eprevself(newface); |
|
tssbond1(newface, checkseg); |
|
sstbond1(checkseg, newface); |
|
if (fc->chkencflag & 1) { |
|
enqueuesubface(badsubsegs, &checkseg); |
|
} |
|
} |
|
} |
|
// The bot three: [a,e], [b,e], [c,e]. Two tets per edge. |
|
for (i = 0; i < 3; i++) { |
|
enext(botcastets[i], casface); |
|
if (issubseg(casface)) { |
|
tsspivot1(casface, checkseg); |
|
eprev(fliptets[i], newface); |
|
tssbond1(newface, checkseg); |
|
sstbond1(checkseg, newface); |
|
esym(fliptets[(i + 2) % 3], newface); |
|
enextself(newface); |
|
tssbond1(newface, checkseg); |
|
sstbond1(checkseg, newface); |
|
if (fc->chkencflag & 1) { |
|
enqueuesubface(badsubsegs, &checkseg); |
|
} |
|
} |
|
} |
|
} // if (checksubsegflag) |
|
|
|
if (checksubfaceflag) { |
|
// Bond 6 subfaces if there are. |
|
face checksh; |
|
for (i = 0; i < 3; i++) { |
|
if (issubface(topcastets[i])) { |
|
tspivot(topcastets[i], checksh); |
|
eorgoppo(fliptets[i], newface); |
|
sesymself(checksh); |
|
tsbond(newface, checksh); |
|
if (fc->chkencflag & 2) { |
|
enqueuesubface(badsubfacs, &checksh); |
|
} |
|
} |
|
} |
|
for (i = 0; i < 3; i++) { |
|
if (issubface(botcastets[i])) { |
|
tspivot(botcastets[i], checksh); |
|
edestoppo(fliptets[i], newface); |
|
sesymself(checksh); |
|
tsbond(newface, checksh); |
|
if (fc->chkencflag & 2) { |
|
enqueuesubface(badsubfacs, &checksh); |
|
} |
|
} |
|
} |
|
} // if (checksubfaceflag) |
|
|
|
if (fc->chkencflag & 4) { |
|
// Put three new tets into check list. |
|
for (i = 0; i < 3; i++) { |
|
enqueuetetrahedron(&(fliptets[i])); |
|
} |
|
} |
|
|
|
// Update the point-to-tet map. |
|
setpoint2tet(pa, (tetrahedron)fliptets[0].tet); |
|
setpoint2tet(pb, (tetrahedron)fliptets[0].tet); |
|
setpoint2tet(pc, (tetrahedron)fliptets[1].tet); |
|
setpoint2tet(pd, (tetrahedron)fliptets[0].tet); |
|
setpoint2tet(pe, (tetrahedron)fliptets[0].tet); |
|
|
|
if (hullflag > 0) { |
|
if (dummyflag != 0) { |
|
// Restore the original position of the points (for flipnm()). |
|
if (dummyflag == -1) { |
|
// Reverse the edge. |
|
for (i = 0; i < 3; i++) { |
|
esymself(fliptets[i]); |
|
} |
|
// Swap the last two new tets. |
|
newface = fliptets[1]; |
|
fliptets[1] = fliptets[2]; |
|
fliptets[2] = newface; |
|
} else { |
|
// either a or b were swapped. |
|
if (dummyflag == 1) { |
|
// a is dummypoint. |
|
newface = fliptets[0]; |
|
fliptets[0] = fliptets[2]; |
|
fliptets[2] = fliptets[1]; |
|
fliptets[1] = newface; |
|
} else { // dummyflag == 2 |
|
// b is dummypoint. |
|
newface = fliptets[0]; |
|
fliptets[0] = fliptets[1]; |
|
fliptets[1] = fliptets[2]; |
|
fliptets[2] = newface; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (fc->enqflag > 0) { |
|
// Queue faces which may be locally non-Delaunay. |
|
for (i = 0; i < 3; i++) { |
|
eprevesym(fliptets[i], newface); |
|
flippush(flipstack, &newface); |
|
} |
|
if (fc->enqflag > 1) { |
|
for (i = 0; i < 3; i++) { |
|
enextesym(fliptets[i], newface); |
|
flippush(flipstack, &newface); |
|
} |
|
} |
|
} |
|
|
|
recenttet = fliptets[0]; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// flip32() Perform a 3-to-2 flip (edge-to-face flip). // |
|
// // |
|
// 'fliptets' is an array of three tets (handles), which are [e,d,a,b], // |
|
// [e,d,b,c], and [e,d,c,a]. The two new tets: [a,b,c,d] and [b,a,c,e] are // |
|
// returned in [0] and [1] of 'fliptets'. As a result, the edge [e,d] is // |
|
// replaced by the face [a,b,c]. // |
|
// // |
|
// If 'hullflag' > 0, hull tets may be involved in this flip, i.e., one of // |
|
// the five vertices may be 'dummypoint'. There are two canonical cases: // |
|
// (1) d is 'dummypoint', then [a,b,c,d] is hull tet. If e is 'dummypoint',// |
|
// we reconfigure e to d, i.e., turnover it. // |
|
// (2) c is 'dummypoint' then both [a,b,c,d] and [b,a,c,e] are hull tets. // |
|
// If a or b is 'dummypoint', we reconfigure it to c, i.e., rotate the // |
|
// three old tets counterclockwisely (right-hand rule) until a or b // |
|
// is in c's position. // |
|
// // |
|
// If 'fc->enqflag' is set, convex hull faces will be queued for flipping. // |
|
// In particular, if 'fc->enqflag' is 1, it is called by incrementalflip() // |
|
// after the insertion of a new point. It is assumed that 'a' is the new // |
|
// point. In this case, only link faces of 'a' are queued. // |
|
// // |
|
// If 'checksubfaceflag' is on (global variable), and assume [e,d] is not a // |
|
// segment. There may be two (interior) subfaces sharing at [e,d], which are // |
|
// [e,d,p] and [e,d,q], where the pair (p,q) may be either (a,b), or (b,c), // |
|
// or (c,a) In such case, a 2-to-2 flip is performed on these two subfaces // |
|
// and two new subfaces [p,q,e] and [p,q,d] are created. They are inserted // |
|
// back into the tetrahedralization. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::flip32(triface* fliptets, int hullflag, flipconstraints* fc) { |
|
triface topcastets[3], botcastets[3]; |
|
triface newface, casface; |
|
face flipshs[3]; |
|
face checkseg; |
|
point pa, pb, pc, pd, pe; |
|
REAL attrib, volume; |
|
int dummyflag = 0; // Rangle = {-1, 0, 1, 2} |
|
int spivot = -1, scount = 0; // for flip22() |
|
int t1ver; |
|
int i, j; |
|
|
|
if (hullflag > 0) { |
|
// Check if e is 'dummypoint'. |
|
if (org(fliptets[0]) == dummypoint) { |
|
// Reverse the edge. |
|
for (i = 0; i < 3; i++) { |
|
esymself(fliptets[i]); |
|
} |
|
// Swap the last two tets. |
|
newface = fliptets[1]; |
|
fliptets[1] = fliptets[2]; |
|
fliptets[2] = newface; |
|
dummyflag = -1; // e is dummypoint. |
|
} else { |
|
// Check if a or b is the 'dummypoint'. |
|
if (apex(fliptets[0]) == dummypoint) { |
|
dummyflag = 1; // a is dummypoint. |
|
newface = fliptets[0]; |
|
fliptets[0] = fliptets[1]; |
|
fliptets[1] = fliptets[2]; |
|
fliptets[2] = newface; |
|
} else if (apex(fliptets[1]) == dummypoint) { |
|
dummyflag = 2; // b is dummypoint. |
|
newface = fliptets[0]; |
|
fliptets[0] = fliptets[2]; |
|
fliptets[2] = fliptets[1]; |
|
fliptets[1] = newface; |
|
} else { |
|
dummyflag = 0; // either c or d may be dummypoint. |
|
} |
|
} |
|
} |
|
|
|
pa = apex(fliptets[0]); |
|
pb = apex(fliptets[1]); |
|
pc = apex(fliptets[2]); |
|
pd = dest(fliptets[0]); |
|
pe = org(fliptets[0]); |
|
|
|
flip32count++; |
|
|
|
// Get the outer boundary faces. |
|
for (i = 0; i < 3; i++) { |
|
eorgoppo(fliptets[i], casface); |
|
fsym(casface, topcastets[i]); |
|
} |
|
for (i = 0; i < 3; i++) { |
|
edestoppo(fliptets[i], casface); |
|
fsym(casface, botcastets[i]); |
|
} |
|
|
|
if (checksubfaceflag) { |
|
// Check if there are interior subfaces at the edge [e,d]. |
|
for (i = 0; i < 3; i++) { |
|
tspivot(fliptets[i], flipshs[i]); |
|
if (flipshs[i].sh != NULL) { |
|
// Found an interior subface. |
|
stdissolve(flipshs[i]); // Disconnect the sub-tet bond. |
|
scount++; |
|
} else { |
|
spivot = i; |
|
} |
|
} |
|
} |
|
|
|
// Re-use fliptets[0] and fliptets[1]. |
|
fliptets[0].ver = 11; |
|
fliptets[1].ver = 11; |
|
setelemmarker(fliptets[0].tet, 0); // Clear all flags. |
|
setelemmarker(fliptets[1].tet, 0); |
|
if (checksubsegflag) { |
|
// Dealloc the space to subsegments. |
|
if (fliptets[0].tet[8] != NULL) { |
|
tet2segpool->dealloc((shellface*)fliptets[0].tet[8]); |
|
fliptets[0].tet[8] = NULL; |
|
} |
|
if (fliptets[1].tet[8] != NULL) { |
|
tet2segpool->dealloc((shellface*)fliptets[1].tet[8]); |
|
fliptets[1].tet[8] = NULL; |
|
} |
|
} |
|
if (checksubfaceflag) { |
|
// Dealloc the space to subfaces. |
|
if (fliptets[0].tet[9] != NULL) { |
|
tet2subpool->dealloc((shellface*)fliptets[0].tet[9]); |
|
fliptets[0].tet[9] = NULL; |
|
} |
|
if (fliptets[1].tet[9] != NULL) { |
|
tet2subpool->dealloc((shellface*)fliptets[1].tet[9]); |
|
fliptets[1].tet[9] = NULL; |
|
} |
|
} |
|
if (checksubfaceflag) { |
|
if (scount > 0) { |
|
// The element attributes and volume constraint must be set correctly. |
|
// There are two subfaces involved in this flip. The three tets are |
|
// separated into two different regions, one may be exterior. The |
|
// first region has two tets, and the second region has only one. |
|
// The two created tets must be in the same region as the first region. |
|
// The element attributes and volume constraint must be set correctly. |
|
// assert(spivot != -1); |
|
// The tet fliptets[spivot] is in the first region. |
|
for (j = 0; j < 2; j++) { |
|
for (i = 0; i < numelemattrib; i++) { |
|
attrib = elemattribute(fliptets[spivot].tet, i); |
|
setelemattribute(fliptets[j].tet, i, attrib); |
|
} |
|
if (b->varvolume) { |
|
volume = volumebound(fliptets[spivot].tet); |
|
setvolumebound(fliptets[j].tet, volume); |
|
} |
|
} |
|
} |
|
} |
|
// Delete an old tet. |
|
tetrahedrondealloc(fliptets[2].tet); |
|
|
|
if (hullflag > 0) { |
|
// Check if c is dummypointc. |
|
if (pc != dummypoint) { |
|
// Check if d is dummypoint. |
|
if (pd != dummypoint) { |
|
// No hull tet is involved. |
|
} else { |
|
// We deleted three hull tets, and created one hull tet. |
|
hullsize -= 2; |
|
} |
|
setvertices(fliptets[0], pa, pb, pc, pd); |
|
setvertices(fliptets[1], pb, pa, pc, pe); |
|
} else { |
|
// c is dummypoint. The two new tets are hull tets. |
|
setvertices(fliptets[0], pb, pa, pd, pc); |
|
setvertices(fliptets[1], pa, pb, pe, pc); |
|
// Adjust badc -> abcd. |
|
esymself(fliptets[0]); |
|
// Adjust abec -> bace. |
|
esymself(fliptets[1]); |
|
// The hullsize does not change. |
|
} |
|
} else { |
|
setvertices(fliptets[0], pa, pb, pc, pd); |
|
setvertices(fliptets[1], pb, pa, pc, pe); |
|
} |
|
|
|
if (fc->remove_ndelaunay_edge) { // calc_tetprism_vol |
|
REAL volneg[3], volpos[2], vol_diff; |
|
if (pc != dummypoint) { |
|
if (pd != dummypoint) { |
|
volneg[0] = tetprismvol(pe, pd, pa, pb); |
|
volneg[1] = tetprismvol(pe, pd, pb, pc); |
|
volneg[2] = tetprismvol(pe, pd, pc, pa); |
|
volpos[0] = tetprismvol(pa, pb, pc, pd); |
|
volpos[1] = tetprismvol(pb, pa, pc, pe); |
|
} else { // pd == dummypoint |
|
volneg[0] = 0.; |
|
volneg[1] = 0.; |
|
volneg[2] = 0.; |
|
volpos[0] = 0.; |
|
volpos[1] = tetprismvol(pb, pa, pc, pe); |
|
} |
|
} else { // pc == dummypoint. |
|
volneg[0] = tetprismvol(pe, pd, pa, pb); |
|
volneg[1] = 0.; |
|
volneg[2] = 0.; |
|
volpos[0] = 0.; |
|
volpos[1] = 0.; |
|
} |
|
vol_diff = volpos[0] + volpos[1] - volneg[0] - volneg[1] - volneg[2]; |
|
fc->tetprism_vol_sum += vol_diff; // Update the total sum. |
|
} |
|
|
|
// Bond abcd <==> bace. |
|
bond(fliptets[0], fliptets[1]); |
|
// Bond new faces to top outer boundary faces (at abcd). |
|
for (i = 0; i < 3; i++) { |
|
esym(fliptets[0], newface); |
|
bond(newface, topcastets[i]); |
|
enextself(fliptets[0]); |
|
} |
|
// Bond new faces to bottom outer boundary faces (at bace). |
|
for (i = 0; i < 3; i++) { |
|
esym(fliptets[1], newface); |
|
bond(newface, botcastets[i]); |
|
eprevself(fliptets[1]); |
|
} |
|
|
|
if (checksubsegflag) { |
|
// Bond 9 segments to new (flipped) tets. |
|
for (i = 0; i < 3; i++) { // edges a->b, b->c, c->a. |
|
if (issubseg(topcastets[i])) { |
|
tsspivot1(topcastets[i], checkseg); |
|
tssbond1(fliptets[0], checkseg); |
|
sstbond1(checkseg, fliptets[0]); |
|
tssbond1(fliptets[1], checkseg); |
|
sstbond1(checkseg, fliptets[1]); |
|
if (fc->chkencflag & 1) { |
|
enqueuesubface(badsubsegs, &checkseg); |
|
} |
|
} |
|
enextself(fliptets[0]); |
|
eprevself(fliptets[1]); |
|
} |
|
// The three top edges. |
|
for (i = 0; i < 3; i++) { // edges b->d, c->d, a->d. |
|
esym(fliptets[0], newface); |
|
eprevself(newface); |
|
enext(topcastets[i], casface); |
|
if (issubseg(casface)) { |
|
tsspivot1(casface, checkseg); |
|
tssbond1(newface, checkseg); |
|
sstbond1(checkseg, newface); |
|
if (fc->chkencflag & 1) { |
|
enqueuesubface(badsubsegs, &checkseg); |
|
} |
|
} |
|
enextself(fliptets[0]); |
|
} |
|
// The three bot edges. |
|
for (i = 0; i < 3; i++) { // edges b<-e, c<-e, a<-e. |
|
esym(fliptets[1], newface); |
|
enextself(newface); |
|
eprev(botcastets[i], casface); |
|
if (issubseg(casface)) { |
|
tsspivot1(casface, checkseg); |
|
tssbond1(newface, checkseg); |
|
sstbond1(checkseg, newface); |
|
if (fc->chkencflag & 1) { |
|
enqueuesubface(badsubsegs, &checkseg); |
|
} |
|
} |
|
eprevself(fliptets[1]); |
|
} |
|
} // if (checksubsegflag) |
|
|
|
if (checksubfaceflag) { |
|
face checksh; |
|
// Bond the top three casing subfaces. |
|
for (i = 0; i < 3; i++) { // At edges [b,a], [c,b], [a,c] |
|
if (issubface(topcastets[i])) { |
|
tspivot(topcastets[i], checksh); |
|
esym(fliptets[0], newface); |
|
sesymself(checksh); |
|
tsbond(newface, checksh); |
|
if (fc->chkencflag & 2) { |
|
enqueuesubface(badsubfacs, &checksh); |
|
} |
|
} |
|
enextself(fliptets[0]); |
|
} |
|
// Bond the bottom three casing subfaces. |
|
for (i = 0; i < 3; i++) { // At edges [a,b], [b,c], [c,a] |
|
if (issubface(botcastets[i])) { |
|
tspivot(botcastets[i], checksh); |
|
esym(fliptets[1], newface); |
|
sesymself(checksh); |
|
tsbond(newface, checksh); |
|
if (fc->chkencflag & 2) { |
|
enqueuesubface(badsubfacs, &checksh); |
|
} |
|
} |
|
eprevself(fliptets[1]); |
|
} |
|
|
|
if (scount > 0) { |
|
face flipfaces[2]; |
|
// Perform a 2-to-2 flip in subfaces. |
|
flipfaces[0] = flipshs[(spivot + 1) % 3]; |
|
flipfaces[1] = flipshs[(spivot + 2) % 3]; |
|
sesymself(flipfaces[1]); |
|
flip22(flipfaces, 0, fc->chkencflag); |
|
// Connect the flipped subfaces to flipped tets. |
|
// First go to the corresponding flipping edge. |
|
// Re-use top- and botcastets[0]. |
|
topcastets[0] = fliptets[0]; |
|
botcastets[0] = fliptets[1]; |
|
for (i = 0; i < ((spivot + 1) % 3); i++) { |
|
enextself(topcastets[0]); |
|
eprevself(botcastets[0]); |
|
} |
|
// Connect the top subface to the top tets. |
|
esymself(topcastets[0]); |
|
sesymself(flipfaces[0]); |
|
// Check if there already exists a subface. |
|
tspivot(topcastets[0], checksh); |
|
if (checksh.sh == NULL) { |
|
tsbond(topcastets[0], flipfaces[0]); |
|
fsymself(topcastets[0]); |
|
sesymself(flipfaces[0]); |
|
tsbond(topcastets[0], flipfaces[0]); |
|
} else { |
|
// An invalid 2-to-2 flip. Report a bug. |
|
terminatetetgen(this, 2); |
|
} |
|
// Connect the bot subface to the bottom tets. |
|
esymself(botcastets[0]); |
|
sesymself(flipfaces[1]); |
|
// Check if there already exists a subface. |
|
tspivot(botcastets[0], checksh); |
|
if (checksh.sh == NULL) { |
|
tsbond(botcastets[0], flipfaces[1]); |
|
fsymself(botcastets[0]); |
|
sesymself(flipfaces[1]); |
|
tsbond(botcastets[0], flipfaces[1]); |
|
} else { |
|
// An invalid 2-to-2 flip. Report a bug. |
|
terminatetetgen(this, 2); |
|
} |
|
} // if (scount > 0) |
|
} // if (checksubfaceflag) |
|
|
|
if (fc->chkencflag & 4) { |
|
// Put two new tets into check list. |
|
for (i = 0; i < 2; i++) { |
|
enqueuetetrahedron(&(fliptets[i])); |
|
} |
|
} |
|
|
|
setpoint2tet(pa, (tetrahedron)fliptets[0].tet); |
|
setpoint2tet(pb, (tetrahedron)fliptets[0].tet); |
|
setpoint2tet(pc, (tetrahedron)fliptets[0].tet); |
|
setpoint2tet(pd, (tetrahedron)fliptets[0].tet); |
|
setpoint2tet(pe, (tetrahedron)fliptets[1].tet); |
|
|
|
if (hullflag > 0) { |
|
if (dummyflag != 0) { |
|
// Restore the original position of the points (for flipnm()). |
|
if (dummyflag == -1) { |
|
// e were dummypoint. Swap the two new tets. |
|
newface = fliptets[0]; |
|
fliptets[0] = fliptets[1]; |
|
fliptets[1] = newface; |
|
} else { |
|
// a or b was dummypoint. |
|
if (dummyflag == 1) { |
|
eprevself(fliptets[0]); |
|
enextself(fliptets[1]); |
|
} else { // dummyflag == 2 |
|
enextself(fliptets[0]); |
|
eprevself(fliptets[1]); |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (fc->enqflag > 0) { |
|
// Queue faces which may be locally non-Delaunay. |
|
// pa = org(fliptets[0]); // 'a' may be a new vertex. |
|
enextesym(fliptets[0], newface); |
|
flippush(flipstack, &newface); |
|
eprevesym(fliptets[1], newface); |
|
flippush(flipstack, &newface); |
|
if (fc->enqflag > 1) { |
|
// pb = dest(fliptets[0]); |
|
eprevesym(fliptets[0], newface); |
|
flippush(flipstack, &newface); |
|
enextesym(fliptets[1], newface); |
|
flippush(flipstack, &newface); |
|
// pc = apex(fliptets[0]); |
|
esym(fliptets[0], newface); |
|
flippush(flipstack, &newface); |
|
esym(fliptets[1], newface); |
|
flippush(flipstack, &newface); |
|
} |
|
} |
|
|
|
recenttet = fliptets[0]; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// flip41() Perform a 4-to-1 flip (Remove a vertex). // |
|
// // |
|
// 'fliptets' is an array of four tetrahedra in the star of the removing // |
|
// vertex 'p'. Let the four vertices in the star of p be a, b, c, and d. The // |
|
// four tets in 'fliptets' are: [p,d,a,b], [p,d,b,c], [p,d,c,a], and [a,b,c, // |
|
// p]. On return, 'fliptets[0]' is the new tet [a,b,c,d]. // |
|
// // |
|
// If 'hullflag' is set (> 0), one of the five vertices may be 'dummypoint'. // |
|
// The 'hullsize' may be changed. Note that p may be dummypoint. In this // |
|
// case, four hull tets are replaced by one real tet. // |
|
// // |
|
// If 'checksubface' flag is set (>0), it is possible that there are three // |
|
// interior subfaces connecting at p. If so, a 3-to-1 flip is performed to // |
|
// to remove p from the surface triangulation. // |
|
// // |
|
// If it is called by the routine incrementalflip(), we assume that d is the // |
|
// newly inserted vertex. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::flip41(triface* fliptets, int hullflag, flipconstraints* fc) { |
|
triface topcastets[3], botcastet; |
|
triface newface, neightet; |
|
face flipshs[4]; |
|
point pa, pb, pc, pd, pp; |
|
int dummyflag = 0; // in {0, 1, 2, 3, 4} |
|
int spivot = -1, scount = 0; |
|
int t1ver; |
|
int i; |
|
|
|
pa = org(fliptets[3]); |
|
pb = dest(fliptets[3]); |
|
pc = apex(fliptets[3]); |
|
pd = dest(fliptets[0]); |
|
pp = org(fliptets[0]); // The removing vertex. |
|
|
|
flip41count++; |
|
|
|
// Get the outer boundary faces. |
|
for (i = 0; i < 3; i++) { |
|
enext(fliptets[i], topcastets[i]); |
|
fnextself(topcastets[i]); // [d,a,b,#], [d,b,c,#], [d,c,a,#] |
|
enextself(topcastets[i]); // [a,b,d,#], [b,c,d,#], [c,a,d,#] |
|
} |
|
fsym(fliptets[3], botcastet); // [b,a,c,#] |
|
|
|
if (checksubfaceflag) { |
|
// Check if there are three subfaces at 'p'. |
|
// Re-use 'newface'. |
|
for (i = 0; i < 3; i++) { |
|
fnext(fliptets[3], newface); // [a,b,p,d],[b,c,p,d],[c,a,p,d]. |
|
tspivot(newface, flipshs[i]); |
|
if (flipshs[i].sh != NULL) { |
|
spivot = i; // Remember this subface. |
|
scount++; |
|
} |
|
enextself(fliptets[3]); |
|
} |
|
if (scount > 0) { |
|
// There are three subfaces connecting at p. |
|
if (scount < 3) { |
|
// The new subface is one of {[a,b,d], [b,c,d], [c,a,d]}. |
|
// Go to the tet containing the three subfaces. |
|
fsym(topcastets[spivot], neightet); |
|
// Get the three subfaces connecting at p. |
|
for (i = 0; i < 3; i++) { |
|
esym(neightet, newface); |
|
tspivot(newface, flipshs[i]); |
|
eprevself(neightet); |
|
} |
|
} else { |
|
spivot = 3; // The new subface is [a,b,c]. |
|
} |
|
} |
|
} // if (checksubfaceflag) |
|
|
|
// Re-use fliptets[0] for [a,b,c,d]. |
|
fliptets[0].ver = 11; |
|
setelemmarker(fliptets[0].tet, 0); // Clean all flags. |
|
// NOTE: the element attributes and volume constraint remain unchanged. |
|
if (checksubsegflag) { |
|
// Dealloc the space to subsegments. |
|
if (fliptets[0].tet[8] != NULL) { |
|
tet2segpool->dealloc((shellface*)fliptets[0].tet[8]); |
|
fliptets[0].tet[8] = NULL; |
|
} |
|
} |
|
if (checksubfaceflag) { |
|
// Dealloc the space to subfaces. |
|
if (fliptets[0].tet[9] != NULL) { |
|
tet2subpool->dealloc((shellface*)fliptets[0].tet[9]); |
|
fliptets[0].tet[9] = NULL; |
|
} |
|
} |
|
// Delete the other three tets. |
|
for (i = 1; i < 4; i++) { |
|
tetrahedrondealloc(fliptets[i].tet); |
|
} |
|
|
|
if (pp != dummypoint) { |
|
// Mark the point pp as unused. |
|
setpointtype(pp, UNUSEDVERTEX); |
|
unuverts++; |
|
} |
|
|
|
// Create the new tet [a,b,c,d]. |
|
if (hullflag > 0) { |
|
// One of the five vertices may be 'dummypoint'. |
|
if (pa == dummypoint) { |
|
// pa is dummypoint. |
|
setvertices(fliptets[0], pc, pb, pd, pa); |
|
esymself(fliptets[0]); // [b,c,a,d] |
|
eprevself(fliptets[0]); // [a,b,c,d] |
|
dummyflag = 1; |
|
} else if (pb == dummypoint) { |
|
setvertices(fliptets[0], pa, pc, pd, pb); |
|
esymself(fliptets[0]); // [c,a,b,d] |
|
enextself(fliptets[0]); // [a,b,c,d] |
|
dummyflag = 2; |
|
} else if (pc == dummypoint) { |
|
setvertices(fliptets[0], pb, pa, pd, pc); |
|
esymself(fliptets[0]); // [a,b,c,d] |
|
dummyflag = 3; |
|
} else if (pd == dummypoint) { |
|
setvertices(fliptets[0], pa, pb, pc, pd); |
|
dummyflag = 4; |
|
} else { |
|
setvertices(fliptets[0], pa, pb, pc, pd); |
|
if (pp == dummypoint) { |
|
dummyflag = -1; |
|
} else { |
|
dummyflag = 0; |
|
} |
|
} |
|
if (dummyflag > 0) { |
|
// We deleted 3 hull tets, and create 1 hull tet. |
|
hullsize -= 2; |
|
} else if (dummyflag < 0) { |
|
// We deleted 4 hull tets. |
|
hullsize -= 4; |
|
// meshedges does not change. |
|
} |
|
} else { |
|
setvertices(fliptets[0], pa, pb, pc, pd); |
|
} |
|
|
|
if (fc->remove_ndelaunay_edge) { // calc_tetprism_vol |
|
REAL volneg[4], volpos[1], vol_diff; |
|
if (dummyflag > 0) { |
|
if (pa == dummypoint) { |
|
volneg[0] = 0.; |
|
volneg[1] = tetprismvol(pp, pd, pb, pc); |
|
volneg[2] = 0.; |
|
volneg[3] = 0.; |
|
} else if (pb == dummypoint) { |
|
volneg[0] = 0.; |
|
volneg[1] = 0.; |
|
volneg[2] = tetprismvol(pp, pd, pc, pa); |
|
volneg[3] = 0.; |
|
} else if (pc == dummypoint) { |
|
volneg[0] = tetprismvol(pp, pd, pa, pb); |
|
volneg[1] = 0.; |
|
volneg[2] = 0.; |
|
volneg[3] = 0.; |
|
} else { // pd == dummypoint |
|
volneg[0] = 0.; |
|
volneg[1] = 0.; |
|
volneg[2] = 0.; |
|
volneg[3] = tetprismvol(pa, pb, pc, pp); |
|
} |
|
volpos[0] = 0.; |
|
} else if (dummyflag < 0) { |
|
volneg[0] = 0.; |
|
volneg[1] = 0.; |
|
volneg[2] = 0.; |
|
volneg[3] = 0.; |
|
volpos[0] = tetprismvol(pa, pb, pc, pd); |
|
} else { |
|
volneg[0] = tetprismvol(pp, pd, pa, pb); |
|
volneg[1] = tetprismvol(pp, pd, pb, pc); |
|
volneg[2] = tetprismvol(pp, pd, pc, pa); |
|
volneg[3] = tetprismvol(pa, pb, pc, pp); |
|
volpos[0] = tetprismvol(pa, pb, pc, pd); |
|
} |
|
vol_diff = volpos[0] - volneg[0] - volneg[1] - volneg[2] - volneg[3]; |
|
fc->tetprism_vol_sum += vol_diff; // Update the total sum. |
|
} |
|
|
|
// Bond the new tet to adjacent tets. |
|
for (i = 0; i < 3; i++) { |
|
esym(fliptets[0], newface); // At faces [b,a,d], [c,b,d], [a,c,d]. |
|
bond(newface, topcastets[i]); |
|
enextself(fliptets[0]); |
|
} |
|
bond(fliptets[0], botcastet); |
|
|
|
if (checksubsegflag) { |
|
face checkseg; |
|
// Bond 6 segments (at edges of [a,b,c,d]) if there there are. |
|
for (i = 0; i < 3; i++) { |
|
eprev(topcastets[i], newface); // At edges [d,a],[d,b],[d,c]. |
|
if (issubseg(newface)) { |
|
tsspivot1(newface, checkseg); |
|
esym(fliptets[0], newface); |
|
enextself(newface); // At edges [a,d], [b,d], [c,d]. |
|
tssbond1(newface, checkseg); |
|
sstbond1(checkseg, newface); |
|
if (fc->chkencflag & 1) { |
|
enqueuesubface(badsubsegs, &checkseg); |
|
} |
|
} |
|
enextself(fliptets[0]); |
|
} |
|
for (i = 0; i < 3; i++) { |
|
if (issubseg(topcastets[i])) { |
|
tsspivot1(topcastets[i], checkseg); // At edges [a,b],[b,c],[c,a]. |
|
tssbond1(fliptets[0], checkseg); |
|
sstbond1(checkseg, fliptets[0]); |
|
if (fc->chkencflag & 1) { |
|
enqueuesubface(badsubsegs, &checkseg); |
|
} |
|
} |
|
enextself(fliptets[0]); |
|
} |
|
} |
|
|
|
if (checksubfaceflag) { |
|
face checksh; |
|
// Bond 4 subfaces (at faces of [a,b,c,d]) if there are. |
|
for (i = 0; i < 3; i++) { |
|
if (issubface(topcastets[i])) { |
|
tspivot(topcastets[i], checksh); // At faces [a,b,d],[b,c,d],[c,a,d] |
|
esym(fliptets[0], newface); // At faces [b,a,d],[c,b,d],[a,c,d] |
|
sesymself(checksh); |
|
tsbond(newface, checksh); |
|
if (fc->chkencflag & 2) { |
|
enqueuesubface(badsubfacs, &checksh); |
|
} |
|
} |
|
enextself(fliptets[0]); |
|
} |
|
if (issubface(botcastet)) { |
|
tspivot(botcastet, checksh); // At face [b,a,c] |
|
sesymself(checksh); |
|
tsbond(fliptets[0], checksh); |
|
if (fc->chkencflag & 2) { |
|
enqueuesubface(badsubfacs, &checksh); |
|
} |
|
} |
|
|
|
if (spivot >= 0) { |
|
// Perform a 3-to-1 flip in surface triangulation. |
|
// Depending on the value of 'spivot', the three subfaces are: |
|
// - 0: [a,b,p], [b,d,p], [d,a,p] |
|
// - 1: [b,c,p], [c,d,p], [d,b,p] |
|
// - 2: [c,a,p], [a,d,p], [d,c,p] |
|
// - 3: [a,b,p], [b,c,p], [c,a,p] |
|
// Adjust the three subfaces such that their origins are p, i.e., |
|
// - 3: [p,a,b], [p,b,c], [p,c,a]. (Required by the flip31()). |
|
for (i = 0; i < 3; i++) { |
|
senext2self(flipshs[i]); |
|
} |
|
flip31(flipshs, 0); |
|
// Delete the three old subfaces. |
|
for (i = 0; i < 3; i++) { |
|
shellfacedealloc(subfaces, flipshs[i].sh); |
|
} |
|
if (spivot < 3) { |
|
// // Bond the new subface to the new tet [a,b,c,d]. |
|
tsbond(topcastets[spivot], flipshs[3]); |
|
fsym(topcastets[spivot], newface); |
|
sesym(flipshs[3], checksh); |
|
tsbond(newface, checksh); |
|
} else { |
|
// Bound the new subface [a,b,c] to the new tet [a,b,c,d]. |
|
tsbond(fliptets[0], flipshs[3]); |
|
fsym(fliptets[0], newface); |
|
sesym(flipshs[3], checksh); |
|
tsbond(newface, checksh); |
|
} |
|
} // if (spivot > 0) |
|
} // if (checksubfaceflag) |
|
|
|
if (fc->chkencflag & 4) { |
|
enqueuetetrahedron(&(fliptets[0])); |
|
} |
|
|
|
// Update the point-to-tet map. |
|
setpoint2tet(pa, (tetrahedron)fliptets[0].tet); |
|
setpoint2tet(pb, (tetrahedron)fliptets[0].tet); |
|
setpoint2tet(pc, (tetrahedron)fliptets[0].tet); |
|
setpoint2tet(pd, (tetrahedron)fliptets[0].tet); |
|
|
|
if (fc->enqflag > 0) { |
|
// Queue faces which may be locally non-Delaunay. |
|
flippush(flipstack, &(fliptets[0])); // [a,b,c] (opposite to new point). |
|
if (fc->enqflag > 1) { |
|
for (i = 0; i < 3; i++) { |
|
esym(fliptets[0], newface); |
|
flippush(flipstack, &newface); |
|
enextself(fliptets[0]); |
|
} |
|
} |
|
} |
|
|
|
recenttet = fliptets[0]; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// flipnm() Flip an edge through a sequence of elementary flips. // |
|
// // |
|
// 'abtets' is an array of 'n' tets in the star of edge [a,b].These tets are // |
|
// ordered in a counterclockwise cycle with respect to the vector a->b, i.e.,// |
|
// use the right-hand rule. // |
|
// // |
|
// 'level' (>= 0) indicates the current link level. If 'level > 0', we are // |
|
// flipping a link edge of an edge [a',b'], and 'abedgepivot' indicates // |
|
// which link edge, i.e., [c',b'] or [a',c'], is [a,b] These two parameters // |
|
// allow us to determine the new tets after a 3-to-2 flip, i.e., tets that // |
|
// do not inside the reduced star of edge [a',b']. // |
|
// // |
|
// If the flag 'fc->unflip' is set, this routine un-does the flips performed // |
|
// in flipnm([a,b]) so that the mesh is returned to its original state // |
|
// before doing the flipnm([a,b]) operation. // |
|
// // |
|
// The return value is an integer nn, where nn <= n. If nn is 2, then the // |
|
// edge is flipped. The first and the second tets in 'abtets' are new tets. // |
|
// Otherwise, nn > 2, the edge is not flipped, and nn is the number of tets // |
|
// in the current star of [a,b]. // |
|
// // |
|
// ASSUMPTIONS: // |
|
// - Neither a nor b is 'dummypoint'. // |
|
// - [a,b] must not be a segment. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::flipnm(triface* abtets, int n, int level, int abedgepivot, flipconstraints* fc) { |
|
triface fliptets[3], spintet, flipedge; |
|
triface *tmpabtets, *parytet; |
|
point pa, pb, pc, pd, pe, pf; |
|
REAL ori; |
|
int hullflag, hulledgeflag; |
|
int reducflag, rejflag; |
|
int reflexlinkedgecount; |
|
int edgepivot; |
|
int n1, nn; |
|
int t1ver; |
|
int i, j; |
|
|
|
pa = org(abtets[0]); |
|
pb = dest(abtets[0]); |
|
|
|
if (n > 3) { |
|
// Try to reduce the size of the Star(ab) by flipping a face in it. |
|
reflexlinkedgecount = 0; |
|
|
|
for (i = 0; i < n; i++) { |
|
// Let the face of 'abtets[i]' be [a,b,c]. |
|
if (checksubfaceflag) { |
|
if (issubface(abtets[i])) { |
|
continue; // Skip a subface. |
|
} |
|
} |
|
// Do not flip this face if it is involved in two Stars. |
|
if ((elemcounter(abtets[i]) > 1) || (elemcounter(abtets[(i - 1 + n) % n]) > 1)) { |
|
continue; |
|
} |
|
|
|
pc = apex(abtets[i]); |
|
pd = apex(abtets[(i + 1) % n]); |
|
pe = apex(abtets[(i - 1 + n) % n]); |
|
if ((pd == dummypoint) || (pe == dummypoint)) { |
|
continue; // [a,b,c] is a hull face. |
|
} |
|
|
|
// Decide whether [a,b,c] is flippable or not. |
|
reducflag = 0; |
|
|
|
hullflag = (pc == dummypoint); // pc may be dummypoint. |
|
hulledgeflag = 0; |
|
if (hullflag == 0) { |
|
ori = orient3d(pb, pc, pd, pe); // Is [b,c] locally convex? |
|
if (ori > 0) { |
|
ori = orient3d(pc, pa, pd, pe); // Is [c,a] locally convex? |
|
if (ori > 0) { |
|
// Test if [a,b] is locally convex OR flat. |
|
ori = orient3d(pa, pb, pd, pe); |
|
if (ori > 0) { |
|
// Found a 2-to-3 flip: [a,b,c] => [e,d] |
|
reducflag = 1; |
|
} else if (ori == 0) { |
|
// [a,b] is flat. |
|
if (n == 4) { |
|
// The "flat" tet can be removed immediately by a 3-to-2 flip. |
|
reducflag = 1; |
|
// Check if [e,d] is a hull edge. |
|
pf = apex(abtets[(i + 2) % n]); |
|
hulledgeflag = (pf == dummypoint); |
|
} |
|
} |
|
} |
|
} |
|
if (!reducflag) { |
|
reflexlinkedgecount++; |
|
} |
|
} else { |
|
// 'c' is dummypoint. |
|
if (n == 4) { |
|
// Let the vertex opposite to 'c' is 'f'. |
|
// A 4-to-4 flip is possible if the two tets [d,e,f,a] and [e,d,f,b] |
|
// are valid tets. |
|
// Note: When the mesh is not convex, it is possible that [a,b] is |
|
// locally non-convex (at hull faces [a,b,e] and [b,a,d]). |
|
// In this case, an edge flip [a,b] to [e,d] is still possible. |
|
pf = apex(abtets[(i + 2) % n]); |
|
ori = orient3d(pd, pe, pf, pa); |
|
if (ori < 0) { |
|
ori = orient3d(pe, pd, pf, pb); |
|
if (ori < 0) { |
|
// Found a 4-to-4 flip: [a,b] => [e,d] |
|
reducflag = 1; |
|
ori = 0; // Signal as a 4-to-4 flip (like a co-planar case). |
|
hulledgeflag = 1; // [e,d] is a hull edge. |
|
} |
|
} |
|
} |
|
} // if (hullflag) |
|
|
|
if (reducflag) { |
|
if (nonconvex && hulledgeflag) { |
|
// We will create a hull edge [e,d]. Make sure it does not exist. |
|
if (getedge(pe, pd, &spintet)) { |
|
// The 2-to-3 flip is not a topological valid flip. |
|
reducflag = 0; |
|
} |
|
} |
|
} |
|
|
|
if (reducflag) { |
|
// [a,b,c] could be removed by a 2-to-3 flip. |
|
rejflag = 0; |
|
if (fc->checkflipeligibility) { |
|
// Check if the flip can be performed. |
|
rejflag = checkflipeligibility(1, pa, pb, pc, pd, pe, level, abedgepivot, fc); |
|
} |
|
if (!rejflag) { |
|
// Do flip: [a,b,c] => [e,d]. |
|
fliptets[0] = abtets[i]; |
|
fsym(fliptets[0], fliptets[1]); // abtets[i-1]. |
|
flip23(fliptets, hullflag, fc); |
|
|
|
// Shrink the array 'abtets', maintain the original order. |
|
// Two tets 'abtets[i-1] ([a,b,e,c])' and 'abtets[i] ([a,b,c,d])' |
|
// are flipped, i.e., they do not in Star(ab) anymore. |
|
// 'fliptets[0]' ([e,d,a,b]) is in Star(ab), it is saved in |
|
// 'abtets[i-1]' (adjust it to be [a,b,e,d]), see below: |
|
// |
|
// before after |
|
// [0] |___________| [0] |___________| |
|
// ... |___________| ... |___________| |
|
// [i-1] |_[a,b,e,c]_| [i-1] |_[a,b,e,d]_| |
|
// [i] |_[a,b,c,d]_| --> [i] |_[a,b,d,#]_| |
|
// [i+1] |_[a,b,d,#]_| [i+1] |_[a,b,#,*]_| |
|
// ... |___________| ... |___________| |
|
// [n-2] |___________| [n-2] |___________| |
|
// [n-1] |___________| [n-1] |_[i]_2-t-3_| |
|
// |
|
edestoppoself(fliptets[0]); // [a,b,e,d] |
|
// Increase the counter of this new tet (it is in Star(ab)). |
|
increaseelemcounter(fliptets[0]); |
|
abtets[(i - 1 + n) % n] = fliptets[0]; |
|
for (j = i; j < n - 1; j++) { |
|
abtets[j] = abtets[j + 1]; // Upshift |
|
} |
|
// The last entry 'abtets[n-1]' is empty. It is used in two ways: |
|
// (i) it remembers the vertex 'c' (in 'abtets[n-1].tet'), and |
|
// (ii) it remembers the position [i] where this flip took place. |
|
// These information let us to either undo this flip or recover |
|
// the original edge link (for collecting new created tets). |
|
abtets[n - 1].tet = (tetrahedron*)pc; |
|
abtets[n - 1].ver = 0; // Clear it. |
|
// 'abtets[n - 1].ver' is in range [0,11] -- only uses 4 bits. |
|
// Use the 5th bit in 'abtets[n - 1].ver' to signal a 2-to-3 flip. |
|
abtets[n - 1].ver |= (1 << 4); |
|
// The poisition [i] of this flip is saved above the 7th bit. |
|
abtets[n - 1].ver |= (i << 6); |
|
|
|
if (fc->collectnewtets) { |
|
// Push the two new tets [e,d,b,c] and [e,d,c,a] into a stack. |
|
// Re-use the global array 'cavetetlist'. |
|
for (j = 1; j < 3; j++) { |
|
cavetetlist->newindex((void**)&parytet); |
|
*parytet = fliptets[j]; // fliptets[1], fliptets[2]. |
|
} |
|
} |
|
|
|
// Star(ab) is reduced. Try to flip the edge [a,b]. |
|
nn = flipnm(abtets, n - 1, level, abedgepivot, fc); |
|
|
|
if (nn == 2) { |
|
// The edge has been flipped. |
|
return nn; |
|
} else { // if (nn > 2) |
|
// The edge is not flipped. |
|
if (fc->unflip || (ori == 0)) { |
|
// Undo the previous 2-to-3 flip, i.e., do a 3-to-2 flip to |
|
// transform [e,d] => [a,b,c]. |
|
// 'ori == 0' means that the previous flip created a degenerated |
|
// tet. It must be removed. |
|
// Remember that 'abtets[i-1]' is [a,b,e,d]. We can use it to |
|
// find another two tets [e,d,b,c] and [e,d,c,a]. |
|
fliptets[0] = abtets[(i - 1 + (n - 1)) % (n - 1)]; // [a,b,e,d] |
|
edestoppoself(fliptets[0]); // [e,d,a,b] |
|
fnext(fliptets[0], fliptets[1]); // [1] is [e,d,b,c] |
|
fnext(fliptets[1], fliptets[2]); // [2] is [e,d,c,a] |
|
// Restore the two original tets in Star(ab). |
|
flip32(fliptets, hullflag, fc); |
|
// Marktest the two restored tets in Star(ab). |
|
for (j = 0; j < 2; j++) { |
|
increaseelemcounter(fliptets[j]); |
|
} |
|
// Expand the array 'abtets', maintain the original order. |
|
for (j = n - 2; j >= i; j--) { |
|
abtets[j + 1] = abtets[j]; // Downshift |
|
} |
|
// Insert the two new tets 'fliptets[0]' [a,b,c,d] and |
|
// 'fliptets[1]' [b,a,c,e] into the (i-1)-th and i-th entries, |
|
// respectively. |
|
esym(fliptets[1], abtets[(i - 1 + n) % n]); // [a,b,e,c] |
|
abtets[i] = fliptets[0]; // [a,b,c,d] |
|
nn++; |
|
if (fc->collectnewtets) { |
|
// Pop two (flipped) tets from the stack. |
|
cavetetlist->objects -= 2; |
|
} |
|
} // if (unflip || (ori == 0)) |
|
} // if (nn > 2) |
|
|
|
if (!fc->unflip) { |
|
// The flips are not reversed. The current Star(ab) can not be |
|
// further reduced. Return its current size (# of tets). |
|
return nn; |
|
} |
|
// unflip is set. |
|
// Continue the search for flips. |
|
} |
|
} // if (reducflag) |
|
} // i |
|
|
|
// The Star(ab) is not reduced. |
|
if (reflexlinkedgecount > 0) { |
|
// There are reflex edges in the Link(ab). |
|
if (((b->fliplinklevel < 0) && (level < autofliplinklevel)) || |
|
((b->fliplinklevel >= 0) && (level < b->fliplinklevel))) { |
|
// Try to reduce the Star(ab) by flipping a reflex edge in Link(ab). |
|
for (i = 0; i < n; i++) { |
|
// Do not flip this face [a,b,c] if there are two Stars involved. |
|
if ((elemcounter(abtets[i]) > 1) || |
|
(elemcounter(abtets[(i - 1 + n) % n]) > 1)) { |
|
continue; |
|
} |
|
pc = apex(abtets[i]); |
|
if (pc == dummypoint) { |
|
continue; // [a,b] is a hull edge. |
|
} |
|
pd = apex(abtets[(i + 1) % n]); |
|
pe = apex(abtets[(i - 1 + n) % n]); |
|
if ((pd == dummypoint) || (pe == dummypoint)) { |
|
continue; // [a,b,c] is a hull face. |
|
} |
|
|
|
edgepivot = 0; // No edge is selected yet. |
|
|
|
// Test if [b,c] is locally convex or flat. |
|
ori = orient3d(pb, pc, pd, pe); |
|
if (ori <= 0) { |
|
// Select the edge [c,b]. |
|
enext(abtets[i], flipedge); // [b,c,a,d] |
|
edgepivot = 1; |
|
} |
|
if (!edgepivot) { |
|
// Test if [c,a] is locally convex or flat. |
|
ori = orient3d(pc, pa, pd, pe); |
|
if (ori <= 0) { |
|
// Select the edge [a,c]. |
|
eprev(abtets[i], flipedge); // [c,a,b,d]. |
|
edgepivot = 2; |
|
} |
|
} |
|
|
|
if (!edgepivot) continue; |
|
|
|
// An edge is selected. |
|
if (checksubsegflag) { |
|
// Do not flip it if it is a segment. |
|
if (issubseg(flipedge)) { |
|
if (fc->collectencsegflag) { |
|
face checkseg, *paryseg; |
|
tsspivot1(flipedge, checkseg); |
|
if (!sinfected(checkseg)) { |
|
// Queue this segment in list. |
|
sinfect(checkseg); |
|
caveencseglist->newindex((void**)&paryseg); |
|
*paryseg = checkseg; |
|
} |
|
} |
|
continue; |
|
} |
|
} |
|
|
|
// Try to flip the selected edge ([c,b] or [a,c]). |
|
esymself(flipedge); |
|
// Count the number of tets at the edge. |
|
n1 = 0; |
|
j = 0; // Sum of the star counters. |
|
spintet = flipedge; |
|
while (1) { |
|
n1++; |
|
j += (elemcounter(spintet)); |
|
fnextself(spintet); |
|
if (spintet.tet == flipedge.tet) break; |
|
} |
|
if (n1 < 3) { |
|
// This is only possible when the mesh contains inverted |
|
// elements. Reprot a bug. |
|
terminatetetgen(this, 2); |
|
} |
|
if (j > 2) { |
|
// The Star(flipedge) overlaps other Stars. |
|
continue; // Do not flip this edge. |
|
} |
|
|
|
if ((b->flipstarsize > 0) && (n1 > b->flipstarsize)) { |
|
// The star size exceeds the given limit. |
|
continue; // Do not flip it. |
|
} |
|
|
|
// Allocate spaces for Star(flipedge). |
|
tmpabtets = new triface[n1]; |
|
// Form the Star(flipedge). |
|
j = 0; |
|
spintet = flipedge; |
|
while (1) { |
|
tmpabtets[j] = spintet; |
|
// Increase the star counter of this tet. |
|
increaseelemcounter(tmpabtets[j]); |
|
j++; |
|
fnextself(spintet); |
|
if (spintet.tet == flipedge.tet) break; |
|
} |
|
|
|
// Try to flip the selected edge away. |
|
nn = flipnm(tmpabtets, n1, level + 1, edgepivot, fc); |
|
|
|
if (nn == 2) { |
|
// The edge is flipped. Star(ab) is reduced. |
|
// Shrink the array 'abtets', maintain the original order. |
|
if (edgepivot == 1) { |
|
// 'tmpabtets[0]' is [d,a,e,b] => contains [a,b]. |
|
spintet = tmpabtets[0]; // [d,a,e,b] |
|
enextself(spintet); |
|
esymself(spintet); |
|
enextself(spintet); // [a,b,e,d] |
|
} else { |
|
// 'tmpabtets[1]' is [b,d,e,a] => contains [a,b]. |
|
spintet = tmpabtets[1]; // [b,d,e,a] |
|
eprevself(spintet); |
|
esymself(spintet); |
|
eprevself(spintet); // [a,b,e,d] |
|
} // edgepivot == 2 |
|
increaseelemcounter(spintet); // It is in Star(ab). |
|
// Put the new tet at [i-1]-th entry. |
|
abtets[(i - 1 + n) % n] = spintet; |
|
for (j = i; j < n - 1; j++) { |
|
abtets[j] = abtets[j + 1]; // Upshift |
|
} |
|
// Remember the flips in the last entry of the array 'abtets'. |
|
// They can be used to recover the flipped edge. |
|
abtets[n - 1].tet = (tetrahedron*)tmpabtets; // The star(fedge). |
|
abtets[n - 1].ver = 0; // Clear it. |
|
// Use the 1st and 2nd bit to save 'edgepivot' (1 or 2). |
|
abtets[n - 1].ver |= edgepivot; |
|
// Use the 6th bit to signal this n1-to-m1 flip. |
|
abtets[n - 1].ver |= (1 << 5); |
|
// The poisition [i] of this flip is saved from 7th to 19th bit. |
|
abtets[n - 1].ver |= (i << 6); |
|
// The size of the star 'n1' is saved from 20th bit. |
|
abtets[n - 1].ver |= (n1 << 19); |
|
|
|
// Remember the flipped link vertex 'c'. It can be used to recover |
|
// the original edge link of [a,b], and to collect new tets. |
|
tmpabtets[0].tet = (tetrahedron*)pc; |
|
tmpabtets[0].ver = (1 << 5); // Flag it as a vertex handle. |
|
|
|
// Continue to flip the edge [a,b]. |
|
nn = flipnm(abtets, n - 1, level, abedgepivot, fc); |
|
|
|
if (nn == 2) { |
|
// The edge has been flipped. |
|
return nn; |
|
} else { // if (nn > 2) { |
|
// The edge is not flipped. |
|
if (fc->unflip) { |
|
// Recover the flipped edge ([c,b] or [a,c]). |
|
// The sequence of flips are saved in 'tmpabtets'. |
|
// abtets[(i-1) % (n-1)] is [a,b,e,d], i.e., the tet created by |
|
// the flipping of edge [c,b] or [a,c].It must still exist in |
|
// Star(ab). It is the start tet to recover the flipped edge. |
|
if (edgepivot == 1) { |
|
// The flip edge is [c,b]. |
|
tmpabtets[0] = |
|
abtets[((i - 1) + (n - 1)) % (n - 1)]; // [a,b,e,d] |
|
eprevself(tmpabtets[0]); |
|
esymself(tmpabtets[0]); |
|
eprevself(tmpabtets[0]); // [d,a,e,b] |
|
fsym(tmpabtets[0], tmpabtets[1]); // [a,d,e,c] |
|
} else { |
|
// The flip edge is [a,c]. |
|
tmpabtets[1] = |
|
abtets[((i - 1) + (n - 1)) % (n - 1)]; // [a,b,e,d] |
|
enextself(tmpabtets[1]); |
|
esymself(tmpabtets[1]); |
|
enextself(tmpabtets[1]); // [b,d,e,a] |
|
fsym(tmpabtets[1], tmpabtets[0]); // [d,b,e,c] |
|
} // if (edgepivot == 2) |
|
|
|
// Recover the flipped edge ([c,b] or [a,c]). |
|
flipnm_post(tmpabtets, n1, 2, edgepivot, fc); |
|
|
|
// Insert the two recovered tets into Star(ab). |
|
for (j = n - 2; j >= i; j--) { |
|
abtets[j + 1] = abtets[j]; // Downshift |
|
} |
|
if (edgepivot == 1) { |
|
// tmpabtets[0] is [c,b,d,a] ==> contains [a,b] |
|
// tmpabtets[1] is [c,b,a,e] ==> contains [a,b] |
|
// tmpabtets[2] is [c,b,e,d] |
|
fliptets[0] = tmpabtets[1]; |
|
enextself(fliptets[0]); |
|
esymself(fliptets[0]); // [a,b,e,c] |
|
fliptets[1] = tmpabtets[0]; |
|
esymself(fliptets[1]); |
|
eprevself(fliptets[1]); // [a,b,c,d] |
|
} else { |
|
// tmpabtets[0] is [a,c,d,b] ==> contains [a,b] |
|
// tmpabtets[1] is [a,c,b,e] ==> contains [a,b] |
|
// tmpabtets[2] is [a,c,e,d] |
|
fliptets[0] = tmpabtets[1]; |
|
eprevself(fliptets[0]); |
|
esymself(fliptets[0]); // [a,b,e,c] |
|
fliptets[1] = tmpabtets[0]; |
|
esymself(fliptets[1]); |
|
enextself(fliptets[1]); // [a,b,c,d] |
|
} // edgepivot == 2 |
|
for (j = 0; j < 2; j++) { |
|
increaseelemcounter(fliptets[j]); |
|
} |
|
// Insert the two recovered tets into Star(ab). |
|
abtets[(i - 1 + n) % n] = fliptets[0]; |
|
abtets[i] = fliptets[1]; |
|
nn++; |
|
// Release the allocated spaces. |
|
delete[] tmpabtets; |
|
} // if (unflip) |
|
} // if (nn > 2) |
|
|
|
if (!fc->unflip) { |
|
// The flips are not reversed. The current Star(ab) can not be |
|
// further reduced. Return its size (# of tets). |
|
return nn; |
|
} |
|
// unflip is set. |
|
// Continue the search for flips. |
|
} else { |
|
// The selected edge is not flipped. |
|
if (!fc->unflip) { |
|
// Release the memory used in this attempted flip. |
|
flipnm_post(tmpabtets, n1, nn, edgepivot, fc); |
|
} |
|
// Decrease the star counters of tets in Star(flipedge). |
|
for (j = 0; j < nn; j++) { |
|
decreaseelemcounter(tmpabtets[j]); |
|
} |
|
// Release the allocated spaces. |
|
delete[] tmpabtets; |
|
} |
|
} // i |
|
} // if (level...) |
|
} // if (reflexlinkedgecount > 0) |
|
} else { |
|
// Check if a 3-to-2 flip is possible. |
|
// Let the three apexes be c, d,and e. Hull tets may be involved. If so, |
|
// we rearrange them such that the vertex e is dummypoint. |
|
hullflag = 0; |
|
|
|
if (apex(abtets[0]) == dummypoint) { |
|
pc = apex(abtets[1]); |
|
pd = apex(abtets[2]); |
|
pe = apex(abtets[0]); |
|
hullflag = 1; |
|
} else if (apex(abtets[1]) == dummypoint) { |
|
pc = apex(abtets[2]); |
|
pd = apex(abtets[0]); |
|
pe = apex(abtets[1]); |
|
hullflag = 2; |
|
} else { |
|
pc = apex(abtets[0]); |
|
pd = apex(abtets[1]); |
|
pe = apex(abtets[2]); |
|
hullflag = (pe == dummypoint) ? 3 : 0; |
|
} |
|
|
|
reducflag = 0; |
|
rejflag = 0; |
|
|
|
if (hullflag == 0) { |
|
// Make sure that no inverted tet will be created, i.e. the new tets |
|
// [d,c,e,a] and [c,d,e,b] must be valid tets. |
|
ori = orient3d(pd, pc, pe, pa); |
|
if (ori < 0) { |
|
ori = orient3d(pc, pd, pe, pb); |
|
if (ori < 0) { |
|
reducflag = 1; |
|
} |
|
} |
|
} else { |
|
// [a,b] is a hull edge. |
|
// Note: This can happen when it is in the middle of a 4-to-4 flip. |
|
// Note: [a,b] may even be a non-convex hull edge. |
|
if (!nonconvex) { |
|
// The mesh is convex, only do flip if it is a coplanar hull edge. |
|
ori = orient3d(pa, pb, pc, pd); |
|
if (ori == 0) { |
|
reducflag = 1; |
|
} |
|
} else { // nonconvex |
|
reducflag = 1; |
|
} |
|
if (reducflag == 1) { |
|
// [a,b], [a,b,c] and [a,b,d] are on the convex hull. |
|
// Make sure that no inverted tet will be created. |
|
point searchpt = NULL, chkpt; |
|
REAL bigvol = 0.0, ori1, ori2; |
|
// Search an interior vertex which is an apex of edge [c,d]. |
|
// In principle, it can be arbitrary interior vertex. To avoid |
|
// numerical issue, we choose the vertex which belongs to a tet |
|
// 't' at edge [c,d] and 't' has the biggest volume. |
|
fliptets[0] = abtets[hullflag % 3]; // [a,b,c,d]. |
|
eorgoppoself(fliptets[0]); // [d,c,b,a] |
|
spintet = fliptets[0]; |
|
while (1) { |
|
fnextself(spintet); |
|
chkpt = oppo(spintet); |
|
if (chkpt == pb) break; |
|
if ((chkpt != dummypoint) && (apex(spintet) != dummypoint)) { |
|
ori = -orient3d(pd, pc, apex(spintet), chkpt); |
|
if (ori > bigvol) { |
|
bigvol = ori; |
|
searchpt = chkpt; |
|
} |
|
} |
|
} |
|
if (searchpt != NULL) { |
|
// Now valid the configuration. |
|
ori1 = orient3d(pd, pc, searchpt, pa); |
|
ori2 = orient3d(pd, pc, searchpt, pb); |
|
if (ori1 * ori2 >= 0.0) { |
|
reducflag = 0; // Not valid. |
|
} else { |
|
ori1 = orient3d(pa, pb, searchpt, pc); |
|
ori2 = orient3d(pa, pb, searchpt, pd); |
|
if (ori1 * ori2 >= 0.0) { |
|
reducflag = 0; // Not valid. |
|
} |
|
} |
|
} else { |
|
// No valid searchpt is found. |
|
reducflag = 0; // Do not flip it. |
|
} |
|
} // if (reducflag == 1) |
|
} // if (hullflag == 1) |
|
|
|
if (reducflag) { |
|
// A 3-to-2 flip is possible. |
|
if (checksubfaceflag) { |
|
// This edge (must not be a segment) can be flipped ONLY IF it belongs |
|
// to either 0 or 2 subfaces. In the latter case, a 2-to-2 flip in |
|
// the surface mesh will be automatically performed within the |
|
// 3-to-2 flip. |
|
nn = 0; |
|
edgepivot = -1; // Re-use it. |
|
for (j = 0; j < 3; j++) { |
|
if (issubface(abtets[j])) { |
|
nn++; // Found a subface. |
|
} else { |
|
edgepivot = j; |
|
} |
|
} |
|
if (nn == 1) { |
|
// Found only 1 subface containing this edge. This can happen in |
|
// the boundary recovery phase. The neighbor subface is not yet |
|
// recovered. This edge should not be flipped at this moment. |
|
rejflag = 1; |
|
} else if (nn == 2) { |
|
// Found two subfaces. A 2-to-2 flip is possible. Validate it. |
|
// Below we check if the two faces [p,q,a] and [p,q,b] are subfaces. |
|
eorgoppo(abtets[(edgepivot + 1) % 3], spintet); // [q,p,b,a] |
|
if (issubface(spintet)) { |
|
rejflag = 1; // Conflict to a 2-to-2 flip. |
|
} else { |
|
esymself(spintet); |
|
if (issubface(spintet)) { |
|
rejflag = 1; // Conflict to a 2-to-2 flip. |
|
} |
|
} |
|
} else if (nn == 3) { |
|
// Report a bug. |
|
terminatetetgen(this, 2); |
|
} |
|
} |
|
if (!rejflag && fc->checkflipeligibility) { |
|
// Here we must exchange 'a' and 'b'. Since in the check... function, |
|
// we assume the following point sequence, 'a,b,c,d,e', where |
|
// the face [a,b,c] will be flipped and the edge [e,d] will be |
|
// created. The two new tets are [a,b,c,d] and [b,a,c,e]. |
|
rejflag = checkflipeligibility(2, pc, pd, pe, pb, pa, level, abedgepivot, fc); |
|
} |
|
if (!rejflag) { |
|
// Do flip: [a,b] => [c,d,e] |
|
flip32(abtets, hullflag, fc); |
|
if (fc->remove_ndelaunay_edge) { |
|
if (level == 0) { |
|
// It is the desired removing edge. Check if we have improved |
|
// the objective function. |
|
if ((fc->tetprism_vol_sum >= 0.0) || |
|
(fabs(fc->tetprism_vol_sum) < fc->bak_tetprism_vol)) { |
|
// No improvement! flip back: [c,d,e] => [a,b]. |
|
flip23(abtets, hullflag, fc); |
|
// Increase the element counter -- They are in cavity. |
|
for (j = 0; j < 3; j++) { |
|
increaseelemcounter(abtets[j]); |
|
} |
|
return 3; |
|
} |
|
} // if (level == 0) |
|
} |
|
if (fc->collectnewtets) { |
|
// Collect new tets. |
|
if (level == 0) { |
|
// Push the two new tets into stack. |
|
for (j = 0; j < 2; j++) { |
|
cavetetlist->newindex((void**)&parytet); |
|
*parytet = abtets[j]; |
|
} |
|
} else { |
|
// Only one of the new tets is collected. The other one is inside |
|
// the reduced edge star. 'abedgepivot' is either '1' or '2'. |
|
cavetetlist->newindex((void**)&parytet); |
|
if (abedgepivot == 1) { // [c,b] |
|
*parytet = abtets[1]; |
|
} else { |
|
*parytet = abtets[0]; |
|
} |
|
} |
|
} // if (fc->collectnewtets) |
|
return 2; |
|
} |
|
} // if (reducflag) |
|
} // if (n == 3) |
|
|
|
// The current (reduced) Star size. |
|
return n; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// flipnm_post() Post process a n-to-m flip. // |
|
// // |
|
// IMPORTANT: This routine only works when there is no other flip operation // |
|
// is done after flipnm([a,b]) which attempts to remove an edge [a,b]. // |
|
// // |
|
// 'abtets' is an array of 'n' (>= 3) tets which are in the original star of // |
|
// [a,b] before flipnm([a,b]). 'nn' (< n) is the value returned by flipnm. // |
|
// If 'nn == 2', the edge [a,b] has been flipped. 'abtets[0]' and 'abtets[1]'// |
|
// are [c,d,e,b] and [d,c,e,a], i.e., a 2-to-3 flip can recover the edge [a, // |
|
// b] and its initial Star([a,b]). If 'nn >= 3' edge [a,b] still exists in // |
|
// current mesh and 'nn' is the current number of tets in Star([a,b]). // |
|
// // |
|
// Each 'abtets[i]', where nn <= i < n, saves either a 2-to-3 flip or a // |
|
// flipnm([p1,p2]) operation ([p1,p2] != [a,b]) which created the tet // |
|
// 'abtets[t-1]', where '0 <= t <= i'. These information can be used to // |
|
// undo the flips performed in flipnm([a,b]) or to collect new tets created // |
|
// by the flipnm([a,b]) operation. // |
|
// // |
|
// Default, this routine only walks through the flips and frees the spaces // |
|
// allocated during the flipnm([a,b]) operation. // |
|
// // |
|
// If the flag 'fc->unflip' is set, this routine un-does the flips performed // |
|
// in flipnm([a,b]) so that the mesh is returned to its original state // |
|
// before doing the flipnm([a,b]) operation. // |
|
// // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::flipnm_post(triface* abtets, int n, int nn, int abedgepivot, flipconstraints* fc) { |
|
triface fliptets[3], flipface; |
|
triface* tmpabtets; |
|
int fliptype; |
|
int edgepivot; |
|
int t, n1; |
|
int i, j; |
|
|
|
if (nn == 2) { |
|
// The edge [a,b] has been flipped. |
|
// 'abtets[0]' is [c,d,e,b] or [#,#,#,b]. |
|
// 'abtets[1]' is [d,c,e,a] or [#,#,#,a]. |
|
if (fc->unflip) { |
|
// Do a 2-to-3 flip to recover the edge [a,b]. There may be hull tets. |
|
flip23(abtets, 1, fc); |
|
if (fc->collectnewtets) { |
|
// Pop up new (flipped) tets from the stack. |
|
if (abedgepivot == 0) { |
|
// Two new tets were collected. |
|
cavetetlist->objects -= 2; |
|
} else { |
|
// Only one of the two new tets was collected. |
|
cavetetlist->objects -= 1; |
|
} |
|
} |
|
} |
|
// The initial size of Star(ab) is 3. |
|
nn++; |
|
} |
|
|
|
// Walk through the performed flips. |
|
for (i = nn; i < n; i++) { |
|
// At the beginning of each step 'i', the size of the Star([a,b]) is 'i'. |
|
// At the end of this step, the size of the Star([a,b]) is 'i+1'. |
|
// The sizes of the Link([a,b]) are the same. |
|
fliptype = ((abtets[i].ver >> 4) & 3); // 0, 1, or 2. |
|
if (fliptype == 1) { |
|
// It was a 2-to-3 flip: [a,b,c]->[e,d]. |
|
t = (abtets[i].ver >> 6); |
|
if (fc->unflip) { |
|
if (b->verbose > 2) { |
|
printf(" Recover a 2-to-3 flip at f[%d].\n", t); |
|
} |
|
// 'abtets[(t-1)%i]' is the tet [a,b,e,d] in current Star(ab), i.e., |
|
// it is created by a 2-to-3 flip [a,b,c] => [e,d]. |
|
fliptets[0] = abtets[((t - 1) + i) % i]; // [a,b,e,d] |
|
eprevself(fliptets[0]); |
|
esymself(fliptets[0]); |
|
enextself(fliptets[0]); // [e,d,a,b] |
|
fnext(fliptets[0], fliptets[1]); // [e,d,b,c] |
|
fnext(fliptets[1], fliptets[2]); // [e,d,c,a] |
|
// Do a 3-to-2 flip: [e,d] => [a,b,c]. |
|
// NOTE: hull tets may be invloved. |
|
flip32(fliptets, 1, fc); |
|
// Expand the array 'abtets', maintain the original order. |
|
// The new array length is (i+1). |
|
for (j = i - 1; j >= t; j--) { |
|
abtets[j + 1] = abtets[j]; // Downshift |
|
} |
|
// The tet abtets[(t-1)%i] is deleted. Insert the two new tets |
|
// 'fliptets[0]' [a,b,c,d] and 'fliptets[1]' [b,a,c,e] into |
|
// the (t-1)-th and t-th entries, respectively. |
|
esym(fliptets[1], abtets[((t - 1) + (i + 1)) % (i + 1)]); // [a,b,e,c] |
|
abtets[t] = fliptets[0]; // [a,b,c,d] |
|
if (fc->collectnewtets) { |
|
// Pop up two (flipped) tets from the stack. |
|
cavetetlist->objects -= 2; |
|
} |
|
} |
|
} else if (fliptype == 2) { |
|
tmpabtets = (triface*)(abtets[i].tet); |
|
n1 = ((abtets[i].ver >> 19) & 8191); // \sum_{i=0^12}{2^i} = 8191 |
|
edgepivot = (abtets[i].ver & 3); |
|
t = ((abtets[i].ver >> 6) & 8191); |
|
if (fc->unflip) { |
|
if (b->verbose > 2) { |
|
printf(" Recover a %d-to-m flip at e[%d] of f[%d].\n", n1, edgepivot, t); |
|
} |
|
// Recover the flipped edge ([c,b] or [a,c]). |
|
// abtets[(t - 1 + i) % i] is [a,b,e,d], i.e., the tet created by |
|
// the flipping of edge [c,b] or [a,c]. It must still exist in |
|
// Star(ab). Use it to recover the flipped edge. |
|
if (edgepivot == 1) { |
|
// The flip edge is [c,b]. |
|
tmpabtets[0] = abtets[(t - 1 + i) % i]; // [a,b,e,d] |
|
eprevself(tmpabtets[0]); |
|
esymself(tmpabtets[0]); |
|
eprevself(tmpabtets[0]); // [d,a,e,b] |
|
fsym(tmpabtets[0], tmpabtets[1]); // [a,d,e,c] |
|
} else { |
|
// The flip edge is [a,c]. |
|
tmpabtets[1] = abtets[(t - 1 + i) % i]; // [a,b,e,d] |
|
enextself(tmpabtets[1]); |
|
esymself(tmpabtets[1]); |
|
enextself(tmpabtets[1]); // [b,d,e,a] |
|
fsym(tmpabtets[1], tmpabtets[0]); // [d,b,e,c] |
|
} // if (edgepivot == 2) |
|
|
|
// Do a n1-to-m1 flip to recover the flipped edge ([c,b] or [a,c]). |
|
flipnm_post(tmpabtets, n1, 2, edgepivot, fc); |
|
|
|
// Insert the two recovered tets into the original Star(ab). |
|
for (j = i - 1; j >= t; j--) { |
|
abtets[j + 1] = abtets[j]; // Downshift |
|
} |
|
if (edgepivot == 1) { |
|
// tmpabtets[0] is [c,b,d,a] ==> contains [a,b] |
|
// tmpabtets[1] is [c,b,a,e] ==> contains [a,b] |
|
// tmpabtets[2] is [c,b,e,d] |
|
fliptets[0] = tmpabtets[1]; |
|
enextself(fliptets[0]); |
|
esymself(fliptets[0]); // [a,b,e,c] |
|
fliptets[1] = tmpabtets[0]; |
|
esymself(fliptets[1]); |
|
eprevself(fliptets[1]); // [a,b,c,d] |
|
} else { |
|
// tmpabtets[0] is [a,c,d,b] ==> contains [a,b] |
|
// tmpabtets[1] is [a,c,b,e] ==> contains [a,b] |
|
// tmpabtets[2] is [a,c,e,d] |
|
fliptets[0] = tmpabtets[1]; |
|
eprevself(fliptets[0]); |
|
esymself(fliptets[0]); // [a,b,e,c] |
|
fliptets[1] = tmpabtets[0]; |
|
esymself(fliptets[1]); |
|
enextself(fliptets[1]); // [a,b,c,d] |
|
} // edgepivot == 2 |
|
// Insert the two recovered tets into Star(ab). |
|
abtets[((t - 1) + (i + 1)) % (i + 1)] = fliptets[0]; |
|
abtets[t] = fliptets[1]; |
|
} else { |
|
// Only free the spaces. |
|
flipnm_post(tmpabtets, n1, 2, edgepivot, fc); |
|
} // if (!unflip) |
|
if (b->verbose > 2) { |
|
printf(" Release %d spaces at f[%d].\n", n1, i); |
|
} |
|
delete[] tmpabtets; |
|
} |
|
} // i |
|
|
|
return 1; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// insertpoint() Insert a point into current tetrahedralization. // |
|
// // |
|
// The Bowyer-Watson (B-W) algorithm is used to add a new point p into the // |
|
// tetrahedralization T. It first finds a "cavity", denoted as C, in T, C // |
|
// consists of tetrahedra in T that "conflict" with p. If T is a Delaunay // |
|
// tetrahedralization, then all boundary faces (triangles) of C are visible // |
|
// by p, i.e.,C is star-shaped. We can insert p into T by first deleting all // |
|
// tetrahedra in C, then creating new tetrahedra formed by boundary faces of // |
|
// C and p. If T is not a DT, then C may be not star-shaped. It must be // |
|
// modified so that it becomes star-shaped. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::insertpoint(point insertpt, triface* searchtet, face* splitsh, face* splitseg, |
|
insertvertexflags* ivf) { |
|
arraypool* swaplist; |
|
triface *cavetet, spintet, neightet, neineitet, *parytet; |
|
triface oldtet, newtet, newneitet; |
|
face checksh, neighsh, *parysh; |
|
face checkseg, *paryseg; |
|
point *pts, pa, pb, pc, *parypt; |
|
enum locateresult loc = OUTSIDE; |
|
REAL sign, ori; |
|
REAL attrib, volume; |
|
bool enqflag; |
|
int t1ver; |
|
int i, j, k, s; |
|
|
|
if (b->verbose > 2) { |
|
printf(" Insert point %d\n", pointmark(insertpt)); |
|
} |
|
|
|
// Locate the point. |
|
if (searchtet->tet != NULL) { |
|
loc = (enum locateresult)ivf->iloc; |
|
} |
|
|
|
if (loc == OUTSIDE) { |
|
if (searchtet->tet == NULL) { |
|
if (!b->weighted) { |
|
randomsample(insertpt, searchtet); |
|
} else { |
|
// Weighted DT. There may exist dangling vertex. |
|
*searchtet = recenttet; |
|
} |
|
} |
|
// Locate the point. |
|
loc = locate(insertpt, searchtet); |
|
} |
|
|
|
ivf->iloc = (int)loc; // The return value. |
|
|
|
if (b->weighted) { |
|
if (loc != OUTSIDE) { |
|
// Check if this vertex is regular. |
|
pts = (point*)searchtet->tet; |
|
sign = orient4d_s(pts[4], pts[5], pts[6], pts[7], insertpt, pts[4][3], pts[5][3], |
|
pts[6][3], pts[7][3], insertpt[3]); |
|
if (sign > 0) { |
|
// This new vertex lies above the lower hull. Do not insert it. |
|
ivf->iloc = (int)NONREGULAR; |
|
return 0; |
|
} |
|
} |
|
} |
|
|
|
// Create the initial cavity C(p) which contains all tetrahedra that |
|
// intersect p. It may include 1, 2, or n tetrahedra. |
|
// If p lies on a segment or subface, also create the initial sub-cavity |
|
// sC(p) which contains all subfaces (and segment) which intersect p. |
|
|
|
if (loc == OUTSIDE) { |
|
flip14count++; |
|
// The current hull will be enlarged. |
|
// Add four adjacent boundary tets into list. |
|
for (i = 0; i < 4; i++) { |
|
decode(searchtet->tet[i], neightet); |
|
neightet.ver = epivot[neightet.ver]; |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
infect(*searchtet); |
|
caveoldtetlist->newindex((void**)&parytet); |
|
*parytet = *searchtet; |
|
} else if (loc == INTETRAHEDRON) { |
|
flip14count++; |
|
// Add four adjacent boundary tets into list. |
|
for (i = 0; i < 4; i++) { |
|
decode(searchtet->tet[i], neightet); |
|
neightet.ver = epivot[neightet.ver]; |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
infect(*searchtet); |
|
caveoldtetlist->newindex((void**)&parytet); |
|
*parytet = *searchtet; |
|
} else if (loc == ONFACE) { |
|
flip26count++; |
|
// Add six adjacent boundary tets into list. |
|
j = (searchtet->ver & 3); // The current face number. |
|
for (i = 1; i < 4; i++) { |
|
decode(searchtet->tet[(j + i) % 4], neightet); |
|
neightet.ver = epivot[neightet.ver]; |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
decode(searchtet->tet[j], spintet); |
|
j = (spintet.ver & 3); // The current face number. |
|
for (i = 1; i < 4; i++) { |
|
decode(spintet.tet[(j + i) % 4], neightet); |
|
neightet.ver = epivot[neightet.ver]; |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
infect(spintet); |
|
caveoldtetlist->newindex((void**)&parytet); |
|
*parytet = spintet; |
|
infect(*searchtet); |
|
caveoldtetlist->newindex((void**)&parytet); |
|
*parytet = *searchtet; |
|
|
|
if (ivf->splitbdflag) { |
|
if ((splitsh != NULL) && (splitsh->sh != NULL)) { |
|
// Create the initial sub-cavity sC(p). |
|
smarktest(*splitsh); |
|
caveshlist->newindex((void**)&parysh); |
|
*parysh = *splitsh; |
|
} |
|
} // if (splitbdflag) |
|
} else if (loc == ONEDGE) { |
|
flipn2ncount++; |
|
// Add all adjacent boundary tets into list. |
|
spintet = *searchtet; |
|
while (1) { |
|
eorgoppo(spintet, neightet); |
|
decode(neightet.tet[neightet.ver & 3], neightet); |
|
neightet.ver = epivot[neightet.ver]; |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
edestoppo(spintet, neightet); |
|
decode(neightet.tet[neightet.ver & 3], neightet); |
|
neightet.ver = epivot[neightet.ver]; |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
infect(spintet); |
|
caveoldtetlist->newindex((void**)&parytet); |
|
*parytet = spintet; |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet->tet) break; |
|
} // while (1) |
|
|
|
if (ivf->splitbdflag) { |
|
// Create the initial sub-cavity sC(p). |
|
if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
|
smarktest(*splitseg); |
|
splitseg->shver = 0; |
|
spivot(*splitseg, *splitsh); |
|
} |
|
if (splitsh != NULL) { |
|
if (splitsh->sh != NULL) { |
|
// Collect all subfaces share at this edge. |
|
pa = sorg(*splitsh); |
|
neighsh = *splitsh; |
|
while (1) { |
|
// Adjust the origin of its edge to be 'pa'. |
|
if (sorg(neighsh) != pa) { |
|
sesymself(neighsh); |
|
} |
|
// Add this face into list (in B-W cavity). |
|
smarktest(neighsh); |
|
caveshlist->newindex((void**)&parysh); |
|
*parysh = neighsh; |
|
// Add this face into face-at-splitedge list. |
|
cavesegshlist->newindex((void**)&parysh); |
|
*parysh = neighsh; |
|
// Go to the next face at the edge. |
|
spivotself(neighsh); |
|
// Stop if all faces at the edge have been visited. |
|
if (neighsh.sh == splitsh->sh) break; |
|
if (neighsh.sh == NULL) break; |
|
} // while (1) |
|
} // if (not a dangling segment) |
|
} |
|
} // if (splitbdflag) |
|
} else if (loc == INSTAR) { |
|
// We assume that all tets in the star are given in 'caveoldtetlist', |
|
// and they are all infected. |
|
// Collect the boundary faces of the star. |
|
for (i = 0; i < caveoldtetlist->objects; i++) { |
|
cavetet = (triface*)fastlookup(caveoldtetlist, i); |
|
// Check its 4 neighbor tets. |
|
for (j = 0; j < 4; j++) { |
|
decode(cavetet->tet[j], neightet); |
|
if (!infected(neightet)) { |
|
// It's a boundary face. |
|
neightet.ver = epivot[neightet.ver]; |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
} |
|
} |
|
} else if (loc == ONVERTEX) { |
|
// The point already exist. Do nothing and return. |
|
return 0; |
|
} |
|
|
|
if (ivf->assignmeshsize) { |
|
// Assign mesh size for the new point. |
|
if (bgm != NULL) { |
|
// Interpolate the mesh size from the background mesh. |
|
bgm->decode(point2bgmtet(org(*searchtet)), neightet); |
|
int bgmloc = (int)bgm->scoutpoint(insertpt, &neightet, 0); |
|
if (bgmloc != (int)OUTSIDE) { |
|
insertpt[pointmtrindex] = bgm->getpointmeshsize(insertpt, &neightet, bgmloc); |
|
setpoint2bgmtet(insertpt, bgm->encode(neightet)); |
|
} |
|
} else { |
|
insertpt[pointmtrindex] = getpointmeshsize(insertpt, searchtet, (int)loc); |
|
} |
|
} // if (assignmeshsize) |
|
|
|
if (ivf->bowywat) { |
|
// Update the cavity C(p) using the Bowyer-Watson algorithm. |
|
swaplist = cavetetlist; |
|
cavetetlist = cavebdrylist; |
|
cavebdrylist = swaplist; |
|
for (i = 0; i < cavetetlist->objects; i++) { |
|
// 'cavetet' is an adjacent tet at outside of the cavity. |
|
cavetet = (triface*)fastlookup(cavetetlist, i); |
|
// The tet may be tested and included in the (enlarged) cavity. |
|
if (!infected(*cavetet)) { |
|
// Check for two possible cases for this tet: |
|
// (1) It is a cavity tet, or |
|
// (2) it is a cavity boundary face. |
|
enqflag = false; |
|
if (!marktested(*cavetet)) { |
|
// Do Delaunay (in-sphere) test. |
|
pts = (point*)cavetet->tet; |
|
if (pts[7] != dummypoint) { |
|
// A volume tet. Operate on it. |
|
if (b->weighted) { |
|
sign = orient4d_s(pts[4], pts[5], pts[6], pts[7], insertpt, pts[4][3], |
|
pts[5][3], pts[6][3], pts[7][3], insertpt[3]); |
|
} else { |
|
sign = insphere_s(pts[4], pts[5], pts[6], pts[7], insertpt); |
|
} |
|
enqflag = (sign < 0.0); |
|
} else { |
|
if (!nonconvex) { |
|
// Test if this hull face is visible by the new point. |
|
ori = orient3d(pts[4], pts[5], pts[6], insertpt); |
|
if (ori < 0) { |
|
// A visible hull face. |
|
// Include it in the cavity. The convex hull will be enlarged. |
|
enqflag = true; |
|
} else if (ori == 0.0) { |
|
// A coplanar hull face. We need to test if this hull face is |
|
// Delaunay or not. We test if the adjacent tet (not faked) |
|
// of this hull face is Delaunay or not. |
|
decode(cavetet->tet[3], neineitet); |
|
if (!infected(neineitet)) { |
|
if (!marktested(neineitet)) { |
|
// Do Delaunay test on this tet. |
|
pts = (point*)neineitet.tet; |
|
if (b->weighted) { |
|
sign = orient4d_s(pts[4], pts[5], pts[6], pts[7], |
|
insertpt, pts[4][3], pts[5][3], |
|
pts[6][3], pts[7][3], insertpt[3]); |
|
} else { |
|
sign = insphere_s(pts[4], pts[5], pts[6], pts[7], |
|
insertpt); |
|
} |
|
enqflag = (sign < 0.0); |
|
} |
|
} else { |
|
// The adjacent tet is non-Delaunay. The hull face is non- |
|
// Delaunay as well. Include it in the cavity. |
|
enqflag = true; |
|
} // if (!infected(neineitet)) |
|
} // if (ori == 0.0) |
|
} else { |
|
// A hull face (must be a subface). |
|
// We FIRST include it in the initial cavity if the adjacent tet |
|
// (not faked) of this hull face is not Delaunay wrt p. |
|
// Whether it belongs to the final cavity will be determined |
|
// during the validation process. 'validflag'. |
|
decode(cavetet->tet[3], neineitet); |
|
if (!infected(neineitet)) { |
|
if (!marktested(neineitet)) { |
|
// Do Delaunay test on this tet. |
|
pts = (point*)neineitet.tet; |
|
if (b->weighted) { |
|
sign = orient4d_s(pts[4], pts[5], pts[6], pts[7], insertpt, |
|
pts[4][3], pts[5][3], pts[6][3], |
|
pts[7][3], insertpt[3]); |
|
} else { |
|
sign = insphere_s(pts[4], pts[5], pts[6], pts[7], insertpt); |
|
} |
|
enqflag = (sign < 0.0); |
|
} |
|
} else { |
|
// The adjacent tet is non-Delaunay. The hull face is non- |
|
// Delaunay as well. Include it in the cavity. |
|
enqflag = true; |
|
} // if (infected(neineitet)) |
|
} // if (nonconvex) |
|
} // if (pts[7] != dummypoint) |
|
marktest(*cavetet); // Only test it once. |
|
} // if (!marktested(*cavetet)) |
|
|
|
if (enqflag) { |
|
// Found a tet in the cavity. Put other three faces in check list. |
|
k = (cavetet->ver & 3); // The current face number |
|
for (j = 1; j < 4; j++) { |
|
decode(cavetet->tet[(j + k) % 4], neightet); |
|
cavetetlist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
infect(*cavetet); |
|
caveoldtetlist->newindex((void**)&parytet); |
|
*parytet = *cavetet; |
|
} else { |
|
// Found a boundary face of the cavity. |
|
cavetet->ver = epivot[cavetet->ver]; |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = *cavetet; |
|
} |
|
} // if (!infected(*cavetet)) |
|
} // i |
|
|
|
cavetetlist->restart(); // Clear the working list. |
|
} // if (ivf->bowywat) |
|
|
|
if (checksubsegflag) { |
|
// Collect all segments of C(p). |
|
shellface* ssptr; |
|
for (i = 0; i < caveoldtetlist->objects; i++) { |
|
cavetet = (triface*)fastlookup(caveoldtetlist, i); |
|
if ((ssptr = (shellface*)cavetet->tet[8]) != NULL) { |
|
for (j = 0; j < 6; j++) { |
|
if (ssptr[j]) { |
|
sdecode(ssptr[j], checkseg); |
|
if (!sinfected(checkseg)) { |
|
sinfect(checkseg); |
|
cavetetseglist->newindex((void**)&paryseg); |
|
*paryseg = checkseg; |
|
} |
|
} |
|
} // j |
|
} |
|
} // i |
|
// Uninfect collected segments. |
|
for (i = 0; i < cavetetseglist->objects; i++) { |
|
paryseg = (face*)fastlookup(cavetetseglist, i); |
|
suninfect(*paryseg); |
|
} |
|
|
|
if (ivf->rejflag & 1) { |
|
// Reject this point if it encroaches upon any segment. |
|
face* paryseg1; |
|
for (i = 0; i < cavetetseglist->objects; i++) { |
|
paryseg1 = (face*)fastlookup(cavetetseglist, i); |
|
if (checkseg4encroach((point)paryseg1->sh[3], (point)paryseg1->sh[4], insertpt)) { |
|
encseglist->newindex((void**)&paryseg); |
|
*paryseg = *paryseg1; |
|
} |
|
} // i |
|
if ((ivf->rejflag & 1) && (encseglist->objects > 0)) { |
|
insertpoint_abort(splitseg, ivf); |
|
ivf->iloc = (int)ENCSEGMENT; |
|
return 0; |
|
} |
|
} |
|
} // if (checksubsegflag) |
|
|
|
if (checksubfaceflag) { |
|
// Collect all subfaces of C(p). |
|
shellface* sptr; |
|
for (i = 0; i < caveoldtetlist->objects; i++) { |
|
cavetet = (triface*)fastlookup(caveoldtetlist, i); |
|
if ((sptr = (shellface*)cavetet->tet[9]) != NULL) { |
|
for (j = 0; j < 4; j++) { |
|
if (sptr[j]) { |
|
sdecode(sptr[j], checksh); |
|
if (!sinfected(checksh)) { |
|
sinfect(checksh); |
|
cavetetshlist->newindex((void**)&parysh); |
|
*parysh = checksh; |
|
} |
|
} |
|
} // j |
|
} |
|
} // i |
|
// Uninfect collected subfaces. |
|
for (i = 0; i < cavetetshlist->objects; i++) { |
|
parysh = (face*)fastlookup(cavetetshlist, i); |
|
suninfect(*parysh); |
|
} |
|
|
|
if (ivf->rejflag & 2) { |
|
REAL rd, cent[3]; |
|
badface* bface; |
|
// Reject this point if it encroaches upon any subface. |
|
for (i = 0; i < cavetetshlist->objects; i++) { |
|
parysh = (face*)fastlookup(cavetetshlist, i); |
|
if (checkfac4encroach((point)parysh->sh[3], (point)parysh->sh[4], |
|
(point)parysh->sh[5], insertpt, cent, &rd)) { |
|
encshlist->newindex((void**)&bface); |
|
bface->ss = *parysh; |
|
bface->forg = (point)parysh->sh[3]; // Not a dad one. |
|
for (j = 0; j < 3; j++) |
|
bface->cent[j] = cent[j]; |
|
bface->key = rd; |
|
} |
|
} |
|
if (encshlist->objects > 0) { |
|
insertpoint_abort(splitseg, ivf); |
|
ivf->iloc = (int)ENCSUBFACE; |
|
return 0; |
|
} |
|
} |
|
} // if (checksubfaceflag) |
|
|
|
if ((ivf->iloc == (int)OUTSIDE) && ivf->refineflag) { |
|
// The vertex lies outside of the domain. And it does not encroach |
|
// upon any boundary segment or subface. Do not insert it. |
|
insertpoint_abort(splitseg, ivf); |
|
return 0; |
|
} |
|
|
|
if (ivf->splitbdflag) { |
|
// The new point locates in surface mesh. Update the sC(p). |
|
// We have already 'smarktested' the subfaces which directly intersect |
|
// with p in 'caveshlist'. From them, we 'smarktest' their neighboring |
|
// subfaces which are included in C(p). Do not across a segment. |
|
for (i = 0; i < caveshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshlist, i); |
|
checksh = *parysh; |
|
for (j = 0; j < 3; j++) { |
|
if (!isshsubseg(checksh)) { |
|
spivot(checksh, neighsh); |
|
if (!smarktested(neighsh)) { |
|
stpivot(neighsh, neightet); |
|
if (infected(neightet)) { |
|
fsymself(neightet); |
|
if (infected(neightet)) { |
|
// This subface is inside C(p). |
|
// Check if its diametrical circumsphere encloses 'p'. |
|
// The purpose of this check is to avoid forming invalid |
|
// subcavity in surface mesh. |
|
sign = incircle3d(sorg(neighsh), sdest(neighsh), sapex(neighsh), |
|
insertpt); |
|
if (sign < 0) { |
|
smarktest(neighsh); |
|
caveshlist->newindex((void**)&parysh); |
|
*parysh = neighsh; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
senextself(checksh); |
|
} // j |
|
} // i |
|
} // if (ivf->splitbdflag) |
|
|
|
if (ivf->validflag) { |
|
// Validate C(p) and update it if it is not star-shaped. |
|
int cutcount = 0; |
|
|
|
if (ivf->respectbdflag) { |
|
// The initial cavity may include subfaces which are not on the facets |
|
// being splitting. Find them and make them as boundary of C(p). |
|
// Comment: We have already 'smarktested' the subfaces in sC(p). They |
|
// are completely inside C(p). |
|
for (i = 0; i < cavetetshlist->objects; i++) { |
|
parysh = (face*)fastlookup(cavetetshlist, i); |
|
stpivot(*parysh, neightet); |
|
if (infected(neightet)) { |
|
fsymself(neightet); |
|
if (infected(neightet)) { |
|
// Found a subface inside C(p). |
|
if (!smarktested(*parysh)) { |
|
// It is possible that this face is a boundary subface. |
|
// Check if it is a hull face. |
|
// assert(apex(neightet) != dummypoint); |
|
if (oppo(neightet) != dummypoint) { |
|
fsymself(neightet); |
|
} |
|
if (oppo(neightet) != dummypoint) { |
|
ori = orient3d(org(neightet), dest(neightet), apex(neightet), |
|
insertpt); |
|
if (ori < 0) { |
|
// A visible face, get its neighbor face. |
|
fsymself(neightet); |
|
ori = -ori; // It must be invisible by p. |
|
} |
|
} else { |
|
// A hull tet. It needs to be cut. |
|
ori = 1; |
|
} |
|
// Cut this tet if it is either invisible by or coplanar with p. |
|
if (ori >= 0) { |
|
uninfect(neightet); |
|
unmarktest(neightet); |
|
cutcount++; |
|
neightet.ver = epivot[neightet.ver]; |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
// Add three new faces to find new boundaries. |
|
for (j = 0; j < 3; j++) { |
|
esym(neightet, neineitet); |
|
neineitet.ver = epivot[neineitet.ver]; |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = neineitet; |
|
enextself(neightet); |
|
} |
|
} // if (ori >= 0) |
|
} |
|
} |
|
} |
|
} // i |
|
|
|
// The initial cavity may include segments in its interior. We need to |
|
// Update the cavity so that these segments are on the boundary of |
|
// the cavity. |
|
for (i = 0; i < cavetetseglist->objects; i++) { |
|
paryseg = (face*)fastlookup(cavetetseglist, i); |
|
// Check this segment if it is not a splitting segment. |
|
if (!smarktested(*paryseg)) { |
|
sstpivot1(*paryseg, neightet); |
|
spintet = neightet; |
|
while (1) { |
|
if (!infected(spintet)) break; |
|
fnextself(spintet); |
|
if (spintet.tet == neightet.tet) break; |
|
} |
|
if (infected(spintet)) { |
|
// Find an adjacent tet at this segment such that both faces |
|
// at this segment are not visible by p. |
|
pa = org(neightet); |
|
pb = dest(neightet); |
|
spintet = neightet; |
|
j = 0; |
|
while (1) { |
|
// Check if this face is visible by p. |
|
pc = apex(spintet); |
|
if (pc != dummypoint) { |
|
ori = orient3d(pa, pb, pc, insertpt); |
|
if (ori >= 0) { |
|
// Not visible. Check another face in this tet. |
|
esym(spintet, neineitet); |
|
pc = apex(neineitet); |
|
if (pc != dummypoint) { |
|
ori = orient3d(pb, pa, pc, insertpt); |
|
if (ori >= 0) { |
|
// Not visible. Found this face. |
|
j = 1; // Flag that it is found. |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == neightet.tet) break; |
|
} |
|
if (j == 0) { |
|
// Not found such a face. |
|
terminatetetgen(this, 2); |
|
} |
|
neightet = spintet; |
|
if (b->verbose > 3) { |
|
printf(" Cut tet (%d, %d, %d, %d)\n", pointmark(org(neightet)), |
|
pointmark(dest(neightet)), pointmark(apex(neightet)), |
|
pointmark(oppo(neightet))); |
|
} |
|
uninfect(neightet); |
|
unmarktest(neightet); |
|
cutcount++; |
|
neightet.ver = epivot[neightet.ver]; |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
// Add three new faces to find new boundaries. |
|
for (j = 0; j < 3; j++) { |
|
esym(neightet, neineitet); |
|
neineitet.ver = epivot[neineitet.ver]; |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = neineitet; |
|
enextself(neightet); |
|
} |
|
} |
|
} |
|
} // i |
|
} // if (ivf->respectbdflag) |
|
|
|
// Update the cavity by removing invisible faces until it is star-shaped. |
|
for (i = 0; i < cavebdrylist->objects; i++) { |
|
cavetet = (triface*)fastlookup(cavebdrylist, i); |
|
// 'cavetet' is an exterior tet adjacent to the cavity. |
|
// Check if its neighbor is inside C(p). |
|
fsym(*cavetet, neightet); |
|
if (infected(neightet)) { |
|
if (apex(*cavetet) != dummypoint) { |
|
// It is a cavity boundary face. Check its visibility. |
|
if (oppo(neightet) != dummypoint) { |
|
// Check if this face is visible by the new point. |
|
if (issubface(neightet)) { |
|
// We should only create a new tet that has a reasonable volume. |
|
// Re-use 'volume' and 'attrib'. |
|
pa = org(*cavetet); |
|
pb = dest(*cavetet); |
|
pc = apex(*cavetet); |
|
volume = orient3dfast(pa, pb, pc, insertpt); |
|
attrib = distance(pa, pb) * distance(pb, pc) * distance(pc, pa); |
|
if ((fabs(volume) / attrib) < b->epsilon) { |
|
ori = 0.0; |
|
} else { |
|
ori = orient3d(pa, pb, pc, insertpt); |
|
} |
|
} else { |
|
ori = orient3d(org(*cavetet), dest(*cavetet), apex(*cavetet), insertpt); |
|
} |
|
enqflag = (ori > 0); |
|
// Comment: if ori == 0 (coplanar case), we also cut the tet. |
|
} else { |
|
// It is a hull face. And its adjacent tet (at inside of the |
|
// domain) has been cut from the cavity. Cut it as well. |
|
// assert(nonconvex); |
|
enqflag = false; |
|
} |
|
} else { |
|
enqflag = true; // A hull edge. |
|
} |
|
if (enqflag) { |
|
// This face is valid, save it. |
|
cavetetlist->newindex((void**)&parytet); |
|
*parytet = *cavetet; |
|
} else { |
|
uninfect(neightet); |
|
unmarktest(neightet); |
|
cutcount++; |
|
// Add three new faces to find new boundaries. |
|
for (j = 0; j < 3; j++) { |
|
esym(neightet, neineitet); |
|
neineitet.ver = epivot[neineitet.ver]; |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = neineitet; |
|
enextself(neightet); |
|
} |
|
// 'cavetet' is not on the cavity boundary anymore. |
|
unmarktest(*cavetet); |
|
} |
|
} else { |
|
// 'cavetet' is not on the cavity boundary anymore. |
|
unmarktest(*cavetet); |
|
} |
|
} // i |
|
|
|
if (cutcount > 0) { |
|
// The cavity has been updated. |
|
// Update the cavity boundary faces. |
|
cavebdrylist->restart(); |
|
for (i = 0; i < cavetetlist->objects; i++) { |
|
cavetet = (triface*)fastlookup(cavetetlist, i); |
|
// 'cavetet' was an exterior tet adjacent to the cavity. |
|
fsym(*cavetet, neightet); |
|
if (infected(neightet)) { |
|
// It is a cavity boundary face. |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = *cavetet; |
|
} else { |
|
// Not a cavity boundary face. |
|
unmarktest(*cavetet); |
|
} |
|
} |
|
|
|
// Update the list of old tets. |
|
cavetetlist->restart(); |
|
for (i = 0; i < caveoldtetlist->objects; i++) { |
|
cavetet = (triface*)fastlookup(caveoldtetlist, i); |
|
if (infected(*cavetet)) { |
|
cavetetlist->newindex((void**)&parytet); |
|
*parytet = *cavetet; |
|
} |
|
} |
|
// Swap 'cavetetlist' and 'caveoldtetlist'. |
|
swaplist = caveoldtetlist; |
|
caveoldtetlist = cavetetlist; |
|
cavetetlist = swaplist; |
|
|
|
// The cavity should contain at least one tet. |
|
if (caveoldtetlist->objects == 0l) { |
|
insertpoint_abort(splitseg, ivf); |
|
ivf->iloc = (int)BADELEMENT; |
|
return 0; |
|
} |
|
|
|
if (ivf->splitbdflag) { |
|
int cutshcount = 0; |
|
// Update the sub-cavity sC(p). |
|
for (i = 0; i < caveshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshlist, i); |
|
if (smarktested(*parysh)) { |
|
enqflag = false; |
|
stpivot(*parysh, neightet); |
|
if (infected(neightet)) { |
|
fsymself(neightet); |
|
if (infected(neightet)) { |
|
enqflag = true; |
|
} |
|
} |
|
if (!enqflag) { |
|
sunmarktest(*parysh); |
|
// Use the last entry of this array to fill this entry. |
|
j = caveshlist->objects - 1; |
|
checksh = *(face*)fastlookup(caveshlist, j); |
|
*parysh = checksh; |
|
cutshcount++; |
|
caveshlist->objects--; // The list is shrinked. |
|
i--; |
|
} |
|
} |
|
} |
|
|
|
if (cutshcount > 0) { |
|
i = 0; // Count the number of invalid subfaces/segments. |
|
// Valid the updated sub-cavity sC(p). |
|
if (loc == ONFACE) { |
|
if ((splitsh != NULL) && (splitsh->sh != NULL)) { |
|
// The to-be split subface should be in sC(p). |
|
if (!smarktested(*splitsh)) i++; |
|
} |
|
} else if (loc == ONEDGE) { |
|
if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
|
// The to-be split segment should be in sC(p). |
|
if (!smarktested(*splitseg)) i++; |
|
} |
|
if ((splitsh != NULL) && (splitsh->sh != NULL)) { |
|
// All subfaces at this edge should be in sC(p). |
|
pa = sorg(*splitsh); |
|
neighsh = *splitsh; |
|
while (1) { |
|
// Adjust the origin of its edge to be 'pa'. |
|
if (sorg(neighsh) != pa) { |
|
sesymself(neighsh); |
|
} |
|
// Add this face into list (in B-W cavity). |
|
if (!smarktested(neighsh)) i++; |
|
// Go to the next face at the edge. |
|
spivotself(neighsh); |
|
// Stop if all faces at the edge have been visited. |
|
if (neighsh.sh == splitsh->sh) break; |
|
if (neighsh.sh == NULL) break; |
|
} // while (1) |
|
} |
|
} |
|
|
|
if (i > 0) { |
|
// The updated sC(p) is invalid. Do not insert this vertex. |
|
insertpoint_abort(splitseg, ivf); |
|
ivf->iloc = (int)BADELEMENT; |
|
return 0; |
|
} |
|
} // if (cutshcount > 0) |
|
} // if (ivf->splitbdflag) |
|
} // if (cutcount > 0) |
|
|
|
} // if (ivf->validflag) |
|
|
|
if (ivf->refineflag) { |
|
// The new point is inserted by Delaunay refinement, i.e., it is the |
|
// circumcenter of a tetrahedron, or a subface, or a segment. |
|
// Do not insert this point if the tetrahedron, or subface, or segment |
|
// is not inside the final cavity. |
|
if (((ivf->refineflag == 1) && !infected(ivf->refinetet)) || |
|
((ivf->refineflag == 2) && !smarktested(ivf->refinesh))) { |
|
insertpoint_abort(splitseg, ivf); |
|
ivf->iloc = (int)BADELEMENT; |
|
return 0; |
|
} |
|
} // if (ivf->refineflag) |
|
|
|
if (b->plc && (loc != INSTAR)) { |
|
// Reject the new point if it lies too close to an existing point (b->plc), |
|
// or it lies inside a protecting ball of near vertex (ivf->rejflag & 4). |
|
// Collect the list of vertices of the initial cavity. |
|
if (loc == OUTSIDE) { |
|
pts = (point*)&(searchtet->tet[4]); |
|
for (i = 0; i < 3; i++) { |
|
cavetetvertlist->newindex((void**)&parypt); |
|
*parypt = pts[i]; |
|
} |
|
} else if (loc == INTETRAHEDRON) { |
|
pts = (point*)&(searchtet->tet[4]); |
|
for (i = 0; i < 4; i++) { |
|
cavetetvertlist->newindex((void**)&parypt); |
|
*parypt = pts[i]; |
|
} |
|
} else if (loc == ONFACE) { |
|
pts = (point*)&(searchtet->tet[4]); |
|
for (i = 0; i < 3; i++) { |
|
cavetetvertlist->newindex((void**)&parypt); |
|
*parypt = pts[i]; |
|
} |
|
if (pts[3] != dummypoint) { |
|
cavetetvertlist->newindex((void**)&parypt); |
|
*parypt = pts[3]; |
|
} |
|
fsym(*searchtet, spintet); |
|
if (oppo(spintet) != dummypoint) { |
|
cavetetvertlist->newindex((void**)&parypt); |
|
*parypt = oppo(spintet); |
|
} |
|
} else if (loc == ONEDGE) { |
|
spintet = *searchtet; |
|
cavetetvertlist->newindex((void**)&parypt); |
|
*parypt = org(spintet); |
|
cavetetvertlist->newindex((void**)&parypt); |
|
*parypt = dest(spintet); |
|
while (1) { |
|
if (apex(spintet) != dummypoint) { |
|
cavetetvertlist->newindex((void**)&parypt); |
|
*parypt = apex(spintet); |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet->tet) break; |
|
} |
|
} |
|
|
|
int rejptflag = (ivf->rejflag & 4); |
|
REAL rd; |
|
pts = NULL; |
|
|
|
for (i = 0; i < cavetetvertlist->objects; i++) { |
|
parypt = (point*)fastlookup(cavetetvertlist, i); |
|
rd = distance(*parypt, insertpt); |
|
// Is the point very close to an existing point? |
|
if (rd < minedgelength) { |
|
pts = parypt; |
|
loc = NEARVERTEX; |
|
break; |
|
} |
|
if (rejptflag) { |
|
// Is the point encroaches upon an existing point? |
|
if (rd < (0.5 * (*parypt)[pointmtrindex])) { |
|
pts = parypt; |
|
loc = ENCVERTEX; |
|
break; |
|
} |
|
} |
|
} |
|
cavetetvertlist->restart(); // Clear the work list. |
|
|
|
if (pts != NULL) { |
|
// The point is either too close to an existing vertex (NEARVERTEX) |
|
// or encroaches upon (inside the protecting ball) of that vertex. |
|
if (loc == NEARVERTEX) { |
|
if (!issteinerpoint(insertpt) && b->nomergevertex) { // -M0/1 option. |
|
// 'insertpt' is an input vertex. |
|
// In this case, we still insert this vertex. Issue a warning. |
|
if (!b->quiet) { |
|
printf("Warning: Two points, %d and %d, are very close.\n", |
|
pointmark(insertpt), pointmark(*pts)); |
|
printf(" Creating a very short edge (len = %g) (< %g).\n", rd, |
|
minedgelength); |
|
printf(" You may try a smaller tolerance (-T) (current is %g)\n", |
|
b->epsilon); |
|
printf(" to avoid this warning.\n"); |
|
} |
|
} else { |
|
point2tetorg(*pts, *searchtet); |
|
insertpoint_abort(splitseg, ivf); |
|
ivf->iloc = (int)loc; |
|
return 0; |
|
} |
|
} else { // loc == ENCVERTEX |
|
// The point lies inside the protection ball. |
|
point2tetorg(*pts, *searchtet); |
|
insertpoint_abort(splitseg, ivf); |
|
ivf->iloc = (int)loc; |
|
return 0; |
|
} |
|
} |
|
} // if (b->plc && (loc != INSTAR)) |
|
|
|
if (b->weighted || ivf->cdtflag || ivf->smlenflag) { |
|
// There may be other vertices inside C(p). We need to find them. |
|
// Collect all vertices of C(p). |
|
for (i = 0; i < caveoldtetlist->objects; i++) { |
|
cavetet = (triface*)fastlookup(caveoldtetlist, i); |
|
// assert(infected(*cavetet)); |
|
pts = (point*)&(cavetet->tet[4]); |
|
for (j = 0; j < 4; j++) { |
|
if (pts[j] != dummypoint) { |
|
if (!pinfected(pts[j])) { |
|
pinfect(pts[j]); |
|
cavetetvertlist->newindex((void**)&parypt); |
|
*parypt = pts[j]; |
|
} |
|
} |
|
} // j |
|
} // i |
|
// Uninfect all collected (cavity) vertices. |
|
for (i = 0; i < cavetetvertlist->objects; i++) { |
|
parypt = (point*)fastlookup(cavetetvertlist, i); |
|
puninfect(*parypt); |
|
} |
|
if (ivf->smlenflag) { |
|
REAL len; |
|
// Get the length of the shortest edge connecting to 'newpt'. |
|
parypt = (point*)fastlookup(cavetetvertlist, 0); |
|
ivf->smlen = distance(*parypt, insertpt); |
|
ivf->parentpt = *parypt; |
|
for (i = 1; i < cavetetvertlist->objects; i++) { |
|
parypt = (point*)fastlookup(cavetetvertlist, i); |
|
len = distance(*parypt, insertpt); |
|
if (len < ivf->smlen) { |
|
ivf->smlen = len; |
|
ivf->parentpt = *parypt; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (ivf->cdtflag) { |
|
// Unmark tets. |
|
for (i = 0; i < caveoldtetlist->objects; i++) { |
|
cavetet = (triface*)fastlookup(caveoldtetlist, i); |
|
unmarktest(*cavetet); |
|
} |
|
for (i = 0; i < cavebdrylist->objects; i++) { |
|
cavetet = (triface*)fastlookup(cavebdrylist, i); |
|
unmarktest(*cavetet); |
|
} |
|
// Clean up arrays which are not needed. |
|
cavetetlist->restart(); |
|
if (checksubsegflag) { |
|
cavetetseglist->restart(); |
|
} |
|
if (checksubfaceflag) { |
|
cavetetshlist->restart(); |
|
} |
|
return 1; |
|
} |
|
|
|
// Before re-mesh C(p). Process the segments and subfaces which are on the |
|
// boundary of C(p). Make sure that each such segment or subface is |
|
// connecting to a tet outside C(p). So we can re-connect them to the |
|
// new tets inside the C(p) later. |
|
|
|
if (checksubsegflag) { |
|
for (i = 0; i < cavetetseglist->objects; i++) { |
|
paryseg = (face*)fastlookup(cavetetseglist, i); |
|
// Operate on it if it is not the splitting segment, i.e., in sC(p). |
|
if (!smarktested(*paryseg)) { |
|
// Check if the segment is inside the cavity. |
|
// 'j' counts the num of adjacent tets of this seg. |
|
// 'k' counts the num of adjacent tets which are 'sinfected'. |
|
j = k = 0; |
|
sstpivot1(*paryseg, neightet); |
|
spintet = neightet; |
|
while (1) { |
|
j++; |
|
if (!infected(spintet)) { |
|
neineitet = spintet; // An outer tet. Remember it. |
|
} else { |
|
k++; // An in tet. |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == neightet.tet) break; |
|
} |
|
// assert(j > 0); |
|
if (k == 0) { |
|
// The segment is not connect to C(p) anymore. Remove it by |
|
// Replacing it by the last entry of this list. |
|
s = cavetetseglist->objects - 1; |
|
checkseg = *(face*)fastlookup(cavetetseglist, s); |
|
*paryseg = checkseg; |
|
cavetetseglist->objects--; |
|
i--; |
|
} else if (k < j) { |
|
// The segment is on the boundary of C(p). |
|
sstbond1(*paryseg, neineitet); |
|
} else { // k == j |
|
// The segment is inside C(p). |
|
if (!ivf->splitbdflag) { |
|
checkseg = *paryseg; |
|
sinfect(checkseg); // Flag it as an interior segment. |
|
caveencseglist->newindex((void**)&paryseg); |
|
*paryseg = checkseg; |
|
} else { |
|
// assert(0); // Not possible. |
|
terminatetetgen(this, 2); |
|
} |
|
} |
|
} else { |
|
// assert(smarktested(*paryseg)); |
|
// Flag it as an interior segment. Do not queue it, since it will |
|
// be deleted after the segment splitting. |
|
sinfect(*paryseg); |
|
} |
|
} // i |
|
} // if (checksubsegflag) |
|
|
|
if (checksubfaceflag) { |
|
for (i = 0; i < cavetetshlist->objects; i++) { |
|
parysh = (face*)fastlookup(cavetetshlist, i); |
|
// Operate on it if it is not inside the sub-cavity sC(p). |
|
if (!smarktested(*parysh)) { |
|
// Check if this subface is inside the cavity. |
|
k = 0; |
|
for (j = 0; j < 2; j++) { |
|
stpivot(*parysh, neightet); |
|
if (!infected(neightet)) { |
|
checksh = *parysh; // Remember this side. |
|
} else { |
|
k++; |
|
} |
|
sesymself(*parysh); |
|
} |
|
if (k == 0) { |
|
// The subface is not connected to C(p). Remove it. |
|
s = cavetetshlist->objects - 1; |
|
checksh = *(face*)fastlookup(cavetetshlist, s); |
|
*parysh = checksh; |
|
cavetetshlist->objects--; |
|
i--; |
|
} else if (k == 1) { |
|
// This side is the outer boundary of C(p). |
|
*parysh = checksh; |
|
} else { // k == 2 |
|
if (!ivf->splitbdflag) { |
|
checksh = *parysh; |
|
sinfect(checksh); // Flag it. |
|
caveencshlist->newindex((void**)&parysh); |
|
*parysh = checksh; |
|
} else { |
|
// assert(0); // Not possible. |
|
terminatetetgen(this, 2); |
|
} |
|
} |
|
} else { |
|
// assert(smarktested(*parysh)); |
|
// Flag it as an interior subface. Do not queue it. It will be |
|
// deleted after the facet point insertion. |
|
sinfect(*parysh); |
|
} |
|
} // i |
|
} // if (checksubfaceflag) |
|
|
|
// Create new tetrahedra to fill the cavity. |
|
|
|
for (i = 0; i < cavebdrylist->objects; i++) { |
|
cavetet = (triface*)fastlookup(cavebdrylist, i); |
|
neightet = *cavetet; |
|
unmarktest(neightet); // Unmark it. |
|
// Get the oldtet (inside the cavity). |
|
fsym(neightet, oldtet); |
|
if (apex(neightet) != dummypoint) { |
|
// Create a new tet in the cavity. |
|
maketetrahedron(&newtet); |
|
setorg(newtet, dest(neightet)); |
|
setdest(newtet, org(neightet)); |
|
setapex(newtet, apex(neightet)); |
|
setoppo(newtet, insertpt); |
|
} else { |
|
// Create a new hull tet. |
|
hullsize++; |
|
maketetrahedron(&newtet); |
|
setorg(newtet, org(neightet)); |
|
setdest(newtet, dest(neightet)); |
|
setapex(newtet, insertpt); |
|
setoppo(newtet, dummypoint); // It must opposite to face 3. |
|
// Adjust back to the cavity bounday face. |
|
esymself(newtet); |
|
} |
|
// The new tet inherits attribtes from the old tet. |
|
for (j = 0; j < numelemattrib; j++) { |
|
attrib = elemattribute(oldtet.tet, j); |
|
setelemattribute(newtet.tet, j, attrib); |
|
} |
|
if (b->varvolume) { |
|
volume = volumebound(oldtet.tet); |
|
setvolumebound(newtet.tet, volume); |
|
} |
|
// Connect newtet <==> neightet, this also disconnect the old bond. |
|
bond(newtet, neightet); |
|
// oldtet still connects to neightet. |
|
*cavetet = oldtet; // *cavetet = newtet; |
|
} // i |
|
|
|
// Set a handle for speeding point location. |
|
recenttet = newtet; |
|
// setpoint2tet(insertpt, encode(newtet)); |
|
setpoint2tet(insertpt, (tetrahedron)(newtet.tet)); |
|
|
|
// Re-use this list to save new interior cavity faces. |
|
cavetetlist->restart(); |
|
|
|
// Connect adjacent new tetrahedra together. |
|
for (i = 0; i < cavebdrylist->objects; i++) { |
|
cavetet = (triface*)fastlookup(cavebdrylist, i); |
|
// cavtet is an oldtet, get the newtet at this face. |
|
oldtet = *cavetet; |
|
fsym(oldtet, neightet); |
|
fsym(neightet, newtet); |
|
// Comment: oldtet and newtet must be at the same directed edge. |
|
// Connect the three other faces of this newtet. |
|
for (j = 0; j < 3; j++) { |
|
esym(newtet, neightet); // Go to the face. |
|
if (neightet.tet[neightet.ver & 3] == NULL) { |
|
// Find the adjacent face of this newtet. |
|
spintet = oldtet; |
|
while (1) { |
|
fnextself(spintet); |
|
if (!infected(spintet)) break; |
|
} |
|
fsym(spintet, newneitet); |
|
esymself(newneitet); |
|
bond(neightet, newneitet); |
|
if (ivf->lawson > 1) { |
|
cavetetlist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
} |
|
// setpoint2tet(org(newtet), encode(newtet)); |
|
setpoint2tet(org(newtet), (tetrahedron)(newtet.tet)); |
|
enextself(newtet); |
|
enextself(oldtet); |
|
} |
|
*cavetet = newtet; // Save the new tet. |
|
} // i |
|
|
|
if (checksubfaceflag) { |
|
// Connect subfaces on the boundary of the cavity to the new tets. |
|
for (i = 0; i < cavetetshlist->objects; i++) { |
|
parysh = (face*)fastlookup(cavetetshlist, i); |
|
// Connect it if it is not a missing subface. |
|
if (!sinfected(*parysh)) { |
|
stpivot(*parysh, neightet); |
|
fsym(neightet, spintet); |
|
sesymself(*parysh); |
|
tsbond(spintet, *parysh); |
|
} |
|
} |
|
} |
|
|
|
if (checksubsegflag) { |
|
// Connect segments on the boundary of the cavity to the new tets. |
|
for (i = 0; i < cavetetseglist->objects; i++) { |
|
paryseg = (face*)fastlookup(cavetetseglist, i); |
|
// Connect it if it is not a missing segment. |
|
if (!sinfected(*paryseg)) { |
|
sstpivot1(*paryseg, neightet); |
|
spintet = neightet; |
|
while (1) { |
|
tssbond1(spintet, *paryseg); |
|
fnextself(spintet); |
|
if (spintet.tet == neightet.tet) break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (((splitsh != NULL) && (splitsh->sh != NULL)) || |
|
((splitseg != NULL) && (splitseg->sh != NULL))) { |
|
// Split a subface or a segment. |
|
sinsertvertex(insertpt, splitsh, splitseg, ivf->sloc, ivf->sbowywat, 0); |
|
} |
|
|
|
if (checksubfaceflag) { |
|
if (ivf->splitbdflag) { |
|
// Recover new subfaces in C(p). |
|
for (i = 0; i < caveshbdlist->objects; i++) { |
|
// Get an old subface at edge [a, b]. |
|
parysh = (face*)fastlookup(caveshbdlist, i); |
|
spivot(*parysh, checksh); // The new subface [a, b, p]. |
|
// Do not recover a deleted new face (degenerated). |
|
if (checksh.sh[3] != NULL) { |
|
// Note that the old subface still connects to adjacent old tets |
|
// of C(p), which still connect to the tets outside C(p). |
|
stpivot(*parysh, neightet); |
|
// Find the adjacent tet containing the edge [a,b] outside C(p). |
|
spintet = neightet; |
|
while (1) { |
|
fnextself(spintet); |
|
if (!infected(spintet)) break; |
|
} |
|
// The adjacent tet connects to a new tet in C(p). |
|
fsym(spintet, neightet); |
|
// Find the tet containing the face [a, b, p]. |
|
spintet = neightet; |
|
while (1) { |
|
fnextself(spintet); |
|
if (apex(spintet) == insertpt) break; |
|
} |
|
// Adjust the edge direction in spintet and checksh. |
|
if (sorg(checksh) != org(spintet)) { |
|
sesymself(checksh); |
|
} |
|
// Connect the subface to two adjacent tets. |
|
tsbond(spintet, checksh); |
|
fsymself(spintet); |
|
sesymself(checksh); |
|
tsbond(spintet, checksh); |
|
} // if (checksh.sh[3] != NULL) |
|
} |
|
} else { |
|
// The Boundary recovery phase. |
|
// Put all new subfaces into stack for recovery. |
|
for (i = 0; i < caveshbdlist->objects; i++) { |
|
// Get an old subface at edge [a, b]. |
|
parysh = (face*)fastlookup(caveshbdlist, i); |
|
spivot(*parysh, checksh); // The new subface [a, b, p]. |
|
// Do not recover a deleted new face (degenerated). |
|
if (checksh.sh[3] != NULL) { |
|
subfacstack->newindex((void**)&parysh); |
|
*parysh = checksh; |
|
} |
|
} |
|
// Put all interior subfaces into stack for recovery. |
|
for (i = 0; i < caveencshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveencshlist, i); |
|
// Some subfaces inside C(p) might be split in sinsertvertex(). |
|
// Only queue those faces which are not split. |
|
if (!smarktested(*parysh)) { |
|
checksh = *parysh; |
|
suninfect(checksh); |
|
stdissolve(checksh); // Detach connections to old tets. |
|
subfacstack->newindex((void**)&parysh); |
|
*parysh = checksh; |
|
} |
|
} |
|
} |
|
} // if (checksubfaceflag) |
|
|
|
if (checksubsegflag) { |
|
if (ivf->splitbdflag) { |
|
if (splitseg != NULL) { |
|
// Recover the two new subsegments in C(p). |
|
for (i = 0; i < cavesegshlist->objects; i++) { |
|
paryseg = (face*)fastlookup(cavesegshlist, i); |
|
// Insert this subsegment into C(p). |
|
checkseg = *paryseg; |
|
// Get the adjacent new subface. |
|
checkseg.shver = 0; |
|
spivot(checkseg, checksh); |
|
if (checksh.sh != NULL) { |
|
// Get the adjacent new tetrahedron. |
|
stpivot(checksh, neightet); |
|
} else { |
|
// It's a dangling segment. |
|
point2tetorg(sorg(checkseg), neightet); |
|
finddirection(&neightet, sdest(checkseg)); |
|
} |
|
sstbond1(checkseg, neightet); |
|
spintet = neightet; |
|
while (1) { |
|
tssbond1(spintet, checkseg); |
|
fnextself(spintet); |
|
if (spintet.tet == neightet.tet) break; |
|
} |
|
} |
|
} // if (splitseg != NULL) |
|
} else { |
|
// The Boundary Recovery Phase. |
|
// Queue missing segments in C(p) for recovery. |
|
if (splitseg != NULL) { |
|
// Queue two new subsegments in C(p) for recovery. |
|
for (i = 0; i < cavesegshlist->objects; i++) { |
|
paryseg = (face*)fastlookup(cavesegshlist, i); |
|
checkseg = *paryseg; |
|
// sstdissolve1(checkseg); // It has not been connected yet. |
|
s = randomnation(subsegstack->objects + 1); |
|
subsegstack->newindex((void**)&paryseg); |
|
*paryseg = *(face*)fastlookup(subsegstack, s); |
|
paryseg = (face*)fastlookup(subsegstack, s); |
|
*paryseg = checkseg; |
|
} |
|
} // if (splitseg != NULL) |
|
for (i = 0; i < caveencseglist->objects; i++) { |
|
paryseg = (face*)fastlookup(caveencseglist, i); |
|
if (!smarktested(*paryseg)) { // It may be split. |
|
checkseg = *paryseg; |
|
suninfect(checkseg); |
|
sstdissolve1(checkseg); // Detach connections to old tets. |
|
s = randomnation(subsegstack->objects + 1); |
|
subsegstack->newindex((void**)&paryseg); |
|
*paryseg = *(face*)fastlookup(subsegstack, s); |
|
paryseg = (face*)fastlookup(subsegstack, s); |
|
*paryseg = checkseg; |
|
} |
|
} |
|
} |
|
} // if (checksubsegflag) |
|
|
|
if (b->weighted) { |
|
// Some vertices may be completed inside the cavity. They must be |
|
// detected and added to recovering list. |
|
// Since every "live" vertex must contain a pointer to a non-dead |
|
// tetrahedron, we can check for each vertex this pointer. |
|
for (i = 0; i < cavetetvertlist->objects; i++) { |
|
pts = (point*)fastlookup(cavetetvertlist, i); |
|
decode(point2tet(*pts), *searchtet); |
|
if (infected(*searchtet)) { |
|
if (b->weighted) { |
|
if (b->verbose > 1) { |
|
printf(" Point #%d is non-regular after the insertion of #%d.\n", |
|
pointmark(*pts), pointmark(insertpt)); |
|
} |
|
setpointtype(*pts, NREGULARVERTEX); |
|
nonregularcount++; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (ivf->chkencflag & 1) { |
|
// Queue all segment outside C(p). |
|
for (i = 0; i < cavetetseglist->objects; i++) { |
|
paryseg = (face*)fastlookup(cavetetseglist, i); |
|
// Skip if it is the split segment. |
|
if (!sinfected(*paryseg)) { |
|
enqueuesubface(badsubsegs, paryseg); |
|
} |
|
} |
|
if (splitseg != NULL) { |
|
// Queue the two new subsegments inside C(p). |
|
for (i = 0; i < cavesegshlist->objects; i++) { |
|
paryseg = (face*)fastlookup(cavesegshlist, i); |
|
enqueuesubface(badsubsegs, paryseg); |
|
} |
|
} |
|
} // if (chkencflag & 1) |
|
|
|
if (ivf->chkencflag & 2) { |
|
// Queue all subfaces outside C(p). |
|
for (i = 0; i < cavetetshlist->objects; i++) { |
|
parysh = (face*)fastlookup(cavetetshlist, i); |
|
// Skip if it is a split subface. |
|
if (!sinfected(*parysh)) { |
|
enqueuesubface(badsubfacs, parysh); |
|
} |
|
} |
|
// Queue all new subfaces inside C(p). |
|
for (i = 0; i < caveshbdlist->objects; i++) { |
|
// Get an old subface at edge [a, b]. |
|
parysh = (face*)fastlookup(caveshbdlist, i); |
|
spivot(*parysh, checksh); // checksh is a new subface [a, b, p]. |
|
// Do not recover a deleted new face (degenerated). |
|
if (checksh.sh[3] != NULL) { |
|
enqueuesubface(badsubfacs, &checksh); |
|
} |
|
} |
|
} // if (chkencflag & 2) |
|
|
|
if (ivf->chkencflag & 4) { |
|
// Queue all new tetrahedra in C(p). |
|
for (i = 0; i < cavebdrylist->objects; i++) { |
|
cavetet = (triface*)fastlookup(cavebdrylist, i); |
|
enqueuetetrahedron(cavetet); |
|
} |
|
} |
|
|
|
// C(p) is re-meshed successfully. |
|
|
|
// Delete the old tets in C(p). |
|
for (i = 0; i < caveoldtetlist->objects; i++) { |
|
searchtet = (triface*)fastlookup(caveoldtetlist, i); |
|
if (ishulltet(*searchtet)) { |
|
hullsize--; |
|
} |
|
tetrahedrondealloc(searchtet->tet); |
|
} |
|
|
|
if (((splitsh != NULL) && (splitsh->sh != NULL)) || |
|
((splitseg != NULL) && (splitseg->sh != NULL))) { |
|
// Delete the old subfaces in sC(p). |
|
for (i = 0; i < caveshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshlist, i); |
|
if (checksubfaceflag) { // if (bowywat == 2) { |
|
// It is possible that this subface still connects to adjacent |
|
// tets which are not in C(p). If so, clear connections in the |
|
// adjacent tets at this subface. |
|
stpivot(*parysh, neightet); |
|
if (neightet.tet != NULL) { |
|
if (neightet.tet[4] != NULL) { |
|
// Found an adjacent tet. It must be not in C(p). |
|
tsdissolve(neightet); |
|
fsymself(neightet); |
|
tsdissolve(neightet); |
|
} |
|
} |
|
} |
|
shellfacedealloc(subfaces, parysh->sh); |
|
} |
|
if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
|
// Delete the old segment in sC(p). |
|
shellfacedealloc(subsegs, splitseg->sh); |
|
} |
|
} |
|
|
|
if (ivf->lawson) { |
|
for (i = 0; i < cavebdrylist->objects; i++) { |
|
searchtet = (triface*)fastlookup(cavebdrylist, i); |
|
flippush(flipstack, searchtet); |
|
} |
|
if (ivf->lawson > 1) { |
|
for (i = 0; i < cavetetlist->objects; i++) { |
|
searchtet = (triface*)fastlookup(cavetetlist, i); |
|
flippush(flipstack, searchtet); |
|
} |
|
} |
|
} |
|
|
|
// Clean the working lists. |
|
|
|
caveoldtetlist->restart(); |
|
cavebdrylist->restart(); |
|
cavetetlist->restart(); |
|
|
|
if (checksubsegflag) { |
|
cavetetseglist->restart(); |
|
caveencseglist->restart(); |
|
} |
|
|
|
if (checksubfaceflag) { |
|
cavetetshlist->restart(); |
|
caveencshlist->restart(); |
|
} |
|
|
|
if (b->weighted || ivf->smlenflag) { |
|
cavetetvertlist->restart(); |
|
} |
|
|
|
if (((splitsh != NULL) && (splitsh->sh != NULL)) || |
|
((splitseg != NULL) && (splitseg->sh != NULL))) { |
|
caveshlist->restart(); |
|
caveshbdlist->restart(); |
|
cavesegshlist->restart(); |
|
} |
|
|
|
return 1; // Point is inserted. |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// insertpoint_abort() Abort the insertion of a new vertex. // |
|
// // |
|
// The cavity will be restored. All working lists are cleared. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::insertpoint_abort(face* splitseg, insertvertexflags* ivf) { |
|
triface* cavetet; |
|
face* parysh; |
|
int i; |
|
|
|
for (i = 0; i < caveoldtetlist->objects; i++) { |
|
cavetet = (triface*)fastlookup(caveoldtetlist, i); |
|
uninfect(*cavetet); |
|
unmarktest(*cavetet); |
|
} |
|
for (i = 0; i < cavebdrylist->objects; i++) { |
|
cavetet = (triface*)fastlookup(cavebdrylist, i); |
|
unmarktest(*cavetet); |
|
} |
|
cavetetlist->restart(); |
|
cavebdrylist->restart(); |
|
caveoldtetlist->restart(); |
|
cavetetseglist->restart(); |
|
cavetetshlist->restart(); |
|
if (ivf->splitbdflag) { |
|
if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
|
sunmarktest(*splitseg); |
|
} |
|
for (i = 0; i < caveshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshlist, i); |
|
sunmarktest(*parysh); |
|
} |
|
caveshlist->restart(); |
|
cavesegshlist->restart(); |
|
} |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// flip_cxx ///////////////////////////////////////////////////////////////// |
|
|
|
//// delaunay_cxx ///////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// transfernodes() Read the vertices from the input (tetgenio). // |
|
// // |
|
// Transferring all points from input ('in->pointlist') to TetGen's 'points'.// |
|
// All points are indexed (the first point index is 'in->firstnumber'). Each // |
|
// point's type is initialized as UNUSEDVERTEX. The bounding box (xmax, xmin,// |
|
// ...) and the diameter (longest) of the point set are calculated. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::transfernodes() { |
|
point pointloop; |
|
REAL x, y, z, w; |
|
int coordindex; |
|
int attribindex; |
|
int mtrindex; |
|
int i, j; |
|
|
|
// Read the points. |
|
coordindex = 0; |
|
attribindex = 0; |
|
mtrindex = 0; |
|
for (i = 0; i < in->numberofpoints; i++) { |
|
makepoint(&pointloop, UNUSEDVERTEX); |
|
// Read the point coordinates. |
|
x = pointloop[0] = in->pointlist[coordindex++]; |
|
y = pointloop[1] = in->pointlist[coordindex++]; |
|
z = pointloop[2] = in->pointlist[coordindex++]; |
|
// Read the point attributes. (Including point weights.) |
|
for (j = 0; j < in->numberofpointattributes; j++) { |
|
pointloop[3 + j] = in->pointattributelist[attribindex++]; |
|
} |
|
// Read the point metric tensor. |
|
for (j = 0; j < in->numberofpointmtrs; j++) { |
|
pointloop[pointmtrindex + j] = in->pointmtrlist[mtrindex++]; |
|
} |
|
if (b->weighted) { // -w option |
|
if (in->numberofpointattributes > 0) { |
|
// The first point attribute is its weight. |
|
// w = in->pointattributelist[in->numberofpointattributes * i]; |
|
w = pointloop[3]; |
|
} else { |
|
// No given weight available. Default choose the maximum |
|
// absolute value among its coordinates. |
|
w = fabs(x); |
|
if (w < fabs(y)) w = fabs(y); |
|
if (w < fabs(z)) w = fabs(z); |
|
} |
|
if (b->weighted_param == 0) { |
|
pointloop[3] = x * x + y * y + z * z - w; // Weighted DT. |
|
} else { // -w1 option |
|
pointloop[3] = w; // Regular tetrahedralization. |
|
} |
|
} |
|
// Determine the smallest and largest x, y and z coordinates. |
|
if (i == 0) { |
|
xmin = xmax = x; |
|
ymin = ymax = y; |
|
zmin = zmax = z; |
|
} else { |
|
xmin = (x < xmin) ? x : xmin; |
|
xmax = (x > xmax) ? x : xmax; |
|
ymin = (y < ymin) ? y : ymin; |
|
ymax = (y > ymax) ? y : ymax; |
|
zmin = (z < zmin) ? z : zmin; |
|
zmax = (z > zmax) ? z : zmax; |
|
} |
|
if (b->psc) { |
|
// Read the geometry parameters. |
|
setpointgeomuv(pointloop, 0, in->pointparamlist[i].uv[0]); |
|
setpointgeomuv(pointloop, 1, in->pointparamlist[i].uv[1]); |
|
setpointgeomtag(pointloop, in->pointparamlist[i].tag); |
|
if (in->pointparamlist[i].type == 0) { |
|
setpointtype(pointloop, RIDGEVERTEX); |
|
} else if (in->pointparamlist[i].type == 1) { |
|
setpointtype(pointloop, FREESEGVERTEX); |
|
} else if (in->pointparamlist[i].type == 2) { |
|
setpointtype(pointloop, FREEFACETVERTEX); |
|
} else if (in->pointparamlist[i].type == 3) { |
|
setpointtype(pointloop, FREEVOLVERTEX); |
|
} |
|
} |
|
} |
|
|
|
// 'longest' is the largest possible edge length formed by input vertices. |
|
x = xmax - xmin; |
|
y = ymax - ymin; |
|
z = zmax - zmin; |
|
longest = sqrt(x * x + y * y + z * z); |
|
if (longest == 0.0) { |
|
printf("Error: The point set is trivial.\n"); |
|
terminatetetgen(this, 10); |
|
} |
|
// Two identical points are distinguished by 'minedgelength'. |
|
minedgelength = longest * b->epsilon; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// hilbert_init() Initialize the Gray code permutation table. // |
|
// // |
|
// The table 'transgc' has 8 x 3 x 8 entries. It contains all possible Gray // |
|
// code sequences traveled by the 1st order Hilbert curve in 3 dimensions. // |
|
// The first column is the Gray code of the entry point of the curve, and // |
|
// the second column is the direction (0, 1, or 2, 0 means the x-axis) where // |
|
// the exit point of curve lies. // |
|
// // |
|
// The table 'tsb1mod3' contains the numbers of trailing set '1' bits of the // |
|
// indices from 0 to 7, modulo by '3'. The code for generating this table is // |
|
// from: http://graphics.stanford.edu/~seander/bithacks.html. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::hilbert_init(int n) { |
|
int gc[8], N, mask, travel_bit; |
|
int e, d, f, k, g; |
|
int v, c; |
|
int i; |
|
|
|
N = (n == 2) ? 4 : 8; |
|
mask = (n == 2) ? 3 : 7; |
|
|
|
// Generate the Gray code sequence. |
|
for (i = 0; i < N; i++) { |
|
gc[i] = i ^ (i >> 1); |
|
} |
|
|
|
for (e = 0; e < N; e++) { |
|
for (d = 0; d < n; d++) { |
|
// Calculate the end point (f). |
|
f = e ^ (1 << d); // Toggle the d-th bit of 'e'. |
|
// travel_bit = 2**p, the bit we want to travel. |
|
travel_bit = e ^ f; |
|
for (i = 0; i < N; i++) { |
|
// // Rotate gc[i] left by (p + 1) % n bits. |
|
k = gc[i] * (travel_bit * 2); |
|
g = ((k | (k / N)) & mask); |
|
// Calculate the permuted Gray code by xor with the start point (e). |
|
transgc[e][d][i] = (g ^ e); |
|
} |
|
} // d |
|
} // e |
|
|
|
// Count the consecutive '1' bits (trailing) on the right. |
|
tsb1mod3[0] = 0; |
|
for (i = 1; i < N; i++) { |
|
v = ~i; // Count the 0s. |
|
v = (v ^ (v - 1)) >> 1; // Set v's trailing 0s to 1s and zero rest |
|
for (c = 0; v; c++) { |
|
v >>= 1; |
|
} |
|
tsb1mod3[i] = c % n; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// hilbert_sort3() Sort points using the 3d Hilbert curve. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::hilbert_split(point* vertexarray, int arraysize, int gc0, int gc1, REAL bxmin, |
|
REAL bxmax, REAL bymin, REAL bymax, REAL bzmin, REAL bzmax) { |
|
point swapvert; |
|
int axis, d; |
|
REAL split; |
|
int i, j; |
|
|
|
// Find the current splitting axis. 'axis' is a value 0, or 1, or 2, which |
|
// correspoding to x-, or y- or z-axis. |
|
axis = (gc0 ^ gc1) >> 1; |
|
|
|
// Calulate the split position along the axis. |
|
if (axis == 0) { |
|
split = 0.5 * (bxmin + bxmax); |
|
} else if (axis == 1) { |
|
split = 0.5 * (bymin + bymax); |
|
} else { // == 2 |
|
split = 0.5 * (bzmin + bzmax); |
|
} |
|
|
|
// Find the direction (+1 or -1) of the axis. If 'd' is +1, the direction |
|
// of the axis is to the positive of the axis, otherwise, it is -1. |
|
d = ((gc0 & (1 << axis)) == 0) ? 1 : -1; |
|
|
|
// Partition the vertices into left- and right-arrays such that left points |
|
// have Hilbert indices lower than the right points. |
|
i = 0; |
|
j = arraysize - 1; |
|
|
|
// Partition the vertices into left- and right-arrays. |
|
if (d > 0) { |
|
do { |
|
for (; i < arraysize; i++) { |
|
if (vertexarray[i][axis] >= split) break; |
|
} |
|
for (; j >= 0; j--) { |
|
if (vertexarray[j][axis] < split) break; |
|
} |
|
// Is the partition finished? |
|
if (i == (j + 1)) break; |
|
// Swap i-th and j-th vertices. |
|
swapvert = vertexarray[i]; |
|
vertexarray[i] = vertexarray[j]; |
|
vertexarray[j] = swapvert; |
|
// Continue patitioning the array; |
|
} while (true); |
|
} else { |
|
do { |
|
for (; i < arraysize; i++) { |
|
if (vertexarray[i][axis] <= split) break; |
|
} |
|
for (; j >= 0; j--) { |
|
if (vertexarray[j][axis] > split) break; |
|
} |
|
// Is the partition finished? |
|
if (i == (j + 1)) break; |
|
// Swap i-th and j-th vertices. |
|
swapvert = vertexarray[i]; |
|
vertexarray[i] = vertexarray[j]; |
|
vertexarray[j] = swapvert; |
|
// Continue patitioning the array; |
|
} while (true); |
|
} |
|
|
|
return i; |
|
} |
|
|
|
void tetgenmesh::hilbert_sort3(point* vertexarray, int arraysize, int e, int d, REAL bxmin, |
|
REAL bxmax, REAL bymin, REAL bymax, REAL bzmin, REAL bzmax, |
|
int depth) { |
|
REAL x1, x2, y1, y2, z1, z2; |
|
int p[9], w, e_w, d_w, k, ei, di; |
|
int n = 3, mask = 7; |
|
|
|
p[0] = 0; |
|
p[8] = arraysize; |
|
|
|
// Sort the points according to the 1st order Hilbert curve in 3d. |
|
p[4] = hilbert_split(vertexarray, p[8], transgc[e][d][3], transgc[e][d][4], bxmin, bxmax, bymin, |
|
bymax, bzmin, bzmax); |
|
p[2] = hilbert_split(vertexarray, p[4], transgc[e][d][1], transgc[e][d][2], bxmin, bxmax, bymin, |
|
bymax, bzmin, bzmax); |
|
p[1] = hilbert_split(vertexarray, p[2], transgc[e][d][0], transgc[e][d][1], bxmin, bxmax, bymin, |
|
bymax, bzmin, bzmax); |
|
p[3] = hilbert_split(&(vertexarray[p[2]]), p[4] - p[2], transgc[e][d][2], transgc[e][d][3], |
|
bxmin, bxmax, bymin, bymax, bzmin, bzmax) + |
|
p[2]; |
|
p[6] = hilbert_split(&(vertexarray[p[4]]), p[8] - p[4], transgc[e][d][5], transgc[e][d][6], |
|
bxmin, bxmax, bymin, bymax, bzmin, bzmax) + |
|
p[4]; |
|
p[5] = hilbert_split(&(vertexarray[p[4]]), p[6] - p[4], transgc[e][d][4], transgc[e][d][5], |
|
bxmin, bxmax, bymin, bymax, bzmin, bzmax) + |
|
p[4]; |
|
p[7] = hilbert_split(&(vertexarray[p[6]]), p[8] - p[6], transgc[e][d][6], transgc[e][d][7], |
|
bxmin, bxmax, bymin, bymax, bzmin, bzmax) + |
|
p[6]; |
|
|
|
if (b->hilbert_order > 0) { |
|
// A maximum order is prescribed. |
|
if ((depth + 1) == b->hilbert_order) { |
|
// The maximum prescribed order is reached. |
|
return; |
|
} |
|
} |
|
|
|
// Recursively sort the points in sub-boxes. |
|
for (w = 0; w < 8; w++) { |
|
// w is the local Hilbert index (NOT Gray code). |
|
// Sort into the sub-box either there are more than 2 points in it, or |
|
// the prescribed order of the curve is not reached yet. |
|
// if ((p[w+1] - p[w] > b->hilbert_limit) || (b->hilbert_order > 0)) { |
|
if ((p[w + 1] - p[w]) > b->hilbert_limit) { |
|
// Calculcate the start point (ei) of the curve in this sub-box. |
|
// update e = e ^ (e(w) left_rotate (d+1)). |
|
if (w == 0) { |
|
e_w = 0; |
|
} else { |
|
// calculate e(w) = gc(2 * floor((w - 1) / 2)). |
|
k = 2 * ((w - 1) / 2); |
|
e_w = k ^ (k >> 1); // = gc(k). |
|
} |
|
k = e_w; |
|
e_w = ((k << (d + 1)) & mask) | ((k >> (n - d - 1)) & mask); |
|
ei = e ^ e_w; |
|
// Calulcate the direction (di) of the curve in this sub-box. |
|
// update d = (d + d(w) + 1) % n |
|
if (w == 0) { |
|
d_w = 0; |
|
} else { |
|
d_w = ((w % 2) == 0) ? tsb1mod3[w - 1] : tsb1mod3[w]; |
|
} |
|
di = (d + d_w + 1) % n; |
|
// Calculate the bounding box of the sub-box. |
|
if (transgc[e][d][w] & 1) { // x-axis |
|
x1 = 0.5 * (bxmin + bxmax); |
|
x2 = bxmax; |
|
} else { |
|
x1 = bxmin; |
|
x2 = 0.5 * (bxmin + bxmax); |
|
} |
|
if (transgc[e][d][w] & 2) { // y-axis |
|
y1 = 0.5 * (bymin + bymax); |
|
y2 = bymax; |
|
} else { |
|
y1 = bymin; |
|
y2 = 0.5 * (bymin + bymax); |
|
} |
|
if (transgc[e][d][w] & 4) { // z-axis |
|
z1 = 0.5 * (bzmin + bzmax); |
|
z2 = bzmax; |
|
} else { |
|
z1 = bzmin; |
|
z2 = 0.5 * (bzmin + bzmax); |
|
} |
|
hilbert_sort3(&(vertexarray[p[w]]), p[w + 1] - p[w], ei, di, x1, x2, y1, y2, z1, z2, |
|
depth + 1); |
|
} // if (p[w+1] - p[w] > 1) |
|
} // w |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// brio_multiscale_sort() Sort the points using BRIO and Hilbert curve. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::brio_multiscale_sort(point* vertexarray, int arraysize, int threshold, REAL ratio, |
|
int* depth) { |
|
int middle; |
|
|
|
middle = 0; |
|
if (arraysize >= threshold) { |
|
(*depth)++; |
|
middle = arraysize * ratio; |
|
brio_multiscale_sort(vertexarray, middle, threshold, ratio, depth); |
|
} |
|
// Sort the right-array (rnd-th round) using the Hilbert curve. |
|
hilbert_sort3(&(vertexarray[middle]), arraysize - middle, 0, 0, // e, d |
|
xmin, xmax, ymin, ymax, zmin, zmax, 0); // depth. |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// randomnation() Generate a random number between 0 and 'choices' - 1. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
unsigned long tetgenmesh::randomnation(unsigned int choices) { |
|
unsigned long newrandom; |
|
|
|
if (choices >= 714025l) { |
|
newrandom = (randomseed * 1366l + 150889l) % 714025l; |
|
randomseed = (newrandom * 1366l + 150889l) % 714025l; |
|
newrandom = newrandom * (choices / 714025l) + randomseed; |
|
if (newrandom >= choices) { |
|
return newrandom - choices; |
|
} else { |
|
return newrandom; |
|
} |
|
} else { |
|
randomseed = (randomseed * 1366l + 150889l) % 714025l; |
|
return randomseed % choices; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// randomsample() Randomly sample the tetrahedra for point loation. // |
|
// // |
|
// Searching begins from one of handles: the input 'searchtet', a recently // |
|
// encountered tetrahedron 'recenttet', or from one chosen from a random // |
|
// sample. The choice is made by determining which one's origin is closest // |
|
// to the point we are searching for. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::randomsample(point searchpt, triface* searchtet) { |
|
tetrahedron *firsttet, *tetptr; |
|
point torg; |
|
void** sampleblock; |
|
uintptr_t alignptr; |
|
long sampleblocks, samplesperblock, samplenum; |
|
long tetblocks, i, j; |
|
REAL searchdist, dist; |
|
|
|
if (b->verbose > 2) { |
|
printf(" Random sampling tetrahedra for searching point %d.\n", pointmark(searchpt)); |
|
} |
|
|
|
if (!nonconvex) { |
|
if (searchtet->tet == NULL) { |
|
// A null tet. Choose the recenttet as the starting tet. |
|
*searchtet = recenttet; |
|
} |
|
|
|
// 'searchtet' should be a valid tetrahedron. Choose the base face |
|
// whose vertices must not be 'dummypoint'. |
|
searchtet->ver = 3; |
|
// Record the distance from its origin to the searching point. |
|
torg = org(*searchtet); |
|
searchdist = (searchpt[0] - torg[0]) * (searchpt[0] - torg[0]) + |
|
(searchpt[1] - torg[1]) * (searchpt[1] - torg[1]) + |
|
(searchpt[2] - torg[2]) * (searchpt[2] - torg[2]); |
|
|
|
// If a recently encountered tetrahedron has been recorded and has not |
|
// been deallocated, test it as a good starting point. |
|
if (recenttet.tet != searchtet->tet) { |
|
recenttet.ver = 3; |
|
torg = org(recenttet); |
|
dist = (searchpt[0] - torg[0]) * (searchpt[0] - torg[0]) + |
|
(searchpt[1] - torg[1]) * (searchpt[1] - torg[1]) + |
|
(searchpt[2] - torg[2]) * (searchpt[2] - torg[2]); |
|
if (dist < searchdist) { |
|
*searchtet = recenttet; |
|
searchdist = dist; |
|
} |
|
} |
|
} else { |
|
// The mesh is non-convex. Do not use 'recenttet'. |
|
searchdist = longest; |
|
} |
|
|
|
// Select "good" candidate using k random samples, taking the closest one. |
|
// The number of random samples taken is proportional to the fourth root |
|
// of the number of tetrahedra in the mesh. |
|
while (samples * samples * samples * samples < tetrahedrons->items) { |
|
samples++; |
|
} |
|
// Find how much blocks in current tet pool. |
|
tetblocks = (tetrahedrons->maxitems + b->tetrahedraperblock - 1) / b->tetrahedraperblock; |
|
// Find the average samples per block. Each block at least have 1 sample. |
|
samplesperblock = 1 + (samples / tetblocks); |
|
sampleblocks = samples / samplesperblock; |
|
sampleblock = tetrahedrons->firstblock; |
|
for (i = 0; i < sampleblocks; i++) { |
|
alignptr = (uintptr_t)(sampleblock + 1); |
|
firsttet = (tetrahedron*)(alignptr + (uintptr_t)tetrahedrons->alignbytes - |
|
(alignptr % (uintptr_t)tetrahedrons->alignbytes)); |
|
for (j = 0; j < samplesperblock; j++) { |
|
if (i == tetblocks - 1) { |
|
// This is the last block. |
|
samplenum = |
|
randomnation((int)(tetrahedrons->maxitems - (i * b->tetrahedraperblock))); |
|
} else { |
|
samplenum = randomnation(b->tetrahedraperblock); |
|
} |
|
tetptr = (tetrahedron*)(firsttet + (samplenum * tetrahedrons->itemwords)); |
|
torg = (point)tetptr[4]; |
|
if (torg != (point)NULL) { |
|
dist = (searchpt[0] - torg[0]) * (searchpt[0] - torg[0]) + |
|
(searchpt[1] - torg[1]) * (searchpt[1] - torg[1]) + |
|
(searchpt[2] - torg[2]) * (searchpt[2] - torg[2]); |
|
if (dist < searchdist) { |
|
searchtet->tet = tetptr; |
|
searchtet->ver = 11; // torg = org(t); |
|
searchdist = dist; |
|
} |
|
} else { |
|
// A dead tet. Re-sample it. |
|
if (i != tetblocks - 1) j--; |
|
} |
|
} |
|
sampleblock = (void**)*sampleblock; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// locate() Find a tetrahedron containing a given point. // |
|
// // |
|
// Begins its search from 'searchtet', assume there is a line segment L from // |
|
// a vertex of 'searchtet' to the query point 'searchpt', and simply walk // |
|
// towards 'searchpt' by traversing all faces intersected by L. // |
|
// // |
|
// On completion, 'searchtet' is a tetrahedron that contains 'searchpt'. The // |
|
// returned value indicates one of the following cases: // |
|
// - ONVERTEX, the search point lies on the origin of 'searchtet'. // |
|
// - ONEDGE, the search point lies on an edge of 'searchtet'. // |
|
// - ONFACE, the search point lies on a face of 'searchtet'. // |
|
// - INTET, the search point lies in the interior of 'searchtet'. // |
|
// - OUTSIDE, the search point lies outside the mesh. 'searchtet' is a // |
|
// hull face which is visible by the search point. // |
|
// // |
|
// WARNING: This routine is designed for convex triangulations, and will not // |
|
// generally work after the holes and concavities have been carved. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
enum tetgenmesh::locateresult tetgenmesh::locate(point searchpt, triface* searchtet, |
|
int chkencflag) { |
|
point torg, tdest, tapex, toppo; |
|
enum { ORGMOVE, DESTMOVE, APEXMOVE } nextmove; |
|
REAL ori, oriorg, oridest, oriapex; |
|
enum locateresult loc = OUTSIDE; |
|
int t1ver; |
|
int s; |
|
|
|
torg = tdest = tapex = toppo = NULL; |
|
|
|
if (searchtet->tet == NULL) { |
|
// A null tet. Choose the recenttet as the starting tet. |
|
searchtet->tet = recenttet.tet; |
|
} |
|
|
|
// Check if we are in the outside of the convex hull. |
|
if (ishulltet(*searchtet)) { |
|
// Get its adjacent tet (inside the hull). |
|
searchtet->ver = 3; |
|
fsymself(*searchtet); |
|
} |
|
|
|
// Let searchtet be the face such that 'searchpt' lies above to it. |
|
for (searchtet->ver = 0; searchtet->ver < 4; searchtet->ver++) { |
|
torg = org(*searchtet); |
|
tdest = dest(*searchtet); |
|
tapex = apex(*searchtet); |
|
ori = orient3d(torg, tdest, tapex, searchpt); |
|
if (ori < 0.0) break; |
|
} |
|
if (searchtet->ver == 4) { |
|
terminatetetgen(this, 2); |
|
} |
|
|
|
// Walk through tetrahedra to locate the point. |
|
while (true) { |
|
|
|
toppo = oppo(*searchtet); |
|
|
|
// Check if the vertex is we seek. |
|
if (toppo == searchpt) { |
|
// Adjust the origin of searchtet to be searchpt. |
|
esymself(*searchtet); |
|
eprevself(*searchtet); |
|
loc = ONVERTEX; // return ONVERTEX; |
|
break; |
|
} |
|
|
|
// We enter from one of serarchtet's faces, which face do we exit? |
|
oriorg = orient3d(tdest, tapex, toppo, searchpt); |
|
oridest = orient3d(tapex, torg, toppo, searchpt); |
|
oriapex = orient3d(torg, tdest, toppo, searchpt); |
|
|
|
// Now decide which face to move. It is possible there are more than one |
|
// faces are viable moves. If so, randomly choose one. |
|
if (oriorg < 0) { |
|
if (oridest < 0) { |
|
if (oriapex < 0) { |
|
// All three faces are possible. |
|
s = randomnation(3); // 's' is in {0,1,2}. |
|
if (s == 0) { |
|
nextmove = ORGMOVE; |
|
} else if (s == 1) { |
|
nextmove = DESTMOVE; |
|
} else { |
|
nextmove = APEXMOVE; |
|
} |
|
} else { |
|
// Two faces, opposite to origin and destination, are viable. |
|
// s = randomnation(2); // 's' is in {0,1}. |
|
if (randomnation(2)) { |
|
nextmove = ORGMOVE; |
|
} else { |
|
nextmove = DESTMOVE; |
|
} |
|
} |
|
} else { |
|
if (oriapex < 0) { |
|
// Two faces, opposite to origin and apex, are viable. |
|
// s = randomnation(2); // 's' is in {0,1}. |
|
if (randomnation(2)) { |
|
nextmove = ORGMOVE; |
|
} else { |
|
nextmove = APEXMOVE; |
|
} |
|
} else { |
|
// Only the face opposite to origin is viable. |
|
nextmove = ORGMOVE; |
|
} |
|
} |
|
} else { |
|
if (oridest < 0) { |
|
if (oriapex < 0) { |
|
// Two faces, opposite to destination and apex, are viable. |
|
// s = randomnation(2); // 's' is in {0,1}. |
|
if (randomnation(2)) { |
|
nextmove = DESTMOVE; |
|
} else { |
|
nextmove = APEXMOVE; |
|
} |
|
} else { |
|
// Only the face opposite to destination is viable. |
|
nextmove = DESTMOVE; |
|
} |
|
} else { |
|
if (oriapex < 0) { |
|
// Only the face opposite to apex is viable. |
|
nextmove = APEXMOVE; |
|
} else { |
|
// The point we seek must be on the boundary of or inside this |
|
// tetrahedron. Check for boundary cases. |
|
if (oriorg == 0) { |
|
// Go to the face opposite to origin. |
|
enextesymself(*searchtet); |
|
if (oridest == 0) { |
|
eprevself(*searchtet); // edge oppo->apex |
|
if (oriapex == 0) { |
|
// oppo is duplicated with p. |
|
loc = ONVERTEX; // return ONVERTEX; |
|
break; |
|
} |
|
loc = ONEDGE; // return ONEDGE; |
|
break; |
|
} |
|
if (oriapex == 0) { |
|
enextself(*searchtet); // edge dest->oppo |
|
loc = ONEDGE; // return ONEDGE; |
|
break; |
|
} |
|
loc = ONFACE; // return ONFACE; |
|
break; |
|
} |
|
if (oridest == 0) { |
|
// Go to the face opposite to destination. |
|
eprevesymself(*searchtet); |
|
if (oriapex == 0) { |
|
eprevself(*searchtet); // edge oppo->org |
|
loc = ONEDGE; // return ONEDGE; |
|
break; |
|
} |
|
loc = ONFACE; // return ONFACE; |
|
break; |
|
} |
|
if (oriapex == 0) { |
|
// Go to the face opposite to apex |
|
esymself(*searchtet); |
|
loc = ONFACE; // return ONFACE; |
|
break; |
|
} |
|
loc = INTETRAHEDRON; // return INTETRAHEDRON; |
|
break; |
|
} |
|
} |
|
} |
|
|
|
// Move to the selected face. |
|
if (nextmove == ORGMOVE) { |
|
enextesymself(*searchtet); |
|
} else if (nextmove == DESTMOVE) { |
|
eprevesymself(*searchtet); |
|
} else { |
|
esymself(*searchtet); |
|
} |
|
if (chkencflag) { |
|
// Check if we are walking across a subface. |
|
if (issubface(*searchtet)) { |
|
loc = ENCSUBFACE; |
|
break; |
|
} |
|
} |
|
// Move to the adjacent tetrahedron (maybe a hull tetrahedron). |
|
fsymself(*searchtet); |
|
if (oppo(*searchtet) == dummypoint) { |
|
loc = OUTSIDE; // return OUTSIDE; |
|
break; |
|
} |
|
|
|
// Retreat the three vertices of the base face. |
|
torg = org(*searchtet); |
|
tdest = dest(*searchtet); |
|
tapex = apex(*searchtet); |
|
|
|
} // while (true) |
|
|
|
return loc; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// flippush() Push a face (possibly will be flipped) into flipstack. // |
|
// // |
|
// The face is marked. The flag is used to check the validity of the face on // |
|
// its popup. Some other flips may change it already. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::flippush(badface*& fstack, triface* flipface) { |
|
if (!facemarked(*flipface)) { |
|
badface* newflipface = (badface*)flippool->alloc(); |
|
newflipface->tt = *flipface; |
|
markface(newflipface->tt); |
|
// Push this face into stack. |
|
newflipface->nextitem = fstack; |
|
fstack = newflipface; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// incrementalflip() Incrementally flipping to construct DT. // |
|
// // |
|
// Faces need to be checked for flipping are already queued in 'flipstack'. // |
|
// Return the total number of performed flips. // |
|
// // |
|
// Comment: This routine should be only used in the incremental Delaunay // |
|
// construction. In other cases, lawsonflip3d() should be used. // |
|
// // |
|
// If the new point lies outside of the convex hull ('hullflag' is set). The // |
|
// incremental flip algorithm still works as usual. However, we must ensure // |
|
// that every flip (2-to-3 or 3-to-2) does not create a duplicated (existing)// |
|
// edge or face. Otherwise, the underlying space of the triangulation becomes// |
|
// non-manifold and it is not possible to flip further. // |
|
// Thanks to Joerg Rambau and Frank Lutz for helping in this issue. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::incrementalflip(point newpt, int hullflag, flipconstraints* fc) { |
|
badface* popface; |
|
triface fliptets[5], *parytet; |
|
point *pts, *parypt, pe; |
|
REAL sign, ori; |
|
int flipcount = 0; |
|
int t1ver; |
|
int i; |
|
|
|
if (b->verbose > 2) { |
|
printf(" Lawson flip (%ld faces).\n", flippool->items); |
|
} |
|
|
|
if (hullflag) { |
|
// 'newpt' lies in the outside of the convex hull. |
|
// Mark all hull vertices which are connecting to it. |
|
popface = flipstack; |
|
while (popface != NULL) { |
|
pts = (point*)popface->tt.tet; |
|
for (i = 4; i < 8; i++) { |
|
if ((pts[i] != newpt) && (pts[i] != dummypoint)) { |
|
if (!pinfected(pts[i])) { |
|
pinfect(pts[i]); |
|
cavetetvertlist->newindex((void**)&parypt); |
|
*parypt = pts[i]; |
|
} |
|
} |
|
} |
|
popface = popface->nextitem; |
|
} |
|
} |
|
|
|
// Loop until the queue is empty. |
|
while (flipstack != NULL) { |
|
|
|
// Pop a face from the stack. |
|
popface = flipstack; |
|
fliptets[0] = popface->tt; |
|
flipstack = flipstack->nextitem; // The next top item in stack. |
|
flippool->dealloc((void*)popface); |
|
|
|
// Skip it if it is a dead tet (destroyed by previous flips). |
|
if (isdeadtet(fliptets[0])) continue; |
|
// Skip it if it is not the same tet as we saved. |
|
if (!facemarked(fliptets[0])) continue; |
|
|
|
unmarkface(fliptets[0]); |
|
|
|
if ((point)fliptets[0].tet[7] == dummypoint) { |
|
// It must be a hull edge. |
|
fliptets[0].ver = epivot[fliptets[0].ver]; |
|
// A hull edge. The current convex hull may be enlarged. |
|
fsym(fliptets[0], fliptets[1]); |
|
pts = (point*)fliptets[1].tet; |
|
ori = orient3d(pts[4], pts[5], pts[6], newpt); |
|
if (ori < 0) { |
|
// Visible. The convex hull will be enlarged. |
|
// Decide which flip (2-to-3, 3-to-2, or 4-to-1) to use. |
|
// Check if the tet [a,c,e,d] or [c,b,e,d] exists. |
|
enext(fliptets[1], fliptets[2]); |
|
eprev(fliptets[1], fliptets[3]); |
|
fnextself(fliptets[2]); // [a,c,e,*] |
|
fnextself(fliptets[3]); // [c,b,e,*] |
|
if (oppo(fliptets[2]) == newpt) { |
|
if (oppo(fliptets[3]) == newpt) { |
|
// Both tets exist! A 4-to-1 flip is found. |
|
terminatetetgen(this, 2); // Report a bug. |
|
} else { |
|
esym(fliptets[2], fliptets[0]); |
|
fnext(fliptets[0], fliptets[1]); |
|
fnext(fliptets[1], fliptets[2]); |
|
// Perform a 3-to-2 flip. Replace edge [c,a] by face [d,e,b]. |
|
// This corresponds to my standard labels, where edge [e,d] is |
|
// repalced by face [a,b,c], and a is the new vertex. |
|
// [0] [c,a,d,e] (d = newpt) |
|
// [1] [c,a,e,b] (c = dummypoint) |
|
// [2] [c,a,b,d] |
|
flip32(fliptets, 1, fc); |
|
} |
|
} else { |
|
if (oppo(fliptets[3]) == newpt) { |
|
fnext(fliptets[3], fliptets[0]); |
|
fnext(fliptets[0], fliptets[1]); |
|
fnext(fliptets[1], fliptets[2]); |
|
// Perform a 3-to-2 flip. Replace edge [c,b] by face [d,a,e]. |
|
// [0] [c,b,d,a] (d = newpt) |
|
// [1] [c,b,a,e] (c = dummypoint) |
|
// [2] [c,b,e,d] |
|
flip32(fliptets, 1, fc); |
|
} else { |
|
if (hullflag) { |
|
// Reject this flip if pe is already marked. |
|
pe = oppo(fliptets[1]); |
|
if (!pinfected(pe)) { |
|
pinfect(pe); |
|
cavetetvertlist->newindex((void**)&parypt); |
|
*parypt = pe; |
|
// Perform a 2-to-3 flip. |
|
flip23(fliptets, 1, fc); |
|
} else { |
|
// Reject this flip. |
|
flipcount--; |
|
} |
|
} else { |
|
// Perform a 2-to-3 flip. Replace face [a,b,c] by edge [e,d]. |
|
// [0] [a,b,c,d], d = newpt. |
|
// [1] [b,a,c,e], c = dummypoint. |
|
flip23(fliptets, 1, fc); |
|
} |
|
} |
|
} |
|
flipcount++; |
|
} |
|
continue; |
|
} // if (dummypoint) |
|
|
|
fsym(fliptets[0], fliptets[1]); |
|
if ((point)fliptets[1].tet[7] == dummypoint) { |
|
// A hull face is locally Delaunay. |
|
continue; |
|
} |
|
// Check if the adjacent tet has already been tested. |
|
if (marktested(fliptets[1])) { |
|
// It has been tested and it is Delaunay. |
|
continue; |
|
} |
|
|
|
// Test whether the face is locally Delaunay or not. |
|
pts = (point*)fliptets[1].tet; |
|
if (b->weighted) { |
|
sign = orient4d_s(pts[4], pts[5], pts[6], pts[7], newpt, pts[4][3], pts[5][3], |
|
pts[6][3], pts[7][3], newpt[3]); |
|
} else { |
|
sign = insphere_s(pts[4], pts[5], pts[6], pts[7], newpt); |
|
} |
|
|
|
if (sign < 0) { |
|
point pd = newpt; |
|
point pe = oppo(fliptets[1]); |
|
// Check the convexity of its three edges. Stop checking either a |
|
// locally non-convex edge (ori < 0) or a flat edge (ori = 0) is |
|
// encountered, and 'fliptet' represents that edge. |
|
for (i = 0; i < 3; i++) { |
|
ori = orient3d(org(fliptets[0]), dest(fliptets[0]), pd, pe); |
|
if (ori <= 0) break; |
|
enextself(fliptets[0]); |
|
} |
|
if (ori > 0) { |
|
// A 2-to-3 flip is found. |
|
// [0] [a,b,c,d], |
|
// [1] [b,a,c,e]. no dummypoint. |
|
flip23(fliptets, 0, fc); |
|
flipcount++; |
|
} else { // ori <= 0 |
|
// The edge ('fliptets[0]' = [a',b',c',d]) is non-convex or flat, |
|
// where the edge [a',b'] is one of [a,b], [b,c], and [c,a]. |
|
// Check if there are three or four tets sharing at this edge. |
|
esymself(fliptets[0]); // [b,a,d,c] |
|
for (i = 0; i < 3; i++) { |
|
fnext(fliptets[i], fliptets[i + 1]); |
|
} |
|
if (fliptets[3].tet == fliptets[0].tet) { |
|
// A 3-to-2 flip is found. (No hull tet.) |
|
flip32(fliptets, 0, fc); |
|
flipcount++; |
|
} else { |
|
// There are more than 3 tets at this edge. |
|
fnext(fliptets[3], fliptets[4]); |
|
if (fliptets[4].tet == fliptets[0].tet) { |
|
if (ori == 0) { |
|
// A 4-to-4 flip is found. (Two hull tets may be involved.) |
|
// Current tets in 'fliptets': |
|
// [0] [b,a,d,c] (d may be newpt) |
|
// [1] [b,a,c,e] |
|
// [2] [b,a,e,f] (f may be dummypoint) |
|
// [3] [b,a,f,d] |
|
esymself(fliptets[0]); // [a,b,c,d] |
|
// A 2-to-3 flip replaces face [a,b,c] by edge [e,d]. |
|
// This creates a degenerate tet [e,d,a,b] (tmpfliptets[0]). |
|
// It will be removed by the followed 3-to-2 flip. |
|
flip23(fliptets, 0, fc); // No hull tet. |
|
fnext(fliptets[3], fliptets[1]); |
|
fnext(fliptets[1], fliptets[2]); |
|
// Current tets in 'fliptets': |
|
// [0] [...] |
|
// [1] [b,a,d,e] (degenerated, d may be new point). |
|
// [2] [b,a,e,f] (f may be dummypoint) |
|
// [3] [b,a,f,d] |
|
// A 3-to-2 flip replaces edge [b,a] by face [d,e,f]. |
|
// Hull tets may be involved (f may be dummypoint). |
|
flip32(&(fliptets[1]), (apex(fliptets[3]) == dummypoint), fc); |
|
flipcount++; |
|
} |
|
} |
|
} |
|
} // ori |
|
} else { |
|
// The adjacent tet is Delaunay. Mark it to avoid testing it again. |
|
marktest(fliptets[1]); |
|
// Save it for unmarking it later. |
|
cavebdrylist->newindex((void**)&parytet); |
|
*parytet = fliptets[1]; |
|
} |
|
|
|
} // while (flipstack) |
|
|
|
// Unmark saved tetrahedra. |
|
for (i = 0; i < cavebdrylist->objects; i++) { |
|
parytet = (triface*)fastlookup(cavebdrylist, i); |
|
unmarktest(*parytet); |
|
} |
|
cavebdrylist->restart(); |
|
|
|
if (hullflag) { |
|
// Unmark infected vertices. |
|
for (i = 0; i < cavetetvertlist->objects; i++) { |
|
parypt = (point*)fastlookup(cavetetvertlist, i); |
|
puninfect(*parypt); |
|
} |
|
cavetetvertlist->restart(); |
|
} |
|
|
|
return flipcount; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// initialdelaunay() Create an initial Delaunay tetrahedralization. // |
|
// // |
|
// The tetrahedralization contains only one tetrahedron abcd, and four hull // |
|
// tetrahedra. The points pa, pb, pc, and pd must be linearly independent. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::initialdelaunay(point pa, point pb, point pc, point pd) { |
|
triface firsttet, tetopa, tetopb, tetopc, tetopd; |
|
triface worktet, worktet1; |
|
|
|
if (b->verbose > 2) { |
|
printf(" Create init tet (%d, %d, %d, %d)\n", pointmark(pa), pointmark(pb), |
|
pointmark(pc), pointmark(pd)); |
|
} |
|
|
|
// Create the first tetrahedron. |
|
maketetrahedron(&firsttet); |
|
setvertices(firsttet, pa, pb, pc, pd); |
|
// Create four hull tetrahedra. |
|
maketetrahedron(&tetopa); |
|
setvertices(tetopa, pb, pc, pd, dummypoint); |
|
maketetrahedron(&tetopb); |
|
setvertices(tetopb, pc, pa, pd, dummypoint); |
|
maketetrahedron(&tetopc); |
|
setvertices(tetopc, pa, pb, pd, dummypoint); |
|
maketetrahedron(&tetopd); |
|
setvertices(tetopd, pb, pa, pc, dummypoint); |
|
hullsize += 4; |
|
|
|
// Connect hull tetrahedra to firsttet (at four faces of firsttet). |
|
bond(firsttet, tetopd); |
|
esym(firsttet, worktet); |
|
bond(worktet, tetopc); // ab |
|
enextesym(firsttet, worktet); |
|
bond(worktet, tetopa); // bc |
|
eprevesym(firsttet, worktet); |
|
bond(worktet, tetopb); // ca |
|
|
|
// Connect hull tetrahedra together (at six edges of firsttet). |
|
esym(tetopc, worktet); |
|
esym(tetopd, worktet1); |
|
bond(worktet, worktet1); // ab |
|
esym(tetopa, worktet); |
|
eprevesym(tetopd, worktet1); |
|
bond(worktet, worktet1); // bc |
|
esym(tetopb, worktet); |
|
enextesym(tetopd, worktet1); |
|
bond(worktet, worktet1); // ca |
|
eprevesym(tetopc, worktet); |
|
enextesym(tetopb, worktet1); |
|
bond(worktet, worktet1); // da |
|
eprevesym(tetopa, worktet); |
|
enextesym(tetopc, worktet1); |
|
bond(worktet, worktet1); // db |
|
eprevesym(tetopb, worktet); |
|
enextesym(tetopa, worktet1); |
|
bond(worktet, worktet1); // dc |
|
|
|
// Set the vertex type. |
|
if (pointtype(pa) == UNUSEDVERTEX) { |
|
setpointtype(pa, VOLVERTEX); |
|
} |
|
if (pointtype(pb) == UNUSEDVERTEX) { |
|
setpointtype(pb, VOLVERTEX); |
|
} |
|
if (pointtype(pc) == UNUSEDVERTEX) { |
|
setpointtype(pc, VOLVERTEX); |
|
} |
|
if (pointtype(pd) == UNUSEDVERTEX) { |
|
setpointtype(pd, VOLVERTEX); |
|
} |
|
|
|
setpoint2tet(pa, encode(firsttet)); |
|
setpoint2tet(pb, encode(firsttet)); |
|
setpoint2tet(pc, encode(firsttet)); |
|
setpoint2tet(pd, encode(firsttet)); |
|
|
|
// Remember the first tetrahedron. |
|
recenttet = firsttet; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// incrementaldelaunay() Create a Delaunay tetrahedralization by // |
|
// the incremental approach. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::incrementaldelaunay(clock_t& tv) { |
|
triface searchtet; |
|
point *permutarray, swapvertex; |
|
REAL v1[3], v2[3], n[3]; |
|
REAL bboxsize, bboxsize2, bboxsize3, ori; |
|
int randindex; |
|
int ngroup = 0; |
|
int i, j; |
|
|
|
if (!b->quiet) { |
|
printf("Delaunizing vertices...\n"); |
|
} |
|
|
|
// Form a random permuation (uniformly at random) of the set of vertices. |
|
permutarray = new point[in->numberofpoints]; |
|
points->traversalinit(); |
|
|
|
if (b->no_sort) { |
|
if (b->verbose) { |
|
printf(" Using the input order.\n"); |
|
} |
|
for (i = 0; i < in->numberofpoints; i++) { |
|
permutarray[i] = (point)points->traverse(); |
|
} |
|
} else { |
|
if (b->verbose) { |
|
printf(" Permuting vertices.\n"); |
|
} |
|
srand(in->numberofpoints); |
|
for (i = 0; i < in->numberofpoints; i++) { |
|
randindex = rand() % (i + 1); // randomnation(i + 1); |
|
permutarray[i] = permutarray[randindex]; |
|
permutarray[randindex] = (point)points->traverse(); |
|
} |
|
if (b->brio_hilbert) { // -b option |
|
if (b->verbose) { |
|
printf(" Sorting vertices.\n"); |
|
} |
|
hilbert_init(in->mesh_dim); |
|
brio_multiscale_sort(permutarray, in->numberofpoints, b->brio_threshold, b->brio_ratio, |
|
&ngroup); |
|
} |
|
} |
|
|
|
tv = clock(); // Remember the time for sorting points. |
|
|
|
// Calculate the diagonal size of its bounding box. |
|
bboxsize = sqrt(norm2(xmax - xmin, ymax - ymin, zmax - zmin)); |
|
bboxsize2 = bboxsize * bboxsize; |
|
bboxsize3 = bboxsize2 * bboxsize; |
|
|
|
// Make sure the second vertex is not identical with the first one. |
|
i = 1; |
|
while ((distance(permutarray[0], permutarray[i]) / bboxsize) < b->epsilon) { |
|
i++; |
|
if (i == in->numberofpoints - 1) { |
|
printf("Exception: All vertices are (nearly) identical (Tol = %g).\n", b->epsilon); |
|
terminatetetgen(this, 10); |
|
} |
|
} |
|
if (i > 1) { |
|
// Swap to move the non-identical vertex from index i to index 1. |
|
swapvertex = permutarray[i]; |
|
permutarray[i] = permutarray[1]; |
|
permutarray[1] = swapvertex; |
|
} |
|
|
|
// Make sure the third vertex is not collinear with the first two. |
|
// Acknowledgement: Thanks Jan Pomplun for his correction by using |
|
// epsilon^2 and epsilon^3 (instead of epsilon). 2013-08-15. |
|
i = 2; |
|
for (j = 0; j < 3; j++) { |
|
v1[j] = permutarray[1][j] - permutarray[0][j]; |
|
v2[j] = permutarray[i][j] - permutarray[0][j]; |
|
} |
|
cross(v1, v2, n); |
|
while ((sqrt(norm2(n[0], n[1], n[2])) / bboxsize2) < b->epsilon) { |
|
i++; |
|
if (i == in->numberofpoints - 1) { |
|
printf("Exception: All vertices are (nearly) collinear (Tol = %g).\n", b->epsilon); |
|
terminatetetgen(this, 10); |
|
} |
|
for (j = 0; j < 3; j++) { |
|
v2[j] = permutarray[i][j] - permutarray[0][j]; |
|
} |
|
cross(v1, v2, n); |
|
} |
|
if (i > 2) { |
|
// Swap to move the non-identical vertex from index i to index 1. |
|
swapvertex = permutarray[i]; |
|
permutarray[i] = permutarray[2]; |
|
permutarray[2] = swapvertex; |
|
} |
|
|
|
// Make sure the fourth vertex is not coplanar with the first three. |
|
i = 3; |
|
ori = orient3dfast(permutarray[0], permutarray[1], permutarray[2], permutarray[i]); |
|
while ((fabs(ori) / bboxsize3) < b->epsilon) { |
|
i++; |
|
if (i == in->numberofpoints) { |
|
printf("Exception: All vertices are coplanar (Tol = %g).\n", b->epsilon); |
|
terminatetetgen(this, 10); |
|
} |
|
ori = orient3dfast(permutarray[0], permutarray[1], permutarray[2], permutarray[i]); |
|
} |
|
if (i > 3) { |
|
// Swap to move the non-identical vertex from index i to index 1. |
|
swapvertex = permutarray[i]; |
|
permutarray[i] = permutarray[3]; |
|
permutarray[3] = swapvertex; |
|
} |
|
|
|
// Orient the first four vertices in permutarray so that they follow the |
|
// right-hand rule. |
|
if (ori > 0.0) { |
|
// Swap the first two vertices. |
|
swapvertex = permutarray[0]; |
|
permutarray[0] = permutarray[1]; |
|
permutarray[1] = swapvertex; |
|
} |
|
|
|
// Create the initial Delaunay tetrahedralization. |
|
initialdelaunay(permutarray[0], permutarray[1], permutarray[2], permutarray[3]); |
|
|
|
if (b->verbose) { |
|
printf(" Incrementally inserting vertices.\n"); |
|
} |
|
insertvertexflags ivf; |
|
flipconstraints fc; |
|
|
|
// Choose algorithm: Bowyer-Watson (default) or Incremental Flip |
|
if (b->incrflip) { |
|
ivf.bowywat = 0; |
|
ivf.lawson = 1; |
|
fc.enqflag = 1; |
|
} else { |
|
ivf.bowywat = 1; |
|
ivf.lawson = 0; |
|
} |
|
|
|
for (i = 4; i < in->numberofpoints; i++) { |
|
if (pointtype(permutarray[i]) == UNUSEDVERTEX) { |
|
setpointtype(permutarray[i], VOLVERTEX); |
|
} |
|
if (b->brio_hilbert || b->no_sort) { // -b or -b/1 |
|
// Start the last updated tet. |
|
searchtet.tet = recenttet.tet; |
|
} else { // -b0 |
|
// Randomly choose the starting tet for point location. |
|
searchtet.tet = NULL; |
|
} |
|
ivf.iloc = (int)OUTSIDE; |
|
// Insert the vertex. |
|
if (insertpoint(permutarray[i], &searchtet, NULL, NULL, &ivf)) { |
|
if (flipstack != NULL) { |
|
// Perform flip to recover Delaunayness. |
|
incrementalflip(permutarray[i], (ivf.iloc == (int)OUTSIDE), &fc); |
|
} |
|
} else { |
|
if (ivf.iloc == (int)ONVERTEX) { |
|
// The point already exists. Mark it and do nothing on it. |
|
swapvertex = org(searchtet); |
|
if (b->object != tetgenbehavior::STL) { |
|
if (!b->quiet) { |
|
printf("Warning: Point #%d is coincident with #%d. Ignored!\n", |
|
pointmark(permutarray[i]), pointmark(swapvertex)); |
|
} |
|
} |
|
setpoint2ppt(permutarray[i], swapvertex); |
|
setpointtype(permutarray[i], DUPLICATEDVERTEX); |
|
dupverts++; |
|
} else if (ivf.iloc == (int)NEARVERTEX) { |
|
swapvertex = org(searchtet); |
|
if (!b->quiet) { |
|
printf("Warning: Point %d is replaced by point %d.\n", |
|
pointmark(permutarray[i]), pointmark(swapvertex)); |
|
printf(" Avoid creating a very short edge (len = %g) (< %g).\n", |
|
permutarray[i][3], minedgelength); |
|
printf(" You may try a smaller tolerance (-T) (current is %g)\n", b->epsilon); |
|
printf(" or use the option -M0/1 to avoid such replacement.\n"); |
|
} |
|
// Remember it is a duplicated point. |
|
setpoint2ppt(permutarray[i], swapvertex); |
|
setpointtype(permutarray[i], DUPLICATEDVERTEX); |
|
dupverts++; |
|
} else if (ivf.iloc == (int)NONREGULAR) { |
|
// The point is non-regular. Skipped. |
|
if (b->verbose) { |
|
printf(" Point #%d is non-regular, skipped.\n", pointmark(permutarray[i])); |
|
} |
|
setpointtype(permutarray[i], NREGULARVERTEX); |
|
nonregularcount++; |
|
} |
|
} |
|
} |
|
|
|
delete[] permutarray; |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// delaunay_cxx ///////////////////////////////////////////////////////////// |
|
|
|
//// surface_cxx ////////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// flipshpush() Push a facet edge into flip stack. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::flipshpush(face* flipedge) { |
|
badface* newflipface; |
|
|
|
newflipface = (badface*)flippool->alloc(); |
|
newflipface->ss = *flipedge; |
|
newflipface->forg = sorg(*flipedge); |
|
newflipface->fdest = sdest(*flipedge); |
|
newflipface->nextitem = flipstack; |
|
flipstack = newflipface; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// flip22() Perform a 2-to-2 flip in surface mesh. // |
|
// // |
|
// 'flipfaces' is an array of two subfaces. On input, they are [a,b,c] and // |
|
// [b,a,d]. On output, they are [c,d,b] and [d,c,a]. As a result, edge [a,b] // |
|
// is replaced by edge [c,d]. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::flip22(face* flipfaces, int flipflag, int chkencflag) { |
|
face bdedges[4], outfaces[4], infaces[4]; |
|
face bdsegs[4]; |
|
face checkface; |
|
point pa, pb, pc, pd; |
|
int i; |
|
|
|
pa = sorg(flipfaces[0]); |
|
pb = sdest(flipfaces[0]); |
|
pc = sapex(flipfaces[0]); |
|
pd = sapex(flipfaces[1]); |
|
|
|
if (sorg(flipfaces[1]) != pb) { |
|
sesymself(flipfaces[1]); |
|
} |
|
|
|
flip22count++; |
|
|
|
// Collect the four boundary edges. |
|
senext(flipfaces[0], bdedges[0]); |
|
senext2(flipfaces[0], bdedges[1]); |
|
senext(flipfaces[1], bdedges[2]); |
|
senext2(flipfaces[1], bdedges[3]); |
|
|
|
// Collect outer boundary faces. |
|
for (i = 0; i < 4; i++) { |
|
spivot(bdedges[i], outfaces[i]); |
|
infaces[i] = outfaces[i]; |
|
sspivot(bdedges[i], bdsegs[i]); |
|
if (outfaces[i].sh != NULL) { |
|
if (isshsubseg(bdedges[i])) { |
|
spivot(infaces[i], checkface); |
|
while (checkface.sh != bdedges[i].sh) { |
|
infaces[i] = checkface; |
|
spivot(infaces[i], checkface); |
|
} |
|
} |
|
} |
|
} |
|
|
|
// The flags set in these two subfaces do not change. |
|
// Shellmark does not change. |
|
// area constraint does not change. |
|
|
|
// Transform [a,b,c] -> [c,d,b]. |
|
setshvertices(flipfaces[0], pc, pd, pb); |
|
// Transform [b,a,d] -> [d,c,a]. |
|
setshvertices(flipfaces[1], pd, pc, pa); |
|
|
|
// Update the point-to-subface map. |
|
if (pointtype(pa) == FREEFACETVERTEX) { |
|
setpoint2sh(pa, sencode(flipfaces[1])); |
|
} |
|
if (pointtype(pb) == FREEFACETVERTEX) { |
|
setpoint2sh(pb, sencode(flipfaces[0])); |
|
} |
|
if (pointtype(pc) == FREEFACETVERTEX) { |
|
setpoint2sh(pc, sencode(flipfaces[0])); |
|
} |
|
if (pointtype(pd) == FREEFACETVERTEX) { |
|
setpoint2sh(pd, sencode(flipfaces[0])); |
|
} |
|
|
|
// Reconnect boundary edges to outer boundary faces. |
|
for (i = 0; i < 4; i++) { |
|
if (outfaces[(3 + i) % 4].sh != NULL) { |
|
// Make sure that the subface has the ori as the segment. |
|
if (bdsegs[(3 + i) % 4].sh != NULL) { |
|
bdsegs[(3 + i) % 4].shver = 0; |
|
if (sorg(bdedges[i]) != sorg(bdsegs[(3 + i) % 4])) { |
|
sesymself(bdedges[i]); |
|
} |
|
} |
|
sbond1(bdedges[i], outfaces[(3 + i) % 4]); |
|
sbond1(infaces[(3 + i) % 4], bdedges[i]); |
|
} else { |
|
sdissolve(bdedges[i]); |
|
} |
|
if (bdsegs[(3 + i) % 4].sh != NULL) { |
|
ssbond(bdedges[i], bdsegs[(3 + i) % 4]); |
|
if (chkencflag & 1) { |
|
// Queue this segment for encroaching check. |
|
enqueuesubface(badsubsegs, &(bdsegs[(3 + i) % 4])); |
|
} |
|
} else { |
|
ssdissolve(bdedges[i]); |
|
} |
|
} |
|
|
|
if (chkencflag & 2) { |
|
// Queue the flipped subfaces for quality/encroaching checks. |
|
for (i = 0; i < 2; i++) { |
|
enqueuesubface(badsubfacs, &(flipfaces[i])); |
|
} |
|
} |
|
|
|
recentsh = flipfaces[0]; |
|
|
|
if (flipflag) { |
|
// Put the boundary edges into flip stack. |
|
for (i = 0; i < 4; i++) { |
|
flipshpush(&(bdedges[i])); |
|
} |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// flip31() Remove a vertex by transforming 3-to-1 subfaces. // |
|
// // |
|
// 'flipfaces' is an array of subfaces. Its length is at least 4. On input, // |
|
// the first three faces are: [p,a,b], [p,b,c], and [p,c,a]. This routine // |
|
// replaces them by one face [a,b,c], it is returned in flipfaces[3]. // |
|
// // |
|
// NOTE: The three old subfaces are not deleted within this routine. They // |
|
// still hold pointers to their adjacent subfaces. These informations are // |
|
// needed by the routine 'sremovevertex()' for recovering a segment. // |
|
// The caller of this routine must delete the old subfaces after their uses. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::flip31(face* flipfaces, int flipflag) { |
|
face bdedges[3], outfaces[3], infaces[3]; |
|
face bdsegs[3]; |
|
face checkface; |
|
point pa, pb, pc; |
|
int i; |
|
|
|
pa = sdest(flipfaces[0]); |
|
pb = sdest(flipfaces[1]); |
|
pc = sdest(flipfaces[2]); |
|
|
|
flip31count++; |
|
|
|
// Collect all infos at the three boundary edges. |
|
for (i = 0; i < 3; i++) { |
|
senext(flipfaces[i], bdedges[i]); |
|
spivot(bdedges[i], outfaces[i]); |
|
infaces[i] = outfaces[i]; |
|
sspivot(bdedges[i], bdsegs[i]); |
|
if (outfaces[i].sh != NULL) { |
|
if (isshsubseg(bdedges[i])) { |
|
spivot(infaces[i], checkface); |
|
while (checkface.sh != bdedges[i].sh) { |
|
infaces[i] = checkface; |
|
spivot(infaces[i], checkface); |
|
} |
|
} |
|
} |
|
} // i |
|
|
|
// Create a new subface. |
|
makeshellface(subfaces, &(flipfaces[3])); |
|
setshvertices(flipfaces[3], pa, pb, pc); |
|
setshellmark(flipfaces[3], shellmark(flipfaces[0])); |
|
if (checkconstraints) { |
|
// area = areabound(flipfaces[0]); |
|
setareabound(flipfaces[3], areabound(flipfaces[0])); |
|
} |
|
if (useinsertradius) { |
|
setfacetindex(flipfaces[3], getfacetindex(flipfaces[0])); |
|
} |
|
|
|
// Update the point-to-subface map. |
|
if (pointtype(pa) == FREEFACETVERTEX) { |
|
setpoint2sh(pa, sencode(flipfaces[3])); |
|
} |
|
if (pointtype(pb) == FREEFACETVERTEX) { |
|
setpoint2sh(pb, sencode(flipfaces[3])); |
|
} |
|
if (pointtype(pc) == FREEFACETVERTEX) { |
|
setpoint2sh(pc, sencode(flipfaces[3])); |
|
} |
|
|
|
// Update the three new boundary edges. |
|
bdedges[0] = flipfaces[3]; // [a,b] |
|
senext(flipfaces[3], bdedges[1]); // [b,c] |
|
senext2(flipfaces[3], bdedges[2]); // [c,a] |
|
|
|
// Reconnect boundary edges to outer boundary faces. |
|
for (i = 0; i < 3; i++) { |
|
if (outfaces[i].sh != NULL) { |
|
// Make sure that the subface has the ori as the segment. |
|
if (bdsegs[i].sh != NULL) { |
|
bdsegs[i].shver = 0; |
|
if (sorg(bdedges[i]) != sorg(bdsegs[i])) { |
|
sesymself(bdedges[i]); |
|
} |
|
} |
|
sbond1(bdedges[i], outfaces[i]); |
|
sbond1(infaces[i], bdedges[i]); |
|
} |
|
if (bdsegs[i].sh != NULL) { |
|
ssbond(bdedges[i], bdsegs[i]); |
|
} |
|
} |
|
|
|
recentsh = flipfaces[3]; |
|
|
|
if (flipflag) { |
|
// Put the boundary edges into flip stack. |
|
for (i = 0; i < 3; i++) { |
|
flipshpush(&(bdedges[i])); |
|
} |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// lawsonflip() Flip non-locally Delaunay edges. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
long tetgenmesh::lawsonflip() { |
|
badface* popface; |
|
face flipfaces[2]; |
|
point pa, pb, pc, pd; |
|
REAL sign; |
|
long flipcount = 0; |
|
|
|
if (b->verbose > 2) { |
|
printf(" Lawson flip %ld edges.\n", flippool->items); |
|
} |
|
|
|
while (flipstack != (badface*)NULL) { |
|
|
|
// Pop an edge from the stack. |
|
popface = flipstack; |
|
flipfaces[0] = popface->ss; |
|
pa = popface->forg; |
|
pb = popface->fdest; |
|
flipstack = popface->nextitem; // The next top item in stack. |
|
flippool->dealloc((void*)popface); |
|
|
|
// Skip it if it is dead. |
|
if (flipfaces[0].sh[3] == NULL) continue; |
|
// Skip it if it is not the same edge as we saved. |
|
if ((sorg(flipfaces[0]) != pa) || (sdest(flipfaces[0]) != pb)) continue; |
|
// Skip it if it is a subsegment. |
|
if (isshsubseg(flipfaces[0])) continue; |
|
|
|
// Get the adjacent face. |
|
spivot(flipfaces[0], flipfaces[1]); |
|
if (flipfaces[1].sh == NULL) continue; // Skip a hull edge. |
|
pc = sapex(flipfaces[0]); |
|
pd = sapex(flipfaces[1]); |
|
|
|
sign = incircle3d(pa, pb, pc, pd); |
|
|
|
if (sign < 0) { |
|
// It is non-locally Delaunay. Flip it. |
|
flip22(flipfaces, 1, 0); |
|
flipcount++; |
|
} |
|
} |
|
|
|
if (b->verbose > 2) { |
|
printf(" Performed %ld flips.\n", flipcount); |
|
} |
|
|
|
return flipcount; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// sinsertvertex() Insert a vertex into a triangulation of a facet. // |
|
// // |
|
// This function uses three global arrays: 'caveshlist', 'caveshbdlist', and // |
|
// 'caveshseglist'. On return, 'caveshlist' contains old subfaces in C(p), // |
|
// 'caveshbdlist' contains new subfaces in C(p). If the new point lies on a // |
|
// segment, 'cavesegshlist' returns the two new subsegments. // |
|
// // |
|
// 'iloc' suggests the location of the point. If it is OUTSIDE, this routine // |
|
// will first locate the point. It starts searching from 'searchsh' or 'rec- // |
|
// entsh' if 'searchsh' is NULL. // |
|
// // |
|
// If 'bowywat' is set (1), the Bowyer-Watson algorithm is used to insert // |
|
// the vertex. Otherwise, only insert the vertex in the initial cavity. // |
|
// // |
|
// If 'iloc' is 'INSTAR', this means the cavity of this vertex was already // |
|
// provided in the list 'caveshlist'. // |
|
// // |
|
// If 'splitseg' is not NULL, the new vertex lies on the segment and it will // |
|
// be split. 'iloc' must be either 'ONEDGE' or 'INSTAR'. // |
|
// // |
|
// 'rflag' (rounding) is a parameter passed to slocate() function. If it is // |
|
// set, after the location of the point is found, either ONEDGE or ONFACE, // |
|
// round the result using an epsilon. // |
|
// // |
|
// NOTE: the old subfaces in C(p) are not deleted. They're needed in case we // |
|
// want to remove the new point immediately. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::sinsertvertex(point insertpt, face* searchsh, face* splitseg, int iloc, int bowywat, |
|
int rflag) { |
|
face cavesh, neighsh, *parysh; |
|
face newsh, casout, casin; |
|
face checkseg; |
|
point pa, pb; |
|
enum locateresult loc = OUTSIDE; |
|
REAL sign, ori; |
|
int i, j; |
|
|
|
if (b->verbose > 2) { |
|
printf(" Insert facet point %d.\n", pointmark(insertpt)); |
|
} |
|
|
|
if (bowywat == 3) { |
|
loc = INSTAR; |
|
} |
|
|
|
if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
|
// A segment is going to be split, no point location. |
|
spivot(*splitseg, *searchsh); |
|
if (loc != INSTAR) loc = ONEDGE; |
|
} else { |
|
if (loc != INSTAR) loc = (enum locateresult)iloc; |
|
if (loc == OUTSIDE) { |
|
// Do point location in surface mesh. |
|
if (searchsh->sh == NULL) { |
|
*searchsh = recentsh; |
|
} |
|
// Search the vertex. An above point must be provided ('aflag' = 1). |
|
loc = slocate(insertpt, searchsh, 1, 1, rflag); |
|
} |
|
} |
|
|
|
// Form the initial sC(p). |
|
if (loc == ONFACE) { |
|
// Add the face into list (in B-W cavity). |
|
smarktest(*searchsh); |
|
caveshlist->newindex((void**)&parysh); |
|
*parysh = *searchsh; |
|
} else if (loc == ONEDGE) { |
|
if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
|
splitseg->shver = 0; |
|
pa = sorg(*splitseg); |
|
} else { |
|
pa = sorg(*searchsh); |
|
} |
|
if (searchsh->sh != NULL) { |
|
// Collect all subfaces share at this edge. |
|
neighsh = *searchsh; |
|
while (1) { |
|
// Adjust the origin of its edge to be 'pa'. |
|
if (sorg(neighsh) != pa) sesymself(neighsh); |
|
// Add this face into list (in B-W cavity). |
|
smarktest(neighsh); |
|
caveshlist->newindex((void**)&parysh); |
|
*parysh = neighsh; |
|
// Add this face into face-at-splitedge list. |
|
cavesegshlist->newindex((void**)&parysh); |
|
*parysh = neighsh; |
|
// Go to the next face at the edge. |
|
spivotself(neighsh); |
|
// Stop if all faces at the edge have been visited. |
|
if (neighsh.sh == searchsh->sh) break; |
|
if (neighsh.sh == NULL) break; |
|
} |
|
} // If (not a non-dangling segment). |
|
} else if (loc == ONVERTEX) { |
|
return (int)loc; |
|
} else if (loc == OUTSIDE) { |
|
// Comment: This should only happen during the surface meshing step. |
|
// Enlarge the convex hull of the triangulation by including p. |
|
// An above point of the facet is set in 'dummypoint' to replace |
|
// orient2d tests by orient3d tests. |
|
// Imagine that the current edge a->b (in 'searchsh') is horizontal in a |
|
// plane, and a->b is directed from left to right, p lies above a->b. |
|
// Find the right-most edge of the triangulation which is visible by p. |
|
neighsh = *searchsh; |
|
while (1) { |
|
senext2self(neighsh); |
|
spivot(neighsh, casout); |
|
if (casout.sh == NULL) { |
|
// A convex hull edge. Is it visible by p. |
|
ori = orient3d(sorg(neighsh), sdest(neighsh), dummypoint, insertpt); |
|
if (ori < 0) { |
|
*searchsh = neighsh; // Visible, update 'searchsh'. |
|
} else { |
|
break; // 'searchsh' is the right-most visible edge. |
|
} |
|
} else { |
|
if (sorg(casout) != sdest(neighsh)) sesymself(casout); |
|
neighsh = casout; |
|
} |
|
} |
|
// Create new triangles for all visible edges of p (from right to left). |
|
casin.sh = NULL; // No adjacent face at right. |
|
pa = sorg(*searchsh); |
|
pb = sdest(*searchsh); |
|
while (1) { |
|
// Create a new subface on top of the (visible) edge. |
|
makeshellface(subfaces, &newsh); |
|
setshvertices(newsh, pb, pa, insertpt); |
|
setshellmark(newsh, shellmark(*searchsh)); |
|
if (checkconstraints) { |
|
// area = areabound(*searchsh); |
|
setareabound(newsh, areabound(*searchsh)); |
|
} |
|
if (useinsertradius) { |
|
setfacetindex(newsh, getfacetindex(*searchsh)); |
|
} |
|
// Connect the new subface to the bottom subfaces. |
|
sbond1(newsh, *searchsh); |
|
sbond1(*searchsh, newsh); |
|
// Connect the new subface to its right-adjacent subface. |
|
if (casin.sh != NULL) { |
|
senext(newsh, casout); |
|
sbond1(casout, casin); |
|
sbond1(casin, casout); |
|
} |
|
// The left-adjacent subface has not been created yet. |
|
senext2(newsh, casin); |
|
// Add the new face into list (inside the B-W cavity). |
|
smarktest(newsh); |
|
caveshlist->newindex((void**)&parysh); |
|
*parysh = newsh; |
|
// Move to the convex hull edge at the left of 'searchsh'. |
|
neighsh = *searchsh; |
|
while (1) { |
|
senextself(neighsh); |
|
spivot(neighsh, casout); |
|
if (casout.sh == NULL) { |
|
*searchsh = neighsh; |
|
break; |
|
} |
|
if (sorg(casout) != sdest(neighsh)) sesymself(casout); |
|
neighsh = casout; |
|
} |
|
// A convex hull edge. Is it visible by p. |
|
pa = sorg(*searchsh); |
|
pb = sdest(*searchsh); |
|
ori = orient3d(pa, pb, dummypoint, insertpt); |
|
// Finish the process if p is not visible by the hull edge. |
|
if (ori >= 0) break; |
|
} |
|
} else if (loc == INSTAR) { |
|
// Under this case, the sub-cavity sC(p) has already been formed in |
|
// insertvertex(). |
|
} |
|
|
|
// Form the Bowyer-Watson cavity sC(p). |
|
for (i = 0; i < caveshlist->objects; i++) { |
|
cavesh = *(face*)fastlookup(caveshlist, i); |
|
for (j = 0; j < 3; j++) { |
|
if (!isshsubseg(cavesh)) { |
|
spivot(cavesh, neighsh); |
|
if (neighsh.sh != NULL) { |
|
// The adjacent face exists. |
|
if (!smarktested(neighsh)) { |
|
if (bowywat) { |
|
if (loc == INSTAR) { // if (bowywat > 2) { |
|
// It must be a boundary edge. |
|
sign = 1; |
|
} else { |
|
// Check if this subface is connected to adjacent tet(s). |
|
if (!isshtet(neighsh)) { |
|
// Check if the subface is non-Delaunay wrt. the new pt. |
|
sign = incircle3d(sorg(neighsh), sdest(neighsh), sapex(neighsh), |
|
insertpt); |
|
} else { |
|
// It is connected to an adjacent tet. A boundary edge. |
|
sign = 1; |
|
} |
|
} |
|
if (sign < 0) { |
|
// Add the adjacent face in list (in B-W cavity). |
|
smarktest(neighsh); |
|
caveshlist->newindex((void**)&parysh); |
|
*parysh = neighsh; |
|
} |
|
} else { |
|
sign = 1; // A boundary edge. |
|
} |
|
} else { |
|
sign = -1; // Not a boundary edge. |
|
} |
|
} else { |
|
// No adjacent face. It is a hull edge. |
|
if (loc == OUTSIDE) { |
|
// It is a boundary edge if it does not contain p. |
|
if ((sorg(cavesh) == insertpt) || (sdest(cavesh) == insertpt)) { |
|
sign = -1; // Not a boundary edge. |
|
} else { |
|
sign = 1; // A boundary edge. |
|
} |
|
} else { |
|
sign = 1; // A boundary edge. |
|
} |
|
} |
|
} else { |
|
// Do not across a segment. It is a boundary edge. |
|
sign = 1; |
|
} |
|
if (sign >= 0) { |
|
// Add a boundary edge. |
|
caveshbdlist->newindex((void**)&parysh); |
|
*parysh = cavesh; |
|
} |
|
senextself(cavesh); |
|
} // j |
|
} // i |
|
|
|
// Creating new subfaces. |
|
for (i = 0; i < caveshbdlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshbdlist, i); |
|
sspivot(*parysh, checkseg); |
|
if ((parysh->shver & 01) != 0) sesymself(*parysh); |
|
pa = sorg(*parysh); |
|
pb = sdest(*parysh); |
|
// Create a new subface. |
|
makeshellface(subfaces, &newsh); |
|
setshvertices(newsh, pa, pb, insertpt); |
|
setshellmark(newsh, shellmark(*parysh)); |
|
if (checkconstraints) { |
|
// area = areabound(*parysh); |
|
setareabound(newsh, areabound(*parysh)); |
|
} |
|
if (useinsertradius) { |
|
setfacetindex(newsh, getfacetindex(*parysh)); |
|
} |
|
// Update the point-to-subface map. |
|
if (pointtype(pa) == FREEFACETVERTEX) { |
|
setpoint2sh(pa, sencode(newsh)); |
|
} |
|
if (pointtype(pb) == FREEFACETVERTEX) { |
|
setpoint2sh(pb, sencode(newsh)); |
|
} |
|
// Connect newsh to outer subfaces. |
|
spivot(*parysh, casout); |
|
if (casout.sh != NULL) { |
|
casin = casout; |
|
if (checkseg.sh != NULL) { |
|
// Make sure that newsh has the right ori at this segment. |
|
checkseg.shver = 0; |
|
if (sorg(newsh) != sorg(checkseg)) { |
|
sesymself(newsh); |
|
sesymself(*parysh); // This side should also be inverse. |
|
} |
|
spivot(casin, neighsh); |
|
while (neighsh.sh != parysh->sh) { |
|
casin = neighsh; |
|
spivot(casin, neighsh); |
|
} |
|
} |
|
sbond1(newsh, casout); |
|
sbond1(casin, newsh); |
|
} |
|
if (checkseg.sh != NULL) { |
|
ssbond(newsh, checkseg); |
|
} |
|
// Connect oldsh <== newsh (for connecting adjacent new subfaces). |
|
// *parysh and newsh point to the same edge and the same ori. |
|
sbond1(*parysh, newsh); |
|
} |
|
|
|
if (newsh.sh != NULL) { |
|
// Set a handle for searching. |
|
recentsh = newsh; |
|
} |
|
|
|
// Update the point-to-subface map. |
|
if (pointtype(insertpt) == FREEFACETVERTEX) { |
|
setpoint2sh(insertpt, sencode(newsh)); |
|
} |
|
|
|
// Connect adjacent new subfaces together. |
|
for (i = 0; i < caveshbdlist->objects; i++) { |
|
// Get an old subface at edge [a, b]. |
|
parysh = (face*)fastlookup(caveshbdlist, i); |
|
spivot(*parysh, newsh); // The new subface [a, b, p]. |
|
senextself(newsh); // At edge [b, p]. |
|
spivot(newsh, neighsh); |
|
if (neighsh.sh == NULL) { |
|
// Find the adjacent new subface at edge [b, p]. |
|
pb = sdest(*parysh); |
|
neighsh = *parysh; |
|
while (1) { |
|
senextself(neighsh); |
|
spivotself(neighsh); |
|
if (neighsh.sh == NULL) break; |
|
if (!smarktested(neighsh)) break; |
|
if (sdest(neighsh) != pb) sesymself(neighsh); |
|
} |
|
if (neighsh.sh != NULL) { |
|
// Now 'neighsh' is a new subface at edge [b, #]. |
|
if (sorg(neighsh) != pb) sesymself(neighsh); |
|
senext2self(neighsh); // Go to the open edge [p, b]. |
|
sbond(newsh, neighsh); |
|
} |
|
} |
|
spivot(*parysh, newsh); // The new subface [a, b, p]. |
|
senext2self(newsh); // At edge [p, a]. |
|
spivot(newsh, neighsh); |
|
if (neighsh.sh == NULL) { |
|
// Find the adjacent new subface at edge [p, a]. |
|
pa = sorg(*parysh); |
|
neighsh = *parysh; |
|
while (1) { |
|
senext2self(neighsh); |
|
spivotself(neighsh); |
|
if (neighsh.sh == NULL) break; |
|
if (!smarktested(neighsh)) break; |
|
if (sorg(neighsh) != pa) sesymself(neighsh); |
|
} |
|
if (neighsh.sh != NULL) { |
|
// Now 'neighsh' is a new subface at edge [#, a]. |
|
if (sdest(neighsh) != pa) sesymself(neighsh); |
|
senextself(neighsh); // Go to the open edge [a, p]. |
|
sbond(newsh, neighsh); |
|
} |
|
} |
|
} |
|
|
|
if ((loc == ONEDGE) || ((splitseg != NULL) && (splitseg->sh != NULL)) || |
|
(cavesegshlist->objects > 0l)) { |
|
// An edge is being split. We distinguish two cases: |
|
// (1) the edge is not on the boundary of the cavity; |
|
// (2) the edge is on the boundary of the cavity. |
|
// In case (2), the edge is either a segment or a hull edge. There are |
|
// degenerated new faces in the cavity. They must be removed. |
|
face aseg, bseg, aoutseg, boutseg; |
|
|
|
for (i = 0; i < cavesegshlist->objects; i++) { |
|
// Get the saved old subface. |
|
parysh = (face*)fastlookup(cavesegshlist, i); |
|
// Get a possible new degenerated subface. |
|
spivot(*parysh, cavesh); |
|
if (sapex(cavesh) == insertpt) { |
|
// Found a degenerated new subface, i.e., case (2). |
|
if (cavesegshlist->objects > 1) { |
|
// There are more than one subface share at this edge. |
|
j = (i + 1) % (int)cavesegshlist->objects; |
|
parysh = (face*)fastlookup(cavesegshlist, j); |
|
spivot(*parysh, neighsh); |
|
// Adjust cavesh and neighsh both at edge a->b, and has p as apex. |
|
if (sorg(neighsh) != sorg(cavesh)) { |
|
sesymself(neighsh); |
|
} |
|
// Connect adjacent faces at two other edges of cavesh and neighsh. |
|
// As a result, the two degenerated new faces are squeezed from the |
|
// new triangulation of the cavity. Note that the squeezed faces |
|
// still hold the adjacent informations which will be used in |
|
// re-connecting subsegments (if they exist). |
|
for (j = 0; j < 2; j++) { |
|
senextself(cavesh); |
|
senextself(neighsh); |
|
spivot(cavesh, newsh); |
|
spivot(neighsh, casout); |
|
sbond1(newsh, casout); // newsh <- casout. |
|
} |
|
} else { |
|
// There is only one subface containing this edge [a,b]. Squeeze the |
|
// degenerated new face [a,b,c] by disconnecting it from its two |
|
// adjacent subfaces at edges [b,c] and [c,a]. Note that the face |
|
// [a,b,c] still hold the connection to them. |
|
for (j = 0; j < 2; j++) { |
|
senextself(cavesh); |
|
spivot(cavesh, newsh); |
|
sdissolve(newsh); |
|
} |
|
} |
|
// recentsh = newsh; |
|
// Update the point-to-subface map. |
|
if (pointtype(insertpt) == FREEFACETVERTEX) { |
|
setpoint2sh(insertpt, sencode(newsh)); |
|
} |
|
} |
|
} |
|
|
|
if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
|
if (loc != INSTAR) { // if (bowywat < 3) { |
|
smarktest(*splitseg); // Mark it as being processed. |
|
} |
|
|
|
aseg = *splitseg; |
|
pa = sorg(*splitseg); |
|
pb = sdest(*splitseg); |
|
|
|
// Insert the new point p. |
|
makeshellface(subsegs, &aseg); |
|
makeshellface(subsegs, &bseg); |
|
|
|
setshvertices(aseg, pa, insertpt, NULL); |
|
setshvertices(bseg, insertpt, pb, NULL); |
|
setshellmark(aseg, shellmark(*splitseg)); |
|
setshellmark(bseg, shellmark(*splitseg)); |
|
if (checkconstraints) { |
|
setareabound(aseg, areabound(*splitseg)); |
|
setareabound(bseg, areabound(*splitseg)); |
|
} |
|
if (useinsertradius) { |
|
setfacetindex(aseg, getfacetindex(*splitseg)); |
|
setfacetindex(bseg, getfacetindex(*splitseg)); |
|
} |
|
|
|
// Connect [#, a]<->[a, p]. |
|
senext2(*splitseg, boutseg); // Temporarily use boutseg. |
|
spivotself(boutseg); |
|
if (boutseg.sh != NULL) { |
|
senext2(aseg, aoutseg); |
|
sbond(boutseg, aoutseg); |
|
} |
|
// Connect [p, b]<->[b, #]. |
|
senext(*splitseg, aoutseg); |
|
spivotself(aoutseg); |
|
if (aoutseg.sh != NULL) { |
|
senext(bseg, boutseg); |
|
sbond(boutseg, aoutseg); |
|
} |
|
// Connect [a, p] <-> [p, b]. |
|
senext(aseg, aoutseg); |
|
senext2(bseg, boutseg); |
|
sbond(aoutseg, boutseg); |
|
|
|
// Connect subsegs [a, p] and [p, b] to adjacent new subfaces. |
|
// Although the degenerated new faces have been squeezed. They still |
|
// hold the connections to the actual new faces. |
|
for (i = 0; i < cavesegshlist->objects; i++) { |
|
parysh = (face*)fastlookup(cavesegshlist, i); |
|
spivot(*parysh, neighsh); |
|
// neighsh is a degenerated new face. |
|
if (sorg(neighsh) != pa) { |
|
sesymself(neighsh); |
|
} |
|
senext2(neighsh, newsh); |
|
spivotself(newsh); // The edge [p, a] in newsh |
|
ssbond(newsh, aseg); |
|
senext(neighsh, newsh); |
|
spivotself(newsh); // The edge [b, p] in newsh |
|
ssbond(newsh, bseg); |
|
} |
|
|
|
// Let the point remember the segment it lies on. |
|
if (pointtype(insertpt) == FREESEGVERTEX) { |
|
setpoint2sh(insertpt, sencode(aseg)); |
|
} |
|
// Update the point-to-seg map. |
|
if (pointtype(pa) == FREESEGVERTEX) { |
|
setpoint2sh(pa, sencode(aseg)); |
|
} |
|
if (pointtype(pb) == FREESEGVERTEX) { |
|
setpoint2sh(pb, sencode(bseg)); |
|
} |
|
} // if ((splitseg != NULL) && (splitseg->sh != NULL)) |
|
|
|
// Delete all degenerated new faces. |
|
for (i = 0; i < cavesegshlist->objects; i++) { |
|
parysh = (face*)fastlookup(cavesegshlist, i); |
|
spivotself(*parysh); |
|
if (sapex(*parysh) == insertpt) { |
|
shellfacedealloc(subfaces, parysh->sh); |
|
} |
|
} |
|
cavesegshlist->restart(); |
|
|
|
if ((splitseg != NULL) && (splitseg->sh != NULL)) { |
|
// Return the two new subsegments (for further process). |
|
// Re-use 'cavesegshlist'. |
|
cavesegshlist->newindex((void**)&parysh); |
|
*parysh = aseg; |
|
cavesegshlist->newindex((void**)&parysh); |
|
*parysh = bseg; |
|
} |
|
} // if (loc == ONEDGE) |
|
|
|
return (int)loc; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// sremovevertex() Remove a vertex from the surface mesh. // |
|
// // |
|
// 'delpt' (p) is the vertex to be removed. If 'parentseg' is not NULL, p is // |
|
// a segment vertex, and the origin of 'parentseg' is p. Otherwise, p is a // |
|
// facet vertex, and the origin of 'parentsh' is p. // |
|
// // |
|
// Within each facet, we first use a sequence of 2-to-2 flips to flip any // |
|
// edge at p, finally use a 3-to-1 flip to remove p. // |
|
// // |
|
// All new created subfaces are returned in the global array 'caveshbdlist'. // |
|
// The new segment (when p is on segment) is returned in 'parentseg'. // |
|
// // |
|
// If 'lawson' > 0, the Lawson flip algorithm is used to recover Delaunay- // |
|
// ness after p is removed. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::sremovevertex(point delpt, face* parentsh, face* parentseg, int lawson) { |
|
face flipfaces[4], spinsh, *parysh; |
|
point pa, pb, pc, pd; |
|
REAL ori1, ori2; |
|
int it, i, j; |
|
|
|
if (parentseg != NULL) { |
|
// 'delpt' (p) should be a Steiner point inserted in a segment [a,b], |
|
// where 'parentseg' should be [p,b]. Find the segment [a,p]. |
|
face startsh, neighsh, nextsh; |
|
face abseg, prevseg, checkseg; |
|
face adjseg1, adjseg2; |
|
face fakesh; |
|
senext2(*parentseg, prevseg); |
|
spivotself(prevseg); |
|
prevseg.shver = 0; |
|
// Restore the original segment [a,b]. |
|
pa = sorg(prevseg); |
|
pb = sdest(*parentseg); |
|
if (b->verbose > 2) { |
|
printf(" Remove vertex %d from segment [%d, %d].\n", pointmark(delpt), |
|
pointmark(pa), pointmark(pb)); |
|
} |
|
makeshellface(subsegs, &abseg); |
|
setshvertices(abseg, pa, pb, NULL); |
|
setshellmark(abseg, shellmark(*parentseg)); |
|
if (checkconstraints) { |
|
setareabound(abseg, areabound(*parentseg)); |
|
} |
|
if (useinsertradius) { |
|
setfacetindex(abseg, getfacetindex(*parentseg)); |
|
} |
|
// Connect [#, a]<->[a, b]. |
|
senext2(prevseg, adjseg1); |
|
spivotself(adjseg1); |
|
if (adjseg1.sh != NULL) { |
|
adjseg1.shver = 0; |
|
senextself(adjseg1); |
|
senext2(abseg, adjseg2); |
|
sbond(adjseg1, adjseg2); |
|
} |
|
// Connect [a, b]<->[b, #]. |
|
senext(*parentseg, adjseg1); |
|
spivotself(adjseg1); |
|
if (adjseg1.sh != NULL) { |
|
adjseg1.shver = 0; |
|
senext2self(adjseg1); |
|
senext(abseg, adjseg2); |
|
sbond(adjseg1, adjseg2); |
|
} |
|
// Update the point-to-segment map. |
|
setpoint2sh(pa, sencode(abseg)); |
|
setpoint2sh(pb, sencode(abseg)); |
|
|
|
// Get the faces in face ring at segment [p, b]. |
|
// Re-use array 'caveshlist'. |
|
spivot(*parentseg, *parentsh); |
|
if (parentsh->sh != NULL) { |
|
spinsh = *parentsh; |
|
while (1) { |
|
// Save this face in list. |
|
caveshlist->newindex((void**)&parysh); |
|
*parysh = spinsh; |
|
// Go to the next face in the ring. |
|
spivotself(spinsh); |
|
if (spinsh.sh == NULL) { |
|
break; // It is possible there is only one facet. |
|
} |
|
if (spinsh.sh == parentsh->sh) break; |
|
} |
|
} |
|
|
|
// Create the face ring of the new segment [a,b]. Each face in the ring |
|
// is [a,b,p] (degenerated!). It will be removed (automatically). |
|
for (i = 0; i < caveshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshlist, i); |
|
startsh = *parysh; |
|
if (sorg(startsh) != delpt) { |
|
sesymself(startsh); |
|
} |
|
// startsh is [p, b, #1], find the subface [a, p, #2]. |
|
neighsh = startsh; |
|
while (1) { |
|
senext2self(neighsh); |
|
sspivot(neighsh, checkseg); |
|
if (checkseg.sh != NULL) { |
|
// It must be the segment [a, p]. |
|
break; |
|
} |
|
spivotself(neighsh); |
|
if (sorg(neighsh) != delpt) sesymself(neighsh); |
|
} |
|
// Now neighsh is [a, p, #2]. |
|
if (neighsh.sh != startsh.sh) { |
|
// Detach the two subsegments [a,p] and [p,b] from subfaces. |
|
ssdissolve(startsh); |
|
ssdissolve(neighsh); |
|
// Create a degenerated subface [a,b,p]. It is used to: (1) hold the |
|
// new segment [a,b]; (2) connect to the two adjacent subfaces |
|
// [p,b,#] and [a,p,#]. |
|
makeshellface(subfaces, &fakesh); |
|
setshvertices(fakesh, pa, pb, delpt); |
|
setshellmark(fakesh, shellmark(startsh)); |
|
// Connect fakesh to the segment [a,b]. |
|
ssbond(fakesh, abseg); |
|
// Connect fakesh to adjacent subfaces: [p,b,#1] and [a,p,#2]. |
|
senext(fakesh, nextsh); |
|
sbond(nextsh, startsh); |
|
senext2(fakesh, nextsh); |
|
sbond(nextsh, neighsh); |
|
smarktest(fakesh); // Mark it as faked. |
|
} else { |
|
// Special case. There exists already a degenerated face [a,b,p]! |
|
// There is no need to create a faked subface here. |
|
senext2self(neighsh); // [a,b,p] |
|
// Since we will re-connect the face ring using the faked subfaces. |
|
// We put the adjacent face of [a,b,p] to the list. |
|
spivot(neighsh, startsh); // The original adjacent subface. |
|
if (sorg(startsh) != pa) sesymself(startsh); |
|
sdissolve(startsh); |
|
// Connect fakesh to the segment [a,b]. |
|
ssbond(startsh, abseg); |
|
fakesh = startsh; // Do not mark it! |
|
// Delete the degenerated subface. |
|
shellfacedealloc(subfaces, neighsh.sh); |
|
} |
|
// Save the fakesh in list (for re-creating the face ring). |
|
cavesegshlist->newindex((void**)&parysh); |
|
*parysh = fakesh; |
|
} // i |
|
caveshlist->restart(); |
|
|
|
// Re-create the face ring. |
|
if (cavesegshlist->objects > 1) { |
|
for (i = 0; i < cavesegshlist->objects; i++) { |
|
parysh = (face*)fastlookup(cavesegshlist, i); |
|
fakesh = *parysh; |
|
// Get the next face in the ring. |
|
j = (i + 1) % cavesegshlist->objects; |
|
parysh = (face*)fastlookup(cavesegshlist, j); |
|
nextsh = *parysh; |
|
sbond1(fakesh, nextsh); |
|
} |
|
} |
|
|
|
// Delete the two subsegments containing p. |
|
shellfacedealloc(subsegs, parentseg->sh); |
|
shellfacedealloc(subsegs, prevseg.sh); |
|
// Return the new segment. |
|
*parentseg = abseg; |
|
} else { |
|
// p is inside the surface. |
|
if (b->verbose > 2) { |
|
printf(" Remove vertex %d from surface.\n", pointmark(delpt)); |
|
} |
|
// Let 'delpt' be its apex. |
|
senextself(*parentsh); |
|
// For unifying the code, we add parentsh to list. |
|
cavesegshlist->newindex((void**)&parysh); |
|
*parysh = *parentsh; |
|
} |
|
|
|
// Remove the point (p). |
|
|
|
for (it = 0; it < cavesegshlist->objects; it++) { |
|
parentsh = (face*)fastlookup(cavesegshlist, it); // [a,b,p] |
|
senextself(*parentsh); // [b,p,a]. |
|
spivotself(*parentsh); |
|
if (sorg(*parentsh) != delpt) sesymself(*parentsh); |
|
// now parentsh is [p,b,#]. |
|
if (sorg(*parentsh) != delpt) { |
|
// The vertex has already been removed in above special case. |
|
continue; |
|
} |
|
|
|
while (1) { |
|
// Initialize the flip edge list. Re-use 'caveshlist'. |
|
spinsh = *parentsh; // [p, b, #] |
|
while (1) { |
|
caveshlist->newindex((void**)&parysh); |
|
*parysh = spinsh; |
|
senext2self(spinsh); |
|
spivotself(spinsh); |
|
if (spinsh.sh == parentsh->sh) break; |
|
if (sorg(spinsh) != delpt) sesymself(spinsh); |
|
} // while (1) |
|
|
|
if (caveshlist->objects == 3) { |
|
// Delete the point by a 3-to-1 flip. |
|
for (i = 0; i < 3; i++) { |
|
parysh = (face*)fastlookup(caveshlist, i); |
|
flipfaces[i] = *parysh; |
|
} |
|
flip31(flipfaces, lawson); |
|
for (i = 0; i < 3; i++) { |
|
shellfacedealloc(subfaces, flipfaces[i].sh); |
|
} |
|
caveshlist->restart(); |
|
// Save the new subface. |
|
caveshbdlist->newindex((void**)&parysh); |
|
*parysh = flipfaces[3]; |
|
// The vertex is removed. |
|
break; |
|
} |
|
|
|
// Search an edge to flip. |
|
for (i = 0; i < caveshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshlist, i); |
|
flipfaces[0] = *parysh; |
|
spivot(flipfaces[0], flipfaces[1]); |
|
if (sorg(flipfaces[0]) != sdest(flipfaces[1])) sesymself(flipfaces[1]); |
|
// Skip this edge if it belongs to a faked subface. |
|
if (!smarktested(flipfaces[0]) && !smarktested(flipfaces[1])) { |
|
pa = sorg(flipfaces[0]); |
|
pb = sdest(flipfaces[0]); |
|
pc = sapex(flipfaces[0]); |
|
pd = sapex(flipfaces[1]); |
|
calculateabovepoint4(pa, pb, pc, pd); |
|
// Check if a 2-to-2 flip is possible. |
|
ori1 = orient3d(pc, pd, dummypoint, pa); |
|
ori2 = orient3d(pc, pd, dummypoint, pb); |
|
if (ori1 * ori2 < 0) { |
|
// A 2-to-2 flip is found. |
|
flip22(flipfaces, lawson, 0); |
|
// The i-th edge is flipped. The i-th and (i-1)-th subfaces are |
|
// changed. The 'flipfaces[1]' contains p as its apex. |
|
senext2(flipfaces[1], *parentsh); |
|
// Save the new subface. |
|
caveshbdlist->newindex((void**)&parysh); |
|
*parysh = flipfaces[0]; |
|
break; |
|
} |
|
} // |
|
} // i |
|
|
|
if (i == caveshlist->objects) { |
|
// Do a flip22 and a flip31 to remove p. |
|
parysh = (face*)fastlookup(caveshlist, 0); |
|
flipfaces[0] = *parysh; |
|
spivot(flipfaces[0], flipfaces[1]); |
|
if (sorg(flipfaces[0]) != sdest(flipfaces[1])) { |
|
sesymself(flipfaces[1]); |
|
} |
|
flip22(flipfaces, lawson, 0); |
|
senext2(flipfaces[1], *parentsh); |
|
// Save the new subface. |
|
caveshbdlist->newindex((void**)&parysh); |
|
*parysh = flipfaces[0]; |
|
} |
|
|
|
// The edge list at p are changed. |
|
caveshlist->restart(); |
|
} // while (1) |
|
|
|
} // it |
|
|
|
cavesegshlist->restart(); |
|
|
|
if (b->verbose > 2) { |
|
printf(" Created %ld new subfaces.\n", caveshbdlist->objects); |
|
} |
|
|
|
if (lawson) { |
|
lawsonflip(); |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// slocate() Locate a point in a surface triangulation. // |
|
// // |
|
// Staring the search from 'searchsh'(it should not be NULL). Perform a line // |
|
// walk search for a subface containing the point (p). // |
|
// // |
|
// If 'aflag' is set, the 'dummypoint' is pre-calculated so that it lies // |
|
// above the 'searchsh' in its current orientation. The test if c is CCW to // |
|
// the line a->b can be done by the test if c is below the oriented plane // |
|
// a->b->dummypoint. // |
|
// // |
|
// If 'cflag' is not TRUE, the triangulation may not be convex. Stop search // |
|
// when a segment is met and return OUTSIDE. // |
|
// // |
|
// If 'rflag' (rounding) is set, after the location of the point is found, // |
|
// either ONEDGE or ONFACE, round the result using an epsilon. // |
|
// // |
|
// The returned value indicates the following cases: // |
|
// - ONVERTEX, p is the origin of 'searchsh'. // |
|
// - ONEDGE, p lies on the edge of 'searchsh'. // |
|
// - ONFACE, p lies in the interior of 'searchsh'. // |
|
// - OUTSIDE, p lies outside of the triangulation, p is on the left-hand // |
|
// side of the edge 'searchsh'(s), i.e., org(s), dest(s), p are CW. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
enum tetgenmesh::locateresult tetgenmesh::slocate(point searchpt, face* searchsh, int aflag, |
|
int cflag, int rflag) { |
|
face neighsh; |
|
point pa, pb, pc; |
|
enum locateresult loc; |
|
enum { MOVE_BC, MOVE_CA } nextmove; |
|
REAL ori, ori_bc, ori_ca; |
|
int i; |
|
|
|
pa = sorg(*searchsh); |
|
pb = sdest(*searchsh); |
|
pc = sapex(*searchsh); |
|
|
|
if (!aflag) { |
|
// No above point is given. Calculate an above point for this facet. |
|
calculateabovepoint4(pa, pb, pc, searchpt); |
|
} |
|
|
|
// 'dummypoint' is given. Make sure it is above [a,b,c] |
|
ori = orient3d(pa, pb, pc, dummypoint); |
|
if (ori > 0) { |
|
sesymself(*searchsh); // Reverse the face orientation. |
|
} else if (ori == 0.0) { |
|
// This case should not happen theoretically. But... |
|
return UNKNOWN; |
|
} |
|
|
|
// Find an edge of the face s.t. p lies on its right-hand side (CCW). |
|
for (i = 0; i < 3; i++) { |
|
pa = sorg(*searchsh); |
|
pb = sdest(*searchsh); |
|
ori = orient3d(pa, pb, dummypoint, searchpt); |
|
if (ori > 0) break; |
|
senextself(*searchsh); |
|
} |
|
if (i == 3) { |
|
return UNKNOWN; |
|
} |
|
|
|
pc = sapex(*searchsh); |
|
|
|
if (pc == searchpt) { |
|
senext2self(*searchsh); |
|
return ONVERTEX; |
|
} |
|
|
|
while (1) { |
|
|
|
ori_bc = orient3d(pb, pc, dummypoint, searchpt); |
|
ori_ca = orient3d(pc, pa, dummypoint, searchpt); |
|
|
|
if (ori_bc < 0) { |
|
if (ori_ca < 0) { // (--) |
|
// Any of the edges is a viable move. |
|
if (randomnation(2)) { |
|
nextmove = MOVE_CA; |
|
} else { |
|
nextmove = MOVE_BC; |
|
} |
|
} else { // (-#) |
|
// Edge [b, c] is viable. |
|
nextmove = MOVE_BC; |
|
} |
|
} else { |
|
if (ori_ca < 0) { // (#-) |
|
// Edge [c, a] is viable. |
|
nextmove = MOVE_CA; |
|
} else { |
|
if (ori_bc > 0) { |
|
if (ori_ca > 0) { // (++) |
|
loc = ONFACE; // Inside [a, b, c]. |
|
break; |
|
} else { // (+0) |
|
senext2self(*searchsh); // On edge [c, a]. |
|
loc = ONEDGE; |
|
break; |
|
} |
|
} else { // ori_bc == 0 |
|
if (ori_ca > 0) { // (0+) |
|
senextself(*searchsh); // On edge [b, c]. |
|
loc = ONEDGE; |
|
break; |
|
} else { // (00) |
|
// p is coincident with vertex c. |
|
senext2self(*searchsh); |
|
return ONVERTEX; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Move to the next face. |
|
if (nextmove == MOVE_BC) { |
|
senextself(*searchsh); |
|
} else { |
|
senext2self(*searchsh); |
|
} |
|
if (!cflag) { |
|
// NON-convex case. Check if we will cross a boundary. |
|
if (isshsubseg(*searchsh)) { |
|
return ENCSEGMENT; |
|
} |
|
} |
|
spivot(*searchsh, neighsh); |
|
if (neighsh.sh == NULL) { |
|
return OUTSIDE; // A hull edge. |
|
} |
|
// Adjust the edge orientation. |
|
if (sorg(neighsh) != sdest(*searchsh)) { |
|
sesymself(neighsh); |
|
} |
|
|
|
// Update the newly discovered face and its endpoints. |
|
*searchsh = neighsh; |
|
pa = sorg(*searchsh); |
|
pb = sdest(*searchsh); |
|
pc = sapex(*searchsh); |
|
|
|
if (pc == searchpt) { |
|
senext2self(*searchsh); |
|
return ONVERTEX; |
|
} |
|
|
|
} // while (1) |
|
|
|
// assert(loc == ONFACE || loc == ONEDGE); |
|
|
|
if (rflag) { |
|
// Round the locate result before return. |
|
REAL n[3], area_abc, area_abp, area_bcp, area_cap; |
|
|
|
pa = sorg(*searchsh); |
|
pb = sdest(*searchsh); |
|
pc = sapex(*searchsh); |
|
|
|
facenormal(pa, pb, pc, n, 1, NULL); |
|
area_abc = sqrt(dot(n, n)); |
|
|
|
facenormal(pb, pc, searchpt, n, 1, NULL); |
|
area_bcp = sqrt(dot(n, n)); |
|
if ((area_bcp / area_abc) < b->epsilon) { |
|
area_bcp = 0; // Rounding. |
|
} |
|
|
|
facenormal(pc, pa, searchpt, n, 1, NULL); |
|
area_cap = sqrt(dot(n, n)); |
|
if ((area_cap / area_abc) < b->epsilon) { |
|
area_cap = 0; // Rounding |
|
} |
|
|
|
if ((loc == ONFACE) || (loc == OUTSIDE)) { |
|
facenormal(pa, pb, searchpt, n, 1, NULL); |
|
area_abp = sqrt(dot(n, n)); |
|
if ((area_abp / area_abc) < b->epsilon) { |
|
area_abp = 0; // Rounding |
|
} |
|
} else { // loc == ONEDGE |
|
area_abp = 0; |
|
} |
|
|
|
if (area_abp == 0) { |
|
if (area_bcp == 0) { |
|
senextself(*searchsh); |
|
loc = ONVERTEX; // p is close to b. |
|
} else { |
|
if (area_cap == 0) { |
|
loc = ONVERTEX; // p is close to a. |
|
} else { |
|
loc = ONEDGE; // p is on edge [a,b]. |
|
} |
|
} |
|
} else if (area_bcp == 0) { |
|
if (area_cap == 0) { |
|
senext2self(*searchsh); |
|
loc = ONVERTEX; // p is close to c. |
|
} else { |
|
senextself(*searchsh); |
|
loc = ONEDGE; // p is on edge [b,c]. |
|
} |
|
} else if (area_cap == 0) { |
|
senext2self(*searchsh); |
|
loc = ONEDGE; // p is on edge [c,a]. |
|
} else { |
|
loc = ONFACE; // p is on face [a,b,c]. |
|
} |
|
} // if (rflag) |
|
|
|
return loc; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// sscoutsegment() Look for a segment in the surface triangulation. // |
|
// // |
|
// The segment is given by the origin of 'searchsh' and 'endpt'. // |
|
// // |
|
// If an edge in T is found matching this segment, the segment is "locked" // |
|
// in T at the edge. Otherwise, flip the first edge in T that the segment // |
|
// crosses. Continue the search from the flipped face. // |
|
// // |
|
// This routine uses 'orisent3d' to determine the search direction. It uses // |
|
// 'dummypoint' as the 'lifted point' in 3d, and it assumes that it (dummy- // |
|
// point) lies above the 'searchsh' (w.r.t the Right-hand rule). // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
enum tetgenmesh::interresult tetgenmesh::sscoutsegment(face* searchsh, point endpt, |
|
int insertsegflag, int reporterrorflag, |
|
int chkencflag) { |
|
face flipshs[2], neighsh; |
|
point startpt, pa, pb, pc, pd; |
|
enum interresult dir; |
|
enum { MOVE_AB, MOVE_CA } nextmove; |
|
REAL ori_ab, ori_ca, len; |
|
|
|
pc = NULL; // Avoid warnings from MSVC |
|
// The origin of 'searchsh' is fixed. |
|
startpt = sorg(*searchsh); |
|
nextmove = MOVE_AB; // Avoid compiler warning. |
|
|
|
if (b->verbose > 2) { |
|
printf(" Scout segment (%d, %d).\n", pointmark(startpt), pointmark(endpt)); |
|
} |
|
len = distance(startpt, endpt); |
|
|
|
// Search an edge in 'searchsh' on the path of this segment. |
|
while (1) { |
|
|
|
pb = sdest(*searchsh); |
|
if (pb == endpt) { |
|
dir = SHAREEDGE; // Found! |
|
break; |
|
} |
|
|
|
pc = sapex(*searchsh); |
|
if (pc == endpt) { |
|
senext2self(*searchsh); |
|
sesymself(*searchsh); |
|
dir = SHAREEDGE; // Found! |
|
break; |
|
} |
|
|
|
// Round the results. |
|
if ((sqrt(triarea(startpt, pb, endpt)) / len) < b->epsilon) { |
|
ori_ab = 0.0; |
|
} else { |
|
ori_ab = orient3d(startpt, pb, dummypoint, endpt); |
|
} |
|
if ((sqrt(triarea(pc, startpt, endpt)) / len) < b->epsilon) { |
|
ori_ca = 0.0; |
|
} else { |
|
ori_ca = orient3d(pc, startpt, dummypoint, endpt); |
|
} |
|
|
|
if (ori_ab < 0) { |
|
if (ori_ca < 0) { // (--) |
|
// Both sides are viable moves. |
|
if (randomnation(2)) { |
|
nextmove = MOVE_CA; |
|
} else { |
|
nextmove = MOVE_AB; |
|
} |
|
} else { // (-#) |
|
nextmove = MOVE_AB; |
|
} |
|
} else { |
|
if (ori_ca < 0) { // (#-) |
|
nextmove = MOVE_CA; |
|
} else { |
|
if (ori_ab > 0) { |
|
if (ori_ca > 0) { // (++) |
|
// The segment intersects with edge [b, c]. |
|
dir = ACROSSEDGE; |
|
break; |
|
} else { // (+0) |
|
// The segment collinear with edge [c, a]. |
|
senext2self(*searchsh); |
|
sesymself(*searchsh); |
|
dir = ACROSSVERT; |
|
break; |
|
} |
|
} else { |
|
if (ori_ca > 0) { // (0+) |
|
// The segment is collinear with edge [a, b]. |
|
dir = ACROSSVERT; |
|
break; |
|
} else { // (00) |
|
// startpt == endpt. Not possible. |
|
terminatetetgen(this, 2); |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Move 'searchsh' to the next face, keep the origin unchanged. |
|
if (nextmove == MOVE_AB) { |
|
if (chkencflag) { |
|
// Do not cross boundary. |
|
if (isshsubseg(*searchsh)) { |
|
return ACROSSEDGE; // ACROSS_SEG |
|
} |
|
} |
|
spivot(*searchsh, neighsh); |
|
if (neighsh.sh != NULL) { |
|
if (sorg(neighsh) != pb) sesymself(neighsh); |
|
senext(neighsh, *searchsh); |
|
} else { |
|
// This side (startpt->pb) is outside. It is caused by rounding error. |
|
// Try the next side, i.e., (pc->startpt). |
|
senext2(*searchsh, neighsh); |
|
if (chkencflag) { |
|
// Do not cross boundary. |
|
if (isshsubseg(neighsh)) { |
|
*searchsh = neighsh; |
|
return ACROSSEDGE; // ACROSS_SEG |
|
} |
|
} |
|
spivotself(neighsh); |
|
if (sdest(neighsh) != pc) sesymself(neighsh); |
|
*searchsh = neighsh; |
|
} |
|
} else { // MOVE_CA |
|
senext2(*searchsh, neighsh); |
|
if (chkencflag) { |
|
// Do not cross boundary. |
|
if (isshsubseg(neighsh)) { |
|
*searchsh = neighsh; |
|
return ACROSSEDGE; // ACROSS_SEG |
|
} |
|
} |
|
spivotself(neighsh); |
|
if (neighsh.sh != NULL) { |
|
if (sdest(neighsh) != pc) sesymself(neighsh); |
|
*searchsh = neighsh; |
|
} else { |
|
// The same reason as above. |
|
// Try the next side, i.e., (startpt->pb). |
|
if (chkencflag) { |
|
// Do not cross boundary. |
|
if (isshsubseg(*searchsh)) { |
|
return ACROSSEDGE; // ACROSS_SEG |
|
} |
|
} |
|
spivot(*searchsh, neighsh); |
|
if (sorg(neighsh) != pb) sesymself(neighsh); |
|
senext(neighsh, *searchsh); |
|
} |
|
} |
|
} // while |
|
|
|
if (dir == SHAREEDGE) { |
|
if (insertsegflag) { |
|
// Insert the segment into the triangulation. |
|
face newseg; |
|
makeshellface(subsegs, &newseg); |
|
setshvertices(newseg, startpt, endpt, NULL); |
|
// Set the default segment marker. |
|
setshellmark(newseg, -1); |
|
ssbond(*searchsh, newseg); |
|
spivot(*searchsh, neighsh); |
|
if (neighsh.sh != NULL) { |
|
ssbond(neighsh, newseg); |
|
} |
|
} |
|
return dir; |
|
} |
|
|
|
if (dir == ACROSSVERT) { |
|
// A point is found collinear with this segment. |
|
if (reporterrorflag) { |
|
point pp = sdest(*searchsh); |
|
printf("PLC Error: A vertex lies in a segment in facet #%d.\n", shellmark(*searchsh)); |
|
printf(" Vertex: [%d] (%g,%g,%g).\n", pointmark(pp), pp[0], pp[1], pp[2]); |
|
printf(" Segment: [%d, %d]\n", pointmark(startpt), pointmark(endpt)); |
|
} |
|
return dir; |
|
} |
|
|
|
if (dir == ACROSSEDGE) { |
|
// Edge [b, c] intersects with the segment. |
|
senext(*searchsh, flipshs[0]); |
|
if (isshsubseg(flipshs[0])) { |
|
if (reporterrorflag) { |
|
REAL P[3], Q[3], tp = 0, tq = 0; |
|
linelineint(startpt, endpt, pb, pc, P, Q, &tp, &tq); |
|
printf("PLC Error: Two segments intersect at point (%g,%g,%g),", P[0], P[1], P[2]); |
|
printf(" in facet #%d.\n", shellmark(*searchsh)); |
|
printf(" Segment 1: [%d, %d]\n", pointmark(pb), pointmark(pc)); |
|
printf(" Segment 2: [%d, %d]\n", pointmark(startpt), pointmark(endpt)); |
|
} |
|
return dir; // ACROSS_SEG |
|
} |
|
// Flip edge [b, c], queue unflipped edges (for Delaunay checks). |
|
spivot(flipshs[0], flipshs[1]); |
|
if (sorg(flipshs[1]) != sdest(flipshs[0])) sesymself(flipshs[1]); |
|
flip22(flipshs, 1, 0); |
|
// The flip may create an inverted triangle, check it. |
|
pa = sapex(flipshs[1]); |
|
pb = sapex(flipshs[0]); |
|
pc = sorg(flipshs[0]); |
|
pd = sdest(flipshs[0]); |
|
// Check if pa and pb are on the different sides of [pc, pd]. |
|
// Re-use ori_ab, ori_ca for the tests. |
|
ori_ab = orient3d(pc, pd, dummypoint, pb); |
|
ori_ca = orient3d(pd, pc, dummypoint, pa); |
|
if (ori_ab <= 0) { |
|
flipshpush(&(flipshs[0])); |
|
} else if (ori_ca <= 0) { |
|
flipshpush(&(flipshs[1])); |
|
} |
|
// Set 'searchsh' s.t. its origin is 'startpt'. |
|
*searchsh = flipshs[0]; |
|
} |
|
|
|
return sscoutsegment(searchsh, endpt, insertsegflag, reporterrorflag, chkencflag); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// scarveholes() Remove triangles not in the facet. // |
|
// // |
|
// This routine re-uses the two global arrays: caveshlist and caveshbdlist. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::scarveholes(int holes, REAL* holelist) { |
|
face *parysh, searchsh, neighsh; |
|
enum locateresult loc; |
|
int i, j; |
|
|
|
// Get all triangles. Infect unprotected convex hull triangles. |
|
smarktest(recentsh); |
|
caveshlist->newindex((void**)&parysh); |
|
*parysh = recentsh; |
|
for (i = 0; i < caveshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshlist, i); |
|
searchsh = *parysh; |
|
searchsh.shver = 0; |
|
for (j = 0; j < 3; j++) { |
|
spivot(searchsh, neighsh); |
|
// Is this side on the convex hull? |
|
if (neighsh.sh != NULL) { |
|
if (!smarktested(neighsh)) { |
|
smarktest(neighsh); |
|
caveshlist->newindex((void**)&parysh); |
|
*parysh = neighsh; |
|
} |
|
} else { |
|
// A hull side. Check if it is protected by a segment. |
|
if (!isshsubseg(searchsh)) { |
|
// Not protected. Save this face. |
|
if (!sinfected(searchsh)) { |
|
sinfect(searchsh); |
|
caveshbdlist->newindex((void**)&parysh); |
|
*parysh = searchsh; |
|
} |
|
} |
|
} |
|
senextself(searchsh); |
|
} |
|
} |
|
|
|
// Infect the triangles in the holes. |
|
for (i = 0; i < 3 * holes; i += 3) { |
|
searchsh = recentsh; |
|
loc = slocate(&(holelist[i]), &searchsh, 1, 1, 0); |
|
if (loc != OUTSIDE) { |
|
sinfect(searchsh); |
|
caveshbdlist->newindex((void**)&parysh); |
|
*parysh = searchsh; |
|
} |
|
} |
|
|
|
// Find and infect all exterior triangles. |
|
for (i = 0; i < caveshbdlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshbdlist, i); |
|
searchsh = *parysh; |
|
searchsh.shver = 0; |
|
for (j = 0; j < 3; j++) { |
|
spivot(searchsh, neighsh); |
|
if (neighsh.sh != NULL) { |
|
if (!isshsubseg(searchsh)) { |
|
if (!sinfected(neighsh)) { |
|
sinfect(neighsh); |
|
caveshbdlist->newindex((void**)&parysh); |
|
*parysh = neighsh; |
|
} |
|
} else { |
|
sdissolve(neighsh); // Disconnect a protected face. |
|
} |
|
} |
|
senextself(searchsh); |
|
} |
|
} |
|
|
|
// Delete exterior triangles, unmark interior triangles. |
|
for (i = 0; i < caveshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshlist, i); |
|
if (sinfected(*parysh)) { |
|
shellfacedealloc(subfaces, parysh->sh); |
|
} else { |
|
sunmarktest(*parysh); |
|
} |
|
} |
|
|
|
caveshlist->restart(); |
|
caveshbdlist->restart(); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// triangulate() Create a CDT for the facet. // |
|
// // |
|
// All vertices of the triangulation have type FACETVERTEX. The actual type // |
|
// of boundary vertices are set by the routine unifysements(). // |
|
// // |
|
// All segments created here will have a default marker '-1'. Some of these // |
|
// segments will get their actual marker defined in 'edgemarkerlist'. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::triangulate(int shmark, arraypool* ptlist, arraypool* conlist, int holes, |
|
REAL* holelist) { |
|
face searchsh, newsh, *parysh; |
|
face newseg, *paryseg; |
|
point pa, pb, pc, *ppt, *cons; |
|
int iloc; |
|
int i, j; |
|
|
|
if (b->verbose > 2) { |
|
printf(" f%d: %ld vertices, %ld segments", shmark, ptlist->objects, conlist->objects); |
|
if (holes > 0) { |
|
printf(", %d holes", holes); |
|
} |
|
printf(".\n"); |
|
} |
|
|
|
if (ptlist->objects < 2l) { |
|
// Not a segment or a facet. |
|
return 1; |
|
} else if (ptlist->objects == 2l) { |
|
pa = *(point*)fastlookup(ptlist, 0); |
|
pb = *(point*)fastlookup(ptlist, 1); |
|
if (distance(pa, pb) > 0) { |
|
// It is a single segment. |
|
makeshellface(subsegs, &newseg); |
|
setshvertices(newseg, pa, pb, NULL); |
|
setshellmark(newseg, -1); |
|
} |
|
if (pointtype(pa) == VOLVERTEX) { |
|
setpointtype(pa, FACETVERTEX); |
|
} |
|
if (pointtype(pb) == VOLVERTEX) { |
|
setpointtype(pb, FACETVERTEX); |
|
} |
|
return 1; |
|
} else if (ptlist->objects == 3) { |
|
pa = *(point*)fastlookup(ptlist, 0); |
|
pb = *(point*)fastlookup(ptlist, 1); |
|
pc = *(point*)fastlookup(ptlist, 2); |
|
} else { |
|
// Calculate an above point of this facet. |
|
if (!calculateabovepoint(ptlist, &pa, &pb, &pc)) { |
|
if (!b->quiet) { |
|
printf("Warning: Unable to triangulate facet #%d. Skipped!\n", shmark); |
|
} |
|
return 0; // The point set is degenerate. |
|
} |
|
} |
|
|
|
// Create an initial triangulation. |
|
makeshellface(subfaces, &newsh); |
|
setshvertices(newsh, pa, pb, pc); |
|
setshellmark(newsh, shmark); |
|
recentsh = newsh; |
|
|
|
if (pointtype(pa) == VOLVERTEX) { |
|
setpointtype(pa, FACETVERTEX); |
|
} |
|
if (pointtype(pb) == VOLVERTEX) { |
|
setpointtype(pb, FACETVERTEX); |
|
} |
|
if (pointtype(pc) == VOLVERTEX) { |
|
setpointtype(pc, FACETVERTEX); |
|
} |
|
|
|
// Are there area constraints? |
|
if (b->quality && (in->facetconstraintlist != NULL)) { |
|
for (i = 0; i < in->numberoffacetconstraints; i++) { |
|
if (shmark == ((int)in->facetconstraintlist[i * 2])) { |
|
REAL area = in->facetconstraintlist[i * 2 + 1]; |
|
setareabound(newsh, area); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
if (ptlist->objects == 3) { |
|
// The triangulation only has one element. |
|
for (i = 0; i < 3; i++) { |
|
makeshellface(subsegs, &newseg); |
|
setshvertices(newseg, sorg(newsh), sdest(newsh), NULL); |
|
setshellmark(newseg, -1); |
|
ssbond(newsh, newseg); |
|
senextself(newsh); |
|
} |
|
return 1; |
|
} |
|
|
|
// Triangulate the facet. It may not success (due to rounding error, or |
|
// incorrect input data), use 'caveencshlist' and 'caveencseglist' are |
|
// re-used to store all the newly created subfaces and segments. So we |
|
// can clean them if the triangulation is not successful. |
|
caveencshlist->newindex((void**)&parysh); |
|
*parysh = newsh; |
|
|
|
// Incrementally build the triangulation. |
|
pinfect(pa); |
|
pinfect(pb); |
|
pinfect(pc); |
|
for (i = 0; i < ptlist->objects; i++) { |
|
ppt = (point*)fastlookup(ptlist, i); |
|
if (!pinfected(*ppt)) { |
|
searchsh = recentsh; // Start from 'recentsh'. |
|
iloc = (int)OUTSIDE; |
|
// Insert the vertex. Use Bowyer-Watson algo. Round the location. |
|
iloc = sinsertvertex(*ppt, &searchsh, NULL, iloc, 1, 1); |
|
if (iloc != ((int)ONVERTEX)) { |
|
// Point inserted successfully. |
|
if (pointtype(*ppt) == VOLVERTEX) { |
|
setpointtype(*ppt, FACETVERTEX); |
|
} |
|
// Save the set of new subfaces. |
|
for (j = 0; j < caveshbdlist->objects; j++) { |
|
// Get an old subface at edge [a, b]. |
|
parysh = (face*)fastlookup(caveshbdlist, j); |
|
spivot(*parysh, searchsh); // The new subface [a, b, p]. |
|
// Do not save a deleted new face (degenerated). |
|
if (searchsh.sh[3] != NULL) { |
|
caveencshlist->newindex((void**)&parysh); |
|
*parysh = searchsh; |
|
} |
|
} |
|
// Delete all removed subfaces. |
|
for (j = 0; j < caveshlist->objects; j++) { |
|
parysh = (face*)fastlookup(caveshlist, j); |
|
shellfacedealloc(subfaces, parysh->sh); |
|
} |
|
// Clear the global lists. |
|
caveshbdlist->restart(); |
|
caveshlist->restart(); |
|
cavesegshlist->restart(); |
|
} else { |
|
// The facet triangulation is failed. |
|
break; |
|
} |
|
} |
|
} // i |
|
puninfect(pa); |
|
puninfect(pb); |
|
puninfect(pc); |
|
|
|
if (i < ptlist->objects) { |
|
// The facet triangulation is failed. Clean the new subfaces. |
|
// There is no new segment be created yet. |
|
if (!b->quiet) { |
|
printf("Warning: Fail to triangulate facet #%d. Skipped!\n", shmark); |
|
} |
|
for (i = 0; i < caveencshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveencshlist, i); |
|
if (parysh->sh[3] != NULL) { |
|
shellfacedealloc(subfaces, parysh->sh); |
|
} |
|
} |
|
caveencshlist->restart(); |
|
return 0; |
|
} |
|
|
|
// Insert the segments. |
|
for (i = 0; i < conlist->objects; i++) { |
|
cons = (point*)fastlookup(conlist, i); |
|
searchsh = recentsh; |
|
iloc = (int)slocate(cons[0], &searchsh, 1, 1, 0); |
|
if (iloc != (int)ONVERTEX) { |
|
// Not found due to roundoff errors. Do a brute-force search. |
|
subfaces->traversalinit(); |
|
searchsh.sh = shellfacetraverse(subfaces); |
|
while (searchsh.sh != NULL) { |
|
// Only search the subface in the same facet. |
|
if (shellmark(searchsh) == shmark) { |
|
if ((point)searchsh.sh[3] == cons[0]) { |
|
searchsh.shver = 0; |
|
break; |
|
} else if ((point)searchsh.sh[4] == cons[0]) { |
|
searchsh.shver = 2; |
|
break; |
|
} else if ((point)searchsh.sh[5] == cons[0]) { |
|
searchsh.shver = 4; |
|
break; |
|
} |
|
} |
|
searchsh.sh = shellfacetraverse(subfaces); |
|
} |
|
} |
|
// Recover the segment. Some edges may be flipped. |
|
if (sscoutsegment(&searchsh, cons[1], 1, 1, 0) != SHAREEDGE) { |
|
break; // Fail to recover a segment. |
|
} |
|
// Save this newseg. |
|
sspivot(searchsh, newseg); |
|
caveencseglist->newindex((void**)&paryseg); |
|
*paryseg = newseg; |
|
if (flipstack != NULL) { |
|
// Recover locally Delaunay edges. |
|
lawsonflip(); |
|
} |
|
} // i |
|
|
|
if (i < conlist->objects) { |
|
if (!b->quiet) { |
|
printf("Warning: Fail to recover a segment in facet #%d. Skipped!\n", shmark); |
|
} |
|
for (i = 0; i < caveencshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveencshlist, i); |
|
if (parysh->sh[3] != NULL) { |
|
shellfacedealloc(subfaces, parysh->sh); |
|
} |
|
} |
|
for (i = 0; i < caveencseglist->objects; i++) { |
|
paryseg = (face*)fastlookup(caveencseglist, i); |
|
if (paryseg->sh[3] != NULL) { |
|
shellfacedealloc(subsegs, paryseg->sh); |
|
} |
|
} |
|
caveencshlist->restart(); |
|
caveencseglist->restart(); |
|
return 0; |
|
} |
|
|
|
// Remove exterior and hole triangles. |
|
scarveholes(holes, holelist); |
|
|
|
caveencshlist->restart(); |
|
caveencseglist->restart(); |
|
return 1; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// unifysegments() Remove redundant segments and create face links. // |
|
// // |
|
// After this routine, although segments are unique, but some of them may be // |
|
// removed later by mergefacet(). All vertices still have type FACETVERTEX. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::unifysegments() { |
|
badface *facelink = NULL, *newlinkitem, *f1, *f2; |
|
face *facperverlist, sface; |
|
face subsegloop, testseg; |
|
point torg, tdest; |
|
REAL ori1, ori2, ori3; |
|
REAL n1[3], n2[3]; |
|
REAL cosang, ang, ang_tol; |
|
int* idx2faclist; |
|
int idx, k, m; |
|
|
|
if (b->verbose > 1) { |
|
printf(" Unifying segments.\n"); |
|
} |
|
// The limit dihedral angle that two facets are not overlapping. |
|
ang_tol = b->facet_overlap_ang_tol / 180.0 * PI; |
|
if (ang_tol < 0.0) ang_tol = 0.0; |
|
|
|
// Create a mapping from vertices to subfaces. |
|
makepoint2submap(subfaces, idx2faclist, facperverlist); |
|
|
|
subsegloop.shver = 0; |
|
subsegs->traversalinit(); |
|
subsegloop.sh = shellfacetraverse(subsegs); |
|
while (subsegloop.sh != (shellface*)NULL) { |
|
torg = sorg(subsegloop); |
|
tdest = sdest(subsegloop); |
|
|
|
idx = pointmark(torg) - in->firstnumber; |
|
// Loop through the set of subfaces containing 'torg'. Get all the |
|
// subfaces containing the edge (torg, tdest). Save and order them |
|
// in 'sfacelist', the ordering is defined by the right-hand rule |
|
// with thumb points from torg to tdest. |
|
for (k = idx2faclist[idx]; k < idx2faclist[idx + 1]; k++) { |
|
sface = facperverlist[k]; |
|
// The face may be deleted if it is a duplicated face. |
|
if (sface.sh[3] == NULL) continue; |
|
// Search the edge torg->tdest. |
|
if (sdest(sface) != tdest) { |
|
senext2self(sface); |
|
sesymself(sface); |
|
} |
|
if (sdest(sface) != tdest) continue; |
|
|
|
// Save the face f in facelink. |
|
if (flippool->items >= 2) { |
|
f1 = facelink; |
|
for (m = 0; m < flippool->items - 1; m++) { |
|
f2 = f1->nextitem; |
|
ori1 = orient3d(torg, tdest, sapex(f1->ss), sapex(f2->ss)); |
|
ori2 = orient3d(torg, tdest, sapex(f1->ss), sapex(sface)); |
|
if (ori1 > 0) { |
|
// apex(f2) is below f1. |
|
if (ori2 > 0) { |
|
// apex(f) is below f1 (see Fig.1). |
|
ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface)); |
|
if (ori3 > 0) { |
|
// apex(f) is below f2, insert it. |
|
break; |
|
} else if (ori3 < 0) { |
|
// apex(f) is above f2, continue. |
|
} else { // ori3 == 0; |
|
// f is coplanar and codirection with f2. |
|
report_overlapping_facets(&(f2->ss), &sface); |
|
break; |
|
} |
|
} else if (ori2 < 0) { |
|
// apex(f) is above f1 below f2, inset it (see Fig. 2). |
|
break; |
|
} else { // ori2 == 0; |
|
// apex(f) is coplanar with f1 (see Fig. 5). |
|
ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface)); |
|
if (ori3 > 0) { |
|
// apex(f) is below f2, insert it. |
|
break; |
|
} else { |
|
// f is coplanar and codirection with f1. |
|
report_overlapping_facets(&(f1->ss), &sface); |
|
break; |
|
} |
|
} |
|
} else if (ori1 < 0) { |
|
// apex(f2) is above f1. |
|
if (ori2 > 0) { |
|
// apex(f) is below f1, continue (see Fig. 3). |
|
} else if (ori2 < 0) { |
|
// apex(f) is above f1 (see Fig.4). |
|
ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface)); |
|
if (ori3 > 0) { |
|
// apex(f) is below f2, insert it. |
|
break; |
|
} else if (ori3 < 0) { |
|
// apex(f) is above f2, continue. |
|
} else { // ori3 == 0; |
|
// f is coplanar and codirection with f2. |
|
report_overlapping_facets(&(f2->ss), &sface); |
|
break; |
|
} |
|
} else { // ori2 == 0; |
|
// f is coplanar and with f1 (see Fig. 6). |
|
ori3 = orient3d(torg, tdest, sapex(f2->ss), sapex(sface)); |
|
if (ori3 > 0) { |
|
// f is also codirection with f1. |
|
report_overlapping_facets(&(f1->ss), &sface); |
|
break; |
|
} else { |
|
// f is above f2, continue. |
|
} |
|
} |
|
} else { // ori1 == 0; |
|
// apex(f2) is coplanar with f1. By assumption, f1 is not |
|
// coplanar and codirection with f2. |
|
if (ori2 > 0) { |
|
// apex(f) is below f1, continue (see Fig. 7). |
|
} else if (ori2 < 0) { |
|
// apex(f) is above f1, insert it (see Fig. 7). |
|
break; |
|
} else { // ori2 == 0. |
|
// apex(f) is coplanar with f1 (see Fig. 8). |
|
// f is either codirection with f1 or is codirection with f2. |
|
facenormal(torg, tdest, sapex(f1->ss), n1, 1, NULL); |
|
facenormal(torg, tdest, sapex(sface), n2, 1, NULL); |
|
if (dot(n1, n2) > 0) { |
|
report_overlapping_facets(&(f1->ss), &sface); |
|
} else { |
|
report_overlapping_facets(&(f2->ss), &sface); |
|
} |
|
break; |
|
} |
|
} |
|
// Go to the next item; |
|
f1 = f2; |
|
} // for (m = 0; ...) |
|
if (sface.sh[3] != NULL) { |
|
// Insert sface between f1 and f2. |
|
newlinkitem = (badface*)flippool->alloc(); |
|
newlinkitem->ss = sface; |
|
newlinkitem->nextitem = f1->nextitem; |
|
f1->nextitem = newlinkitem; |
|
} |
|
} else if (flippool->items == 1) { |
|
f1 = facelink; |
|
// Make sure that f is not coplanar and codirection with f1. |
|
ori1 = orient3d(torg, tdest, sapex(f1->ss), sapex(sface)); |
|
if (ori1 == 0) { |
|
// f is coplanar with f1 (see Fig. 8). |
|
facenormal(torg, tdest, sapex(f1->ss), n1, 1, NULL); |
|
facenormal(torg, tdest, sapex(sface), n2, 1, NULL); |
|
if (dot(n1, n2) > 0) { |
|
// The two faces are codirectional as well. |
|
report_overlapping_facets(&(f1->ss), &sface); |
|
} |
|
} |
|
// Add this face to link if it is not deleted. |
|
if (sface.sh[3] != NULL) { |
|
// Add this face into link. |
|
newlinkitem = (badface*)flippool->alloc(); |
|
newlinkitem->ss = sface; |
|
newlinkitem->nextitem = NULL; |
|
f1->nextitem = newlinkitem; |
|
} |
|
} else { |
|
// The first face. |
|
newlinkitem = (badface*)flippool->alloc(); |
|
newlinkitem->ss = sface; |
|
newlinkitem->nextitem = NULL; |
|
facelink = newlinkitem; |
|
} |
|
} // for (k = idx2faclist[idx]; ...) |
|
|
|
// Set the connection between this segment and faces containing it, |
|
// at the same time, remove redundant segments. |
|
f1 = facelink; |
|
for (k = 0; k < flippool->items; k++) { |
|
sspivot(f1->ss, testseg); |
|
// If 'testseg' is not 'subsegloop' and is not dead, it is redundant. |
|
if ((testseg.sh != subsegloop.sh) && (testseg.sh[3] != NULL)) { |
|
shellfacedealloc(subsegs, testseg.sh); |
|
} |
|
// Bonds the subface and the segment together. |
|
ssbond(f1->ss, subsegloop); |
|
f1 = f1->nextitem; |
|
} |
|
|
|
// Create the face ring at the segment. |
|
if (flippool->items > 1) { |
|
f1 = facelink; |
|
for (k = 1; k <= flippool->items; k++) { |
|
k < flippool->items ? f2 = f1->nextitem : f2 = facelink; |
|
// Calculate the dihedral angle between the two facet. |
|
facenormal(torg, tdest, sapex(f1->ss), n1, 1, NULL); |
|
facenormal(torg, tdest, sapex(f2->ss), n2, 1, NULL); |
|
cosang = dot(n1, n2) / (sqrt(dot(n1, n1)) * sqrt(dot(n2, n2))); |
|
// Rounding. |
|
if (cosang > 1.0) |
|
cosang = 1.0; |
|
else if (cosang < -1.0) |
|
cosang = -1.0; |
|
ang = acos(cosang); |
|
if (ang < ang_tol) { |
|
// Two facets are treated as overlapping each other. |
|
report_overlapping_facets(&(f1->ss), &(f2->ss), ang); |
|
} else { |
|
// Record the smallest input dihedral angle. |
|
if (ang < minfacetdihed) { |
|
minfacetdihed = ang; |
|
} |
|
sbond1(f1->ss, f2->ss); |
|
} |
|
f1 = f2; |
|
} |
|
} |
|
|
|
flippool->restart(); |
|
|
|
// Are there length constraints? |
|
if (b->quality && (in->segmentconstraintlist != (REAL*)NULL)) { |
|
int e1, e2; |
|
REAL len; |
|
for (k = 0; k < in->numberofsegmentconstraints; k++) { |
|
e1 = (int)in->segmentconstraintlist[k * 3]; |
|
e2 = (int)in->segmentconstraintlist[k * 3 + 1]; |
|
if (((pointmark(torg) == e1) && (pointmark(tdest) == e2)) || |
|
((pointmark(torg) == e2) && (pointmark(tdest) == e1))) { |
|
len = in->segmentconstraintlist[k * 3 + 2]; |
|
setareabound(subsegloop, len); |
|
break; |
|
} |
|
} |
|
} |
|
|
|
subsegloop.sh = shellfacetraverse(subsegs); |
|
} |
|
|
|
delete[] idx2faclist; |
|
delete[] facperverlist; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// identifyinputedges() Identify input edges. // |
|
// // |
|
// A set of input edges is provided in the 'in->edgelist'. We find these // |
|
// edges in the surface mesh and make them segments of the mesh. // |
|
// // |
|
// It is possible that an input edge is not in any facet, i.e.,it is a float-// |
|
// segment inside the volume. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::identifyinputedges(point* idx2verlist) { |
|
face* shperverlist; |
|
int* idx2shlist; |
|
face searchsh, neighsh; |
|
face segloop, checkseg, newseg; |
|
point checkpt, pa = NULL, pb = NULL; |
|
int* endpts; |
|
int edgemarker; |
|
int idx, i, j; |
|
|
|
int e1, e2; |
|
REAL len; |
|
|
|
if (!b->quiet) { |
|
printf("Inserting edges ...\n"); |
|
} |
|
|
|
// Construct a map from points to subfaces. |
|
makepoint2submap(subfaces, idx2shlist, shperverlist); |
|
|
|
// Process the set of input edges. |
|
for (i = 0; i < in->numberofedges; i++) { |
|
endpts = &(in->edgelist[(i << 1)]); |
|
if (endpts[0] == endpts[1]) { |
|
if (!b->quiet) { |
|
printf("Warning: Edge #%d is degenerated. Skipped.\n", i); |
|
} |
|
continue; // Skip a degenerated edge. |
|
} |
|
// Recall that all existing segments have a default marker '-1'. |
|
// We assign all identified segments a default marker '-2'. |
|
edgemarker = in->edgemarkerlist ? in->edgemarkerlist[i] : -2; |
|
|
|
// Find a face contains the edge. |
|
newseg.sh = NULL; |
|
searchsh.sh = NULL; |
|
idx = endpts[0] - in->firstnumber; |
|
for (j = idx2shlist[idx]; j < idx2shlist[idx + 1]; j++) { |
|
checkpt = sdest(shperverlist[j]); |
|
if (pointmark(checkpt) == endpts[1]) { |
|
searchsh = shperverlist[j]; |
|
break; // Found. |
|
} else { |
|
checkpt = sapex(shperverlist[j]); |
|
if (pointmark(checkpt) == endpts[1]) { |
|
senext2(shperverlist[j], searchsh); |
|
sesymself(searchsh); |
|
break; |
|
} |
|
} |
|
} // j |
|
|
|
if (searchsh.sh != NULL) { |
|
// Check if this edge is already a segment of the mesh. |
|
sspivot(searchsh, checkseg); |
|
if (checkseg.sh != NULL) { |
|
// This segment already exist. |
|
newseg = checkseg; |
|
} else { |
|
// Create a new segment at this edge. |
|
pa = sorg(searchsh); |
|
pb = sdest(searchsh); |
|
makeshellface(subsegs, &newseg); |
|
setshvertices(newseg, pa, pb, NULL); |
|
ssbond(searchsh, newseg); |
|
spivot(searchsh, neighsh); |
|
if (neighsh.sh != NULL) { |
|
ssbond(neighsh, newseg); |
|
} |
|
} |
|
} else { |
|
// It is a dangling segment (not belong to any facets). |
|
// Get the two endpoints of this segment. |
|
pa = idx2verlist[endpts[0]]; |
|
pb = idx2verlist[endpts[1]]; |
|
if (pa == pb) { |
|
if (!b->quiet) { |
|
printf("Warning: Edge #%d is degenerated. Skipped.\n", i); |
|
} |
|
continue; |
|
} |
|
// Check if segment [a,b] already exists. |
|
// TODO: Change the brute-force search. Slow! |
|
point* ppt; |
|
subsegs->traversalinit(); |
|
segloop.sh = shellfacetraverse(subsegs); |
|
while (segloop.sh != NULL) { |
|
ppt = (point*)&(segloop.sh[3]); |
|
if (((ppt[0] == pa) && (ppt[1] == pb)) || ((ppt[0] == pb) && (ppt[1] == pa))) { |
|
// Found! |
|
newseg = segloop; |
|
break; |
|
} |
|
segloop.sh = shellfacetraverse(subsegs); |
|
} |
|
if (newseg.sh == NULL) { |
|
makeshellface(subsegs, &newseg); |
|
setshvertices(newseg, pa, pb, NULL); |
|
} |
|
} |
|
|
|
setshellmark(newseg, edgemarker); |
|
|
|
if (b->quality && (in->segmentconstraintlist != (REAL*)NULL)) { |
|
for (i = 0; i < in->numberofsegmentconstraints; i++) { |
|
e1 = (int)in->segmentconstraintlist[i * 3]; |
|
e2 = (int)in->segmentconstraintlist[i * 3 + 1]; |
|
if (((pointmark(pa) == e1) && (pointmark(pb) == e2)) || |
|
((pointmark(pa) == e2) && (pointmark(pb) == e1))) { |
|
len = in->segmentconstraintlist[i * 3 + 2]; |
|
setareabound(newseg, len); |
|
break; |
|
} |
|
} |
|
} |
|
} // i |
|
|
|
delete[] shperverlist; |
|
delete[] idx2shlist; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// mergefacets() Merge adjacent facets. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::mergefacets() { |
|
face parentsh, neighsh, neineish; |
|
face segloop; |
|
point pa, pb, pc, pd; |
|
REAL n1[3], n2[3]; |
|
REAL cosang, cosang_tol; |
|
|
|
// Allocate an array to save calcaulated dihedral angles at segments. |
|
arraypool* dihedangarray = new arraypool(sizeof(double), 10); |
|
REAL* paryang = NULL; |
|
|
|
// First, remove coplanar segments. |
|
// The dihedral angle bound for two different facets. |
|
cosang_tol = cos(b->facet_separate_ang_tol / 180.0 * PI); |
|
|
|
subsegs->traversalinit(); |
|
segloop.sh = shellfacetraverse(subsegs); |
|
while (segloop.sh != (shellface*)NULL) { |
|
// Only remove a segment if it has a marker '-1'. |
|
if (shellmark(segloop) != -1) { |
|
segloop.sh = shellfacetraverse(subsegs); |
|
continue; |
|
} |
|
spivot(segloop, parentsh); |
|
if (parentsh.sh != NULL) { |
|
spivot(parentsh, neighsh); |
|
if (neighsh.sh != NULL) { |
|
spivot(neighsh, neineish); |
|
if (neineish.sh == parentsh.sh) { |
|
// Exactly two subfaces at this segment. |
|
// Only merge them if they have the same boundary marker. |
|
if (shellmark(parentsh) == shellmark(neighsh)) { |
|
pa = sorg(segloop); |
|
pb = sdest(segloop); |
|
pc = sapex(parentsh); |
|
pd = sapex(neighsh); |
|
// Calculate the dihedral angle at the segment [a,b]. |
|
facenormal(pa, pb, pc, n1, 1, NULL); |
|
facenormal(pa, pb, pd, n2, 1, NULL); |
|
cosang = dot(n1, n2) / (sqrt(dot(n1, n1)) * sqrt(dot(n2, n2))); |
|
if (cosang < cosang_tol) { |
|
ssdissolve(parentsh); |
|
ssdissolve(neighsh); |
|
shellfacedealloc(subsegs, segloop.sh); |
|
// Add the edge to flip stack. |
|
flipshpush(&parentsh); |
|
} else { |
|
// Save 'cosang' to avoid re-calculate it. |
|
// Re-use the pointer at the first segment. |
|
dihedangarray->newindex((void**)&paryang); |
|
*paryang = cosang; |
|
segloop.sh[6] = (shellface)paryang; |
|
} |
|
} |
|
} // if (neineish.sh == parentsh.sh) |
|
} |
|
} |
|
segloop.sh = shellfacetraverse(subsegs); |
|
} |
|
|
|
// Second, remove ridge segments at small angles. |
|
// The dihedral angle bound for two different facets. |
|
cosang_tol = cos(b->facet_small_ang_tol / 180.0 * PI); |
|
REAL cosang_sep_tol = cos((b->facet_separate_ang_tol - 5.0) / 180.0 * PI); |
|
face shloop; |
|
face seg1, seg2; |
|
REAL cosang1, cosang2; |
|
int i, j; |
|
|
|
subfaces->traversalinit(); |
|
shloop.sh = shellfacetraverse(subfaces); |
|
while (shloop.sh != (shellface*)NULL) { |
|
for (i = 0; i < 3; i++) { |
|
if (isshsubseg(shloop)) { |
|
senext(shloop, neighsh); |
|
if (isshsubseg(neighsh)) { |
|
// Found two segments sharing at one vertex. |
|
// Check if they form a small angle. |
|
pa = sorg(shloop); |
|
pb = sdest(shloop); |
|
pc = sapex(shloop); |
|
for (j = 0; j < 3; j++) |
|
n1[j] = pa[j] - pb[j]; |
|
for (j = 0; j < 3; j++) |
|
n2[j] = pc[j] - pb[j]; |
|
cosang = dot(n1, n2) / (sqrt(dot(n1, n1)) * sqrt(dot(n2, n2))); |
|
if (cosang > cosang_tol) { |
|
// Found a small angle. |
|
segloop.sh = NULL; |
|
sspivot(shloop, seg1); |
|
sspivot(neighsh, seg2); |
|
if (seg1.sh[6] != NULL) { |
|
paryang = (REAL*)(seg1.sh[6]); |
|
cosang1 = *paryang; |
|
} else { |
|
cosang1 = 1.0; // 0 degree; |
|
} |
|
if (seg2.sh[6] != NULL) { |
|
paryang = (REAL*)(seg2.sh[6]); |
|
cosang2 = *paryang; |
|
} else { |
|
cosang2 = 1.0; // 0 degree; |
|
} |
|
if (cosang1 < cosang_sep_tol) { |
|
if (cosang2 < cosang_sep_tol) { |
|
if (cosang1 < cosang2) { |
|
segloop = seg1; |
|
} else { |
|
segloop = seg2; |
|
} |
|
} else { |
|
segloop = seg1; |
|
} |
|
} else { |
|
if (cosang2 < cosang_sep_tol) { |
|
segloop = seg2; |
|
} |
|
} |
|
if (segloop.sh != NULL) { |
|
// Remove this segment. |
|
segloop.shver = 0; |
|
spivot(segloop, parentsh); |
|
spivot(parentsh, neighsh); |
|
ssdissolve(parentsh); |
|
ssdissolve(neighsh); |
|
shellfacedealloc(subsegs, segloop.sh); |
|
// Add the edge to flip stack. |
|
flipshpush(&parentsh); |
|
break; |
|
} |
|
} |
|
} // if (isshsubseg) |
|
} // if (isshsubseg) |
|
senextself(shloop); |
|
} |
|
shloop.sh = shellfacetraverse(subfaces); |
|
} |
|
|
|
delete dihedangarray; |
|
|
|
if (flipstack != NULL) { |
|
lawsonflip(); // Recover Delaunayness. |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// meshsurface() Create a surface mesh of the input PLC. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::meshsurface() { |
|
arraypool *ptlist, *conlist; |
|
point* idx2verlist; |
|
point tstart, tend, *pnewpt, *cons; |
|
tetgenio::facet* f; |
|
tetgenio::polygon* p; |
|
int end1, end2; |
|
int shmark, i, j; |
|
|
|
if (!b->quiet) { |
|
printf("Creating surface mesh ...\n"); |
|
} |
|
|
|
// Create a map from indices to points. |
|
makeindex2pointmap(idx2verlist); |
|
|
|
// Initialize arrays (block size: 2^8 = 256). |
|
ptlist = new arraypool(sizeof(point*), 8); |
|
conlist = new arraypool(2 * sizeof(point*), 8); |
|
|
|
// Loop the facet list, triangulate each facet. |
|
for (shmark = 1; shmark <= in->numberoffacets; shmark++) { |
|
|
|
// Get a facet F. |
|
f = &in->facetlist[shmark - 1]; |
|
|
|
// Process the duplicated points first, they are marked with type |
|
// DUPLICATEDVERTEX. If p and q are duplicated, and p'index > q's, |
|
// then p is substituted by q. |
|
if (dupverts > 0l) { |
|
// Loop all polygons of this facet. |
|
for (i = 0; i < f->numberofpolygons; i++) { |
|
p = &(f->polygonlist[i]); |
|
// Loop other vertices of this polygon. |
|
for (j = 0; j < p->numberofvertices; j++) { |
|
end1 = p->vertexlist[j]; |
|
tstart = idx2verlist[end1]; |
|
if (pointtype(tstart) == DUPLICATEDVERTEX) { |
|
// Reset the index of vertex-j. |
|
tend = point2ppt(tstart); |
|
end2 = pointmark(tend); |
|
p->vertexlist[j] = end2; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// Loop polygons of F, get the set of vertices and segments. |
|
for (i = 0; i < f->numberofpolygons; i++) { |
|
// Get a polygon. |
|
p = &(f->polygonlist[i]); |
|
// Get the first vertex. |
|
end1 = p->vertexlist[0]; |
|
if ((end1 < in->firstnumber) || (end1 >= in->firstnumber + in->numberofpoints)) { |
|
if (!b->quiet) { |
|
printf("Warning: Invalid the 1st vertex %d of polygon", end1); |
|
printf(" %d in facet %d.\n", i + 1, shmark); |
|
} |
|
continue; // Skip this polygon. |
|
} |
|
tstart = idx2verlist[end1]; |
|
// Add tstart to V if it haven't been added yet. |
|
if (!pinfected(tstart)) { |
|
pinfect(tstart); |
|
ptlist->newindex((void**)&pnewpt); |
|
*pnewpt = tstart; |
|
} |
|
// Loop other vertices of this polygon. |
|
for (j = 1; j <= p->numberofvertices; j++) { |
|
// get a vertex. |
|
if (j < p->numberofvertices) { |
|
end2 = p->vertexlist[j]; |
|
} else { |
|
end2 = p->vertexlist[0]; // Form a loop from last to first. |
|
} |
|
if ((end2 < in->firstnumber) || (end2 >= in->firstnumber + in->numberofpoints)) { |
|
if (!b->quiet) { |
|
printf("Warning: Invalid vertex %d in polygon %d", end2, i + 1); |
|
printf(" in facet %d.\n", shmark); |
|
} |
|
} else { |
|
if (end1 != end2) { |
|
// 'end1' and 'end2' form a segment. |
|
tend = idx2verlist[end2]; |
|
// Add tstart to V if it haven't been added yet. |
|
if (!pinfected(tend)) { |
|
pinfect(tend); |
|
ptlist->newindex((void**)&pnewpt); |
|
*pnewpt = tend; |
|
} |
|
// Save the segment in S (conlist). |
|
conlist->newindex((void**)&cons); |
|
cons[0] = tstart; |
|
cons[1] = tend; |
|
// Set the start for next continuous segment. |
|
end1 = end2; |
|
tstart = tend; |
|
} else { |
|
// Two identical vertices mean an isolated vertex of F. |
|
if (p->numberofvertices > 2) { |
|
// This may be an error in the input, anyway, we can continue |
|
// by simply skipping this segment. |
|
if (!b->quiet) { |
|
printf("Warning: Polygon %d has two identical verts", i + 1); |
|
printf(" in facet %d.\n", shmark); |
|
} |
|
} |
|
// Ignore this vertex. |
|
} |
|
} |
|
// Is the polygon degenerate (a segment or a vertex)? |
|
if (p->numberofvertices == 2) break; |
|
} |
|
} |
|
// Unmark vertices. |
|
for (i = 0; i < ptlist->objects; i++) { |
|
pnewpt = (point*)fastlookup(ptlist, i); |
|
puninfect(*pnewpt); |
|
} |
|
|
|
// Triangulate F into a CDT. |
|
// If in->facetmarklist is NULL, use the default marker -1. |
|
triangulate(in->facetmarkerlist ? in->facetmarkerlist[shmark - 1] : -1, ptlist, conlist, |
|
f->numberofholes, f->holelist); |
|
|
|
// Clear working lists. |
|
ptlist->restart(); |
|
conlist->restart(); |
|
} |
|
|
|
if (!b->diagnose) { |
|
// Remove redundant segments and build the face links. |
|
unifysegments(); |
|
if (in->numberofedges > 0) { |
|
// There are input segments. Insert them. |
|
identifyinputedges(idx2verlist); |
|
} |
|
if (!b->psc && !b->nomergefacet && |
|
(!b->nobisect || (b->nobisect && !b->nobisect_nomerge))) { |
|
// Merge coplanar facets. |
|
mergefacets(); |
|
} |
|
} |
|
|
|
if (b->object == tetgenbehavior::STL) { |
|
// Remove redundant vertices (for .stl input mesh). |
|
jettisonnodes(); |
|
} |
|
|
|
if (b->verbose) { |
|
printf(" %ld (%ld) subfaces (segments).\n", subfaces->items, subsegs->items); |
|
} |
|
|
|
// The total number of iunput segments. |
|
insegments = subsegs->items; |
|
|
|
delete[] idx2verlist; |
|
delete ptlist; |
|
delete conlist; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// interecursive() Recursively do intersection test on a set of triangles.// |
|
// // |
|
// Recursively split the set 'subfacearray' of subfaces into two sets using // |
|
// a cut plane parallel to x-, or, y-, or z-axis. The split criteria are // |
|
// follows. Assume the cut plane is H, and H+ denotes the left halfspace of // |
|
// H, and H- denotes the right halfspace of H; and s be a subface: // |
|
// // |
|
// (1) If all points of s lie at H+, put it into left array; // |
|
// (2) If all points of s lie at H-, put it into right array; // |
|
// (3) If some points of s lie at H+ and some of lie at H-, or some // |
|
// points lie on H, put it into both arraies. // |
|
// // |
|
// Partitions by x-axis if axis == '0'; by y-axis if axis == '1'; by z-axis // |
|
// if axis == '2'. If current cut plane is parallel to the x-axis, the next // |
|
// one will be parallel to y-axis, and the next one after the next is z-axis,// |
|
// and then alternately return back to x-axis. // |
|
// // |
|
// Stop splitting when the number of triangles of the input array is not // |
|
// decreased anymore. Do tests on the current set. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::interecursive(shellface** subfacearray, int arraysize, int axis, REAL bxmin, |
|
REAL bxmax, REAL bymin, REAL bymax, REAL bzmin, REAL bzmax, |
|
int* internum) { |
|
shellface **leftarray, **rightarray; |
|
face sface1, sface2; |
|
point p1, p2, p3; |
|
point p4, p5, p6; |
|
enum interresult intersect; |
|
REAL split; |
|
bool toleft, toright; |
|
int leftsize, rightsize; |
|
int i, j; |
|
|
|
if (b->verbose > 2) { |
|
printf(" Recur %d faces. Bbox (%g, %g, %g),(%g, %g, %g). %s-axis\n", arraysize, bxmin, |
|
bymin, bzmin, bxmax, bymax, bzmax, axis == 0 ? "x" : (axis == 1 ? "y" : "z")); |
|
} |
|
|
|
leftarray = new shellface*[arraysize]; |
|
if (leftarray == NULL) { |
|
terminatetetgen(this, 1); |
|
} |
|
rightarray = new shellface*[arraysize]; |
|
if (rightarray == NULL) { |
|
terminatetetgen(this, 1); |
|
} |
|
leftsize = rightsize = 0; |
|
|
|
if (axis == 0) { |
|
// Split along x-axis. |
|
split = 0.5 * (bxmin + bxmax); |
|
} else if (axis == 1) { |
|
// Split along y-axis. |
|
split = 0.5 * (bymin + bymax); |
|
} else { |
|
// Split along z-axis. |
|
split = 0.5 * (bzmin + bzmax); |
|
} |
|
|
|
for (i = 0; i < arraysize; i++) { |
|
sface1.sh = subfacearray[i]; |
|
p1 = (point)sface1.sh[3]; |
|
p2 = (point)sface1.sh[4]; |
|
p3 = (point)sface1.sh[5]; |
|
toleft = toright = false; |
|
if (p1[axis] < split) { |
|
toleft = true; |
|
if (p2[axis] >= split || p3[axis] >= split) { |
|
toright = true; |
|
} |
|
} else if (p1[axis] > split) { |
|
toright = true; |
|
if (p2[axis] <= split || p3[axis] <= split) { |
|
toleft = true; |
|
} |
|
} else { |
|
// p1[axis] == split; |
|
toleft = true; |
|
toright = true; |
|
} |
|
if (toleft) { |
|
leftarray[leftsize] = sface1.sh; |
|
leftsize++; |
|
} |
|
if (toright) { |
|
rightarray[rightsize] = sface1.sh; |
|
rightsize++; |
|
} |
|
} |
|
|
|
if (leftsize < arraysize && rightsize < arraysize) { |
|
// Continue to partition the input set. Now 'subfacearray' has been |
|
// split into two sets, it's memory can be freed. 'leftarray' and |
|
// 'rightarray' will be freed in the next recursive (after they're |
|
// partitioned again or performing tests). |
|
delete[] subfacearray; |
|
// Continue to split these two sets. |
|
if (axis == 0) { |
|
interecursive(leftarray, leftsize, 1, bxmin, split, bymin, bymax, bzmin, bzmax, |
|
internum); |
|
interecursive(rightarray, rightsize, 1, split, bxmax, bymin, bymax, bzmin, bzmax, |
|
internum); |
|
} else if (axis == 1) { |
|
interecursive(leftarray, leftsize, 2, bxmin, bxmax, bymin, split, bzmin, bzmax, |
|
internum); |
|
interecursive(rightarray, rightsize, 2, bxmin, bxmax, split, bymax, bzmin, bzmax, |
|
internum); |
|
} else { |
|
interecursive(leftarray, leftsize, 0, bxmin, bxmax, bymin, bymax, bzmin, split, |
|
internum); |
|
interecursive(rightarray, rightsize, 0, bxmin, bxmax, bymin, bymax, split, bzmax, |
|
internum); |
|
} |
|
} else { |
|
if (b->verbose > 1) { |
|
printf(" Checking intersecting faces.\n"); |
|
} |
|
// Perform a brute-force compare on the set. |
|
for (i = 0; i < arraysize; i++) { |
|
sface1.sh = subfacearray[i]; |
|
p1 = (point)sface1.sh[3]; |
|
p2 = (point)sface1.sh[4]; |
|
p3 = (point)sface1.sh[5]; |
|
for (j = i + 1; j < arraysize; j++) { |
|
sface2.sh = subfacearray[j]; |
|
p4 = (point)sface2.sh[3]; |
|
p5 = (point)sface2.sh[4]; |
|
p6 = (point)sface2.sh[5]; |
|
intersect = (enum interresult)tri_tri_inter(p1, p2, p3, p4, p5, p6); |
|
if (intersect == INTERSECT || intersect == SHAREFACE) { |
|
if (!b->quiet) { |
|
if (intersect == INTERSECT) { |
|
printf(" Facet #%d intersects facet #%d at triangles:\n", |
|
shellmark(sface1), shellmark(sface2)); |
|
printf(" (%4d, %4d, %4d) and (%4d, %4d, %4d)\n", pointmark(p1), |
|
pointmark(p2), pointmark(p3), pointmark(p4), pointmark(p5), |
|
pointmark(p6)); |
|
} else { |
|
printf(" Facet #%d duplicates facet #%d at triangle:\n", |
|
shellmark(sface1), shellmark(sface2)); |
|
printf(" (%4d, %4d, %4d) and (%4d, %4d, %4d)\n", pointmark(p1), |
|
pointmark(p2), pointmark(p3), pointmark(p4), pointmark(p5), |
|
pointmark(p6)); |
|
} |
|
} |
|
// Increase the number of intersecting pairs. |
|
(*internum)++; |
|
// Infect these two faces (although they may already be infected). |
|
sinfect(sface1); |
|
sinfect(sface2); |
|
} |
|
} |
|
} |
|
// Don't forget to free all three arrays. No further partition. |
|
delete[] leftarray; |
|
delete[] rightarray; |
|
delete[] subfacearray; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// detectinterfaces() Detect intersecting triangles. // |
|
// // |
|
// Given a set of triangles, find the pairs of intersecting triangles from // |
|
// them. Here the set of triangles is in 'subfaces' which is a surface mesh // |
|
// of a PLC (.poly or .smesh). // |
|
// // |
|
// To detect whether two triangles are intersecting is done by the routine // |
|
// 'tri_tri_inter()'. The algorithm for the test is very simple and stable. // |
|
// It is based on geometric orientation test which uses exact arithmetics. // |
|
// // |
|
// Use divide-and-conquer algorithm for reducing the number of intersection // |
|
// tests. Start from the bounding box of the input point set, recursively // |
|
// partition the box into smaller boxes, until the number of triangles in a // |
|
// box is not decreased anymore. Then perform triangle-triangle tests on the // |
|
// remaining set of triangles. The memory allocated in the input set is // |
|
// freed immediately after it has been partitioned into two arrays. So it // |
|
// can be re-used for the consequent partitions. // |
|
// // |
|
// On return, the pool 'subfaces' will be cleared, and only the intersecting // |
|
// triangles remain for output (to a .face file). // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::detectinterfaces() { |
|
shellface** subfacearray; |
|
face shloop; |
|
int internum; |
|
int i; |
|
|
|
if (!b->quiet) { |
|
printf("Detecting self-intersecting facets...\n"); |
|
} |
|
|
|
// Construct a map from indices to subfaces; |
|
subfacearray = new shellface*[subfaces->items]; |
|
subfaces->traversalinit(); |
|
shloop.sh = shellfacetraverse(subfaces); |
|
i = 0; |
|
while (shloop.sh != (shellface*)NULL) { |
|
subfacearray[i] = shloop.sh; |
|
shloop.sh = shellfacetraverse(subfaces); |
|
i++; |
|
} |
|
|
|
internum = 0; |
|
// Recursively split the set of triangles into two sets using a cut plane |
|
// parallel to x-, or, y-, or z-axis. Stop splitting when the number |
|
// of subfaces is not decreasing anymore. Do tests on the current set. |
|
interecursive(subfacearray, subfaces->items, 0, xmin, xmax, ymin, ymax, zmin, zmax, &internum); |
|
|
|
if (!b->quiet) { |
|
if (internum > 0) { |
|
printf("\n!! Found %d pairs of faces are intersecting.\n\n", internum); |
|
} else { |
|
printf("\nNo faces are intersecting.\n\n"); |
|
} |
|
} |
|
|
|
if (internum > 0) { |
|
// Traverse all subfaces, deallocate those have not been infected (they |
|
// are not intersecting faces). Uninfect those have been infected. |
|
// After this loop, only intersecting faces remain. |
|
subfaces->traversalinit(); |
|
shloop.sh = shellfacetraverse(subfaces); |
|
while (shloop.sh != (shellface*)NULL) { |
|
if (sinfected(shloop)) { |
|
suninfect(shloop); |
|
} else { |
|
shellfacedealloc(subfaces, shloop.sh); |
|
} |
|
shloop.sh = shellfacetraverse(subfaces); |
|
} |
|
} else { |
|
// Deallocate all subfaces. |
|
subfaces->restart(); |
|
} |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// surface_cxx ////////////////////////////////////////////////////////////// |
|
|
|
//// constrained_cxx ////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// makesegmentendpointsmap() Create a map from a segment to its endpoints.// |
|
// // |
|
// The map is saved in the array 'segmentendpointslist'. The length of this // |
|
// array is twice the number of segments. Each segment is assigned a unique // |
|
// index (starting from 0). // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::makesegmentendpointsmap() { |
|
arraypool* segptlist; |
|
face segloop, prevseg, nextseg; |
|
point eorg, edest, *parypt; |
|
int segindex = 0, idx = 0; |
|
int i; |
|
|
|
if (b->verbose > 0) { |
|
printf(" Creating the segment-endpoints map.\n"); |
|
} |
|
|
|
segptlist = new arraypool(2 * sizeof(point), 10); |
|
|
|
// A segment s may have been split into many subsegments. Operate the one |
|
// which contains the origin of s. Then mark the rest of subsegments. |
|
subsegs->traversalinit(); |
|
segloop.sh = shellfacetraverse(subsegs); |
|
segloop.shver = 0; |
|
while (segloop.sh != NULL) { |
|
senext2(segloop, prevseg); |
|
spivotself(prevseg); |
|
if (prevseg.sh == NULL) { |
|
eorg = sorg(segloop); |
|
edest = sdest(segloop); |
|
setfacetindex(segloop, segindex); |
|
senext(segloop, nextseg); |
|
spivotself(nextseg); |
|
while (nextseg.sh != NULL) { |
|
setfacetindex(nextseg, segindex); |
|
nextseg.shver = 0; |
|
if (sorg(nextseg) != edest) sesymself(nextseg); |
|
edest = sdest(nextseg); |
|
// Go the next connected subsegment at edest. |
|
senextself(nextseg); |
|
spivotself(nextseg); |
|
} |
|
segptlist->newindex((void**)&parypt); |
|
parypt[0] = eorg; |
|
parypt[1] = edest; |
|
segindex++; |
|
} |
|
segloop.sh = shellfacetraverse(subsegs); |
|
} |
|
|
|
if (b->verbose) { |
|
printf(" Found %ld segments.\n", segptlist->objects); |
|
} |
|
|
|
segmentendpointslist = new point[segptlist->objects * 2]; |
|
|
|
totalworkmemory += (segptlist->objects * 2) * sizeof(point*); |
|
|
|
for (i = 0; i < segptlist->objects; i++) { |
|
parypt = (point*)fastlookup(segptlist, i); |
|
segmentendpointslist[idx++] = parypt[0]; |
|
segmentendpointslist[idx++] = parypt[1]; |
|
} |
|
|
|
delete segptlist; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// finddirection() Find the tet on the path from one point to another. // |
|
// // |
|
// The path starts from 'searchtet''s origin and ends at 'endpt'. On finish, // |
|
// 'searchtet' contains a tet on the path, its origin does not change. // |
|
// // |
|
// The return value indicates one of the following cases (let 'searchtet' be // |
|
// abcd, a is the origin of the path): // |
|
// - ACROSSVERT, edge ab is collinear with the path; // |
|
// - ACROSSEDGE, edge bc intersects with the path; // |
|
// - ACROSSFACE, face bcd intersects with the path. // |
|
// // |
|
// WARNING: This routine is designed for convex triangulations, and will not // |
|
// generally work after the holes and concavities have been carved. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
enum tetgenmesh::interresult tetgenmesh::finddirection(triface* searchtet, point endpt) { |
|
triface neightet; |
|
point pa, pb, pc, pd; |
|
enum { HMOVE, RMOVE, LMOVE } nextmove; |
|
REAL hori, rori, lori; |
|
int t1ver; |
|
int s; |
|
|
|
// The origin is fixed. |
|
pa = org(*searchtet); |
|
if ((point)searchtet->tet[7] == dummypoint) { |
|
// A hull tet. Choose the neighbor of its base face. |
|
decode(searchtet->tet[3], *searchtet); |
|
// Reset the origin to be pa. |
|
if ((point)searchtet->tet[4] == pa) { |
|
searchtet->ver = 11; |
|
} else if ((point)searchtet->tet[5] == pa) { |
|
searchtet->ver = 3; |
|
} else if ((point)searchtet->tet[6] == pa) { |
|
searchtet->ver = 7; |
|
} else { |
|
searchtet->ver = 0; |
|
} |
|
} |
|
|
|
pb = dest(*searchtet); |
|
// Check whether the destination or apex is 'endpt'. |
|
if (pb == endpt) { |
|
// pa->pb is the search edge. |
|
return ACROSSVERT; |
|
} |
|
|
|
pc = apex(*searchtet); |
|
if (pc == endpt) { |
|
// pa->pc is the search edge. |
|
eprevesymself(*searchtet); |
|
return ACROSSVERT; |
|
} |
|
|
|
// Walk through tets around pa until the right one is found. |
|
while (1) { |
|
|
|
pd = oppo(*searchtet); |
|
// Check whether the opposite vertex is 'endpt'. |
|
if (pd == endpt) { |
|
// pa->pd is the search edge. |
|
esymself(*searchtet); |
|
enextself(*searchtet); |
|
return ACROSSVERT; |
|
} |
|
// Check if we have entered outside of the domain. |
|
if (pd == dummypoint) { |
|
// This is possible when the mesh is non-convex. |
|
if (nonconvex) { |
|
return ACROSSFACE; // return ACROSSSUB; // Hit a bounday. |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
} |
|
|
|
// Now assume that the base face abc coincides with the horizon plane, |
|
// and d lies above the horizon. The search point 'endpt' may lie |
|
// above or below the horizon. We test the orientations of 'endpt' |
|
// with respect to three planes: abc (horizon), bad (right plane), |
|
// and acd (left plane). |
|
hori = orient3d(pa, pb, pc, endpt); |
|
rori = orient3d(pb, pa, pd, endpt); |
|
lori = orient3d(pa, pc, pd, endpt); |
|
|
|
// Now decide the tet to move. It is possible there are more than one |
|
// tets are viable moves. Is so, randomly choose one. |
|
if (hori > 0) { |
|
if (rori > 0) { |
|
if (lori > 0) { |
|
// Any of the three neighbors is a viable move. |
|
s = randomnation(3); |
|
if (s == 0) { |
|
nextmove = HMOVE; |
|
} else if (s == 1) { |
|
nextmove = RMOVE; |
|
} else { |
|
nextmove = LMOVE; |
|
} |
|
} else { |
|
// Two tets, below horizon and below right, are viable. |
|
if (randomnation(2)) { |
|
nextmove = HMOVE; |
|
} else { |
|
nextmove = RMOVE; |
|
} |
|
} |
|
} else { |
|
if (lori > 0) { |
|
// Two tets, below horizon and below left, are viable. |
|
if (randomnation(2)) { |
|
nextmove = HMOVE; |
|
} else { |
|
nextmove = LMOVE; |
|
} |
|
} else { |
|
// The tet below horizon is chosen. |
|
nextmove = HMOVE; |
|
} |
|
} |
|
} else { |
|
if (rori > 0) { |
|
if (lori > 0) { |
|
// Two tets, below right and below left, are viable. |
|
if (randomnation(2)) { |
|
nextmove = RMOVE; |
|
} else { |
|
nextmove = LMOVE; |
|
} |
|
} else { |
|
// The tet below right is chosen. |
|
nextmove = RMOVE; |
|
} |
|
} else { |
|
if (lori > 0) { |
|
// The tet below left is chosen. |
|
nextmove = LMOVE; |
|
} else { |
|
// 'endpt' lies either on the plane(s) or across face bcd. |
|
if (hori == 0) { |
|
if (rori == 0) { |
|
// pa->'endpt' is COLLINEAR with pa->pb. |
|
return ACROSSVERT; |
|
} |
|
if (lori == 0) { |
|
// pa->'endpt' is COLLINEAR with pa->pc. |
|
eprevesymself(*searchtet); // [a,c,d] |
|
return ACROSSVERT; |
|
} |
|
// pa->'endpt' crosses the edge pb->pc. |
|
return ACROSSEDGE; |
|
} |
|
if (rori == 0) { |
|
if (lori == 0) { |
|
// pa->'endpt' is COLLINEAR with pa->pd. |
|
esymself(*searchtet); // face bad. |
|
enextself(*searchtet); // face [a,d,b] |
|
return ACROSSVERT; |
|
} |
|
// pa->'endpt' crosses the edge pb->pd. |
|
esymself(*searchtet); // face bad. |
|
enextself(*searchtet); // face adb |
|
return ACROSSEDGE; |
|
} |
|
if (lori == 0) { |
|
// pa->'endpt' crosses the edge pc->pd. |
|
eprevesymself(*searchtet); // [a,c,d] |
|
return ACROSSEDGE; |
|
} |
|
// pa->'endpt' crosses the face bcd. |
|
return ACROSSFACE; |
|
} |
|
} |
|
} |
|
|
|
// Move to the next tet, fix pa as its origin. |
|
if (nextmove == RMOVE) { |
|
fnextself(*searchtet); |
|
} else if (nextmove == LMOVE) { |
|
eprevself(*searchtet); |
|
fnextself(*searchtet); |
|
enextself(*searchtet); |
|
} else { // HMOVE |
|
fsymself(*searchtet); |
|
enextself(*searchtet); |
|
} |
|
pb = dest(*searchtet); |
|
pc = apex(*searchtet); |
|
|
|
} // while (1) |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// scoutsegment() Search an edge in the tetrahedralization. // |
|
// // |
|
// If the edge is found, it returns SHAREEDGE, and 'searchtet' returns the // |
|
// edge from startpt to endpt. // |
|
// // |
|
// If the edge is missing, it returns either ACROSSEDGE or ACROSSFACE, which // |
|
// indicates that the edge intersects an edge or a face. If 'refpt' is NULL,// |
|
// 'searchtet' returns the edge or face. If 'refpt' is not NULL, it returns // |
|
// a vertex which encroaches upon this edge, and 'searchtet' returns a tet // |
|
// which containing 'refpt'. // |
|
// // |
|
// The parameter 'sedge' is used to report self-intersection. It is the // |
|
// whose endpoints are 'startpt' and 'endpt'. It must not be a NULL. |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
enum tetgenmesh::interresult tetgenmesh::scoutsegment(point startpt, point endpt, face* sedge, |
|
triface* searchtet, point* refpt, |
|
arraypool* intfacelist) { |
|
point pd; |
|
enum interresult dir; |
|
int t1ver; |
|
|
|
if (b->verbose > 2) { |
|
printf(" Scout seg (%d, %d).\n", pointmark(startpt), pointmark(endpt)); |
|
} |
|
|
|
point2tetorg(startpt, *searchtet); |
|
dir = finddirection(searchtet, endpt); |
|
|
|
if (dir == ACROSSVERT) { |
|
pd = dest(*searchtet); |
|
if (pd == endpt) { |
|
if (issubseg(*searchtet)) { |
|
report_selfint_edge(startpt, endpt, sedge, searchtet, dir); |
|
} |
|
return SHAREEDGE; |
|
} else { |
|
// A point is on the path. |
|
report_selfint_edge(startpt, endpt, sedge, searchtet, dir); |
|
return ACROSSVERT; |
|
} |
|
} |
|
|
|
// dir is either ACROSSEDGE or ACROSSFACE. |
|
enextesymself(*searchtet); // Go to the opposite face. |
|
fsymself(*searchtet); // Enter the adjacent tet. |
|
|
|
if (dir == ACROSSEDGE) { |
|
// Check whether two segments are intersecting. |
|
if (issubseg(*searchtet)) { |
|
report_selfint_edge(startpt, endpt, sedge, searchtet, dir); |
|
} |
|
} else if (dir == ACROSSFACE) { |
|
if (checksubfaceflag) { |
|
// Check whether a segment and a subface are intersecting. |
|
if (issubface(*searchtet)) { |
|
report_selfint_edge(startpt, endpt, sedge, searchtet, dir); |
|
} |
|
} |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
|
|
if (refpt == NULL) { |
|
// Do not need a reference point. Return. |
|
return dir; |
|
} |
|
|
|
triface neightet, reftet; |
|
point pa, pb, pc; |
|
REAL angmax, ang; |
|
int types[2], poss[4]; |
|
int pos = 0, i, j; |
|
|
|
pa = org(*searchtet); |
|
angmax = interiorangle(pa, startpt, endpt, NULL); |
|
*refpt = pa; |
|
pb = dest(*searchtet); |
|
ang = interiorangle(pb, startpt, endpt, NULL); |
|
if (ang > angmax) { |
|
angmax = ang; |
|
*refpt = pb; |
|
} |
|
pc = apex(*searchtet); |
|
ang = interiorangle(pc, startpt, endpt, NULL); |
|
if (ang > angmax) { |
|
angmax = ang; |
|
*refpt = pc; |
|
} |
|
reftet = *searchtet; // Save the tet containing the refpt. |
|
|
|
// Search intersecting faces along the segment. |
|
while (1) { |
|
|
|
pd = oppo(*searchtet); |
|
|
|
// Stop if we meet 'endpt'. |
|
if (pd == endpt) break; |
|
|
|
ang = interiorangle(pd, startpt, endpt, NULL); |
|
if (ang > angmax) { |
|
angmax = ang; |
|
*refpt = pd; |
|
reftet = *searchtet; |
|
} |
|
|
|
// Find a face intersecting the segment. |
|
if (dir == ACROSSFACE) { |
|
// One of the three oppo faces in 'searchtet' intersects the segment. |
|
neightet = *searchtet; |
|
j = (neightet.ver & 3); // j is the current face number. |
|
for (i = j + 1; i < j + 4; i++) { |
|
neightet.ver = (i % 4); |
|
pa = org(neightet); |
|
pb = dest(neightet); |
|
pc = apex(neightet); |
|
pd = oppo(neightet); // The above point. |
|
if (tri_edge_test(pa, pb, pc, startpt, endpt, pd, 1, types, poss)) { |
|
dir = (enum interresult)types[0]; |
|
pos = poss[0]; |
|
break; |
|
} else { |
|
dir = DISJOINT; |
|
pos = 0; |
|
} |
|
} |
|
} else if (dir == ACROSSEDGE) { |
|
// Check the two opposite faces (of the edge) in 'searchtet'. |
|
for (i = 0; i < 2; i++) { |
|
if (i == 0) { |
|
enextesym(*searchtet, neightet); |
|
} else { |
|
eprevesym(*searchtet, neightet); |
|
} |
|
pa = org(neightet); |
|
pb = dest(neightet); |
|
pc = apex(neightet); |
|
pd = oppo(neightet); // The above point. |
|
if (tri_edge_test(pa, pb, pc, startpt, endpt, pd, 1, types, poss)) { |
|
dir = (enum interresult)types[0]; |
|
pos = poss[0]; |
|
break; |
|
} else { |
|
dir = DISJOINT; |
|
pos = 0; |
|
} |
|
} |
|
if (dir == DISJOINT) { |
|
// No intersection. Rotate to the next tet at the edge. |
|
dir = ACROSSEDGE; |
|
fnextself(*searchtet); |
|
continue; |
|
} |
|
} |
|
|
|
if (dir == ACROSSVERT) { |
|
// This segment passing a vertex. Choose it and return. |
|
for (i = 0; i < pos; i++) { |
|
enextself(neightet); |
|
} |
|
eprev(neightet, *searchtet); |
|
// dest(*searchtet) lies on the segment. |
|
report_selfint_edge(startpt, endpt, sedge, searchtet, dir); |
|
return ACROSSVERT; |
|
} else if (dir == ACROSSEDGE) { |
|
// Get the edge intersects with the segment. |
|
for (i = 0; i < pos; i++) { |
|
enextself(neightet); |
|
} |
|
} |
|
// Go to the next tet. |
|
fsym(neightet, *searchtet); |
|
|
|
if (dir == ACROSSEDGE) { |
|
// Check whether two segments are intersecting. |
|
if (issubseg(*searchtet)) { |
|
report_selfint_edge(startpt, endpt, sedge, searchtet, dir); |
|
} |
|
} else if (dir == ACROSSFACE) { |
|
if (checksubfaceflag) { |
|
// Check whether a segment and a subface are intersecting. |
|
if (issubface(*searchtet)) { |
|
report_selfint_edge(startpt, endpt, sedge, searchtet, dir); |
|
} |
|
} |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
|
|
} // while (1) |
|
|
|
// A valid reference point should inside the diametrial circumsphere of |
|
// the missing segment, i.e., it encroaches upon it. |
|
if (2.0 * angmax < PI) { |
|
*refpt = NULL; |
|
} |
|
|
|
*searchtet = reftet; |
|
return dir; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// getsteinerpointonsegment() Get a Steiner point on a segment. // |
|
// // |
|
// Return '1' if 'refpt' lies on an adjacent segment of this segment. Other- // |
|
// wise, return '0'. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::getsteinerptonsegment(face* seg, point refpt, point steinpt) { |
|
point ei = sorg(*seg); |
|
point ej = sdest(*seg); |
|
int adjflag = 0, i; |
|
|
|
if (refpt != NULL) { |
|
REAL L, L1, t; |
|
|
|
if (pointtype(refpt) == FREESEGVERTEX) { |
|
face parentseg; |
|
sdecode(point2sh(refpt), parentseg); |
|
int sidx1 = getfacetindex(parentseg); |
|
point far_pi = segmentendpointslist[sidx1 * 2]; |
|
point far_pj = segmentendpointslist[sidx1 * 2 + 1]; |
|
int sidx2 = getfacetindex(*seg); |
|
point far_ei = segmentendpointslist[sidx2 * 2]; |
|
point far_ej = segmentendpointslist[sidx2 * 2 + 1]; |
|
if ((far_pi == far_ei) || (far_pj == far_ei)) { |
|
// Create a Steiner point at the intersection of the segment |
|
// [far_ei, far_ej] and the sphere centered at far_ei with |
|
// radius |far_ei - refpt|. |
|
L = distance(far_ei, far_ej); |
|
L1 = distance(far_ei, refpt); |
|
t = L1 / L; |
|
for (i = 0; i < 3; i++) { |
|
steinpt[i] = far_ei[i] + t * (far_ej[i] - far_ei[i]); |
|
} |
|
adjflag = 1; |
|
} else if ((far_pi == far_ej) || (far_pj == far_ej)) { |
|
L = distance(far_ei, far_ej); |
|
L1 = distance(far_ej, refpt); |
|
t = L1 / L; |
|
for (i = 0; i < 3; i++) { |
|
steinpt[i] = far_ej[i] + t * (far_ei[i] - far_ej[i]); |
|
} |
|
adjflag = 1; |
|
} else { |
|
// Cut the segment by the projection point of refpt. |
|
projpt2edge(refpt, ei, ej, steinpt); |
|
} |
|
} else { |
|
// Cut the segment by the projection point of refpt. |
|
projpt2edge(refpt, ei, ej, steinpt); |
|
} |
|
|
|
// Make sure that steinpt is not too close to ei and ej. |
|
L = distance(ei, ej); |
|
L1 = distance(steinpt, ei); |
|
t = L1 / L; |
|
if ((t < 0.2) || (t > 0.8)) { |
|
// Split the point at the middle. |
|
for (i = 0; i < 3; i++) { |
|
steinpt[i] = ei[i] + 0.5 * (ej[i] - ei[i]); |
|
} |
|
} |
|
} else { |
|
// Split the point at the middle. |
|
for (i = 0; i < 3; i++) { |
|
steinpt[i] = ei[i] + 0.5 * (ej[i] - ei[i]); |
|
} |
|
} |
|
|
|
return adjflag; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// delaunizesegments() Recover segments in a DT. // |
|
// // |
|
// All segments need to be recovered are in 'subsegstack' (Q). They will be // |
|
// be recovered one by one (in a random order). // |
|
// // |
|
// Given a segment s in the Q, this routine first queries s in the DT, if s // |
|
// matches an edge in DT, it is 'locked' at the edge. Otherwise, s is split // |
|
// by inserting a new point p in both the DT and itself. The two new subseg- // |
|
// ments of s are queued in Q. The process continues until Q is empty. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::delaunizesegments() { |
|
triface searchtet, spintet; |
|
face searchsh; |
|
face sseg, *psseg; |
|
point refpt, newpt; |
|
enum interresult dir; |
|
insertvertexflags ivf; |
|
int t1ver; |
|
|
|
ivf.bowywat = 1; // Use Bowyer-Watson insertion. |
|
ivf.sloc = (int)ONEDGE; // on 'sseg'. |
|
ivf.sbowywat = 1; // Use Bowyer-Watson insertion. |
|
ivf.assignmeshsize = b->metric; |
|
ivf.smlenflag = useinsertradius; // Return the closet mesh vertex. |
|
|
|
// Loop until 'subsegstack' is empty. |
|
while (subsegstack->objects > 0l) { |
|
// seglist is used as a stack. |
|
subsegstack->objects--; |
|
psseg = (face*)fastlookup(subsegstack, subsegstack->objects); |
|
sseg = *psseg; |
|
|
|
// Check if this segment has been recovered. |
|
sstpivot1(sseg, searchtet); |
|
if (searchtet.tet != NULL) { |
|
continue; // Not a missing segment. |
|
} |
|
|
|
// Search the segment. |
|
dir = scoutsegment(sorg(sseg), sdest(sseg), &sseg, &searchtet, &refpt, NULL); |
|
|
|
if (dir == SHAREEDGE) { |
|
// Found this segment, insert it. |
|
// Let the segment remember an adjacent tet. |
|
sstbond1(sseg, searchtet); |
|
// Bond the segment to all tets containing it. |
|
spintet = searchtet; |
|
do { |
|
tssbond1(spintet, sseg); |
|
fnextself(spintet); |
|
} while (spintet.tet != searchtet.tet); |
|
} else { |
|
if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) { |
|
// The segment is missing. Split it. |
|
// Create a new point. |
|
makepoint(&newpt, FREESEGVERTEX); |
|
// setpointtype(newpt, FREESEGVERTEX); |
|
getsteinerptonsegment(&sseg, refpt, newpt); |
|
|
|
// Start searching from 'searchtet'. |
|
ivf.iloc = (int)OUTSIDE; |
|
// Insert the new point into the tetrahedralization T. |
|
// Missing segments and subfaces are queued for recovery. |
|
// Note that T is convex (nonconvex = 0). |
|
if (insertpoint(newpt, &searchtet, &searchsh, &sseg, &ivf)) { |
|
// The new point has been inserted. |
|
st_segref_count++; |
|
if (steinerleft > 0) steinerleft--; |
|
if (useinsertradius) { |
|
save_segmentpoint_insradius(newpt, ivf.parentpt, ivf.smlen); |
|
} |
|
} else { |
|
if (ivf.iloc == (int)NEARVERTEX) { |
|
// The new point (in the segment) is very close to an existing |
|
// vertex -- a small feature is detected. |
|
point nearpt = org(searchtet); |
|
if (pointtype(nearpt) == FREESEGVERTEX) { |
|
face parentseg; |
|
sdecode(point2sh(nearpt), parentseg); |
|
point p1 = farsorg(sseg); |
|
point p2 = farsdest(sseg); |
|
point p3 = farsorg(parentseg); |
|
point p4 = farsdest(parentseg); |
|
printf("Two segments are very close to each other.\n"); |
|
printf(" Segment 1: [%d, %d] #%d\n", pointmark(p1), pointmark(p2), |
|
shellmark(sseg)); |
|
printf(" Segment 2: [%d, %d] #%d\n", pointmark(p3), pointmark(p4), |
|
shellmark(parentseg)); |
|
terminatetetgen(this, 4); |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
} else if (ivf.iloc == (int)ONVERTEX) { |
|
// The new point (in the segment) is coincident with an existing |
|
// vertex -- a self-intersection is detected. |
|
eprevself(searchtet); |
|
report_selfint_edge(sorg(sseg), sdest(sseg), &sseg, &searchtet, ACROSSVERT); |
|
} else { |
|
// An unknown case. Report a bug. |
|
terminatetetgen(this, 2); |
|
} |
|
} |
|
} else { |
|
// An unknown case. Report a bug. |
|
terminatetetgen(this, 2); |
|
} |
|
} |
|
} // while |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// scoutsubface() Search subface in the tetrahedralization. // |
|
// // |
|
// 'searchsh' is searched in T. If it exists, it is 'locked' at the face in // |
|
// T. 'searchtet' refers to the face. Otherwise, it is missing. // |
|
// // |
|
// The parameter 'shflag' indicates whether 'searchsh' is a boundary face or // |
|
// not. It is possible that 'searchsh' is a temporarily subface that is used // |
|
// as a cavity boundary face. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::scoutsubface(face* searchsh, triface* searchtet, int shflag) { |
|
point pa = sorg(*searchsh); |
|
point pb = sdest(*searchsh); |
|
|
|
// Get a tet whose origin is a. |
|
point2tetorg(pa, *searchtet); |
|
// Search the edge [a,b]. |
|
enum interresult dir = finddirection(searchtet, pb); |
|
if (dir == ACROSSVERT) { |
|
// Check validity of a PLC. |
|
if (dest(*searchtet) != pb) { |
|
if (shflag) { |
|
// A vertex lies on the search edge. |
|
report_selfint_edge(pa, pb, searchsh, searchtet, dir); |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
} |
|
int t1ver; |
|
// The edge exists. Check if the face exists. |
|
point pc = sapex(*searchsh); |
|
// Searchtet holds edge [a,b]. Search a face with apex c. |
|
triface spintet = *searchtet; |
|
while (1) { |
|
if (apex(spintet) == pc) { |
|
// Found a face matching to 'searchsh'! |
|
if (!issubface(spintet)) { |
|
// Insert 'searchsh'. |
|
tsbond(spintet, *searchsh); |
|
fsymself(spintet); |
|
sesymself(*searchsh); |
|
tsbond(spintet, *searchsh); |
|
*searchtet = spintet; |
|
return 1; |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet->tet) break; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// formregion() Form the missing region of a missing subface. // |
|
// // |
|
// 'missh' is a missing subface. From it we form a missing region R which is // |
|
// a connected region formed by a set of missing subfaces of a facet. // |
|
// Comment: There should be no segment inside R. // |
|
// // |
|
// 'missingshs' returns the list of subfaces in R. All subfaces in this list // |
|
// are oriented as the 'missh'. 'missingshbds' returns the list of boundary // |
|
// edges (tetrahedral handles) of R. 'missingshverts' returns all vertices // |
|
// of R. They are all pmarktested. // |
|
// // |
|
// Except the first one (which is 'missh') in 'missingshs', each subface in // |
|
// this list represents an internal edge of R, i.e., it is missing in the // |
|
// tetrahedralization. Since R may contain interior vertices, not all miss- // |
|
// ing edges can be found by this way. // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::formregion(face* missh, arraypool* missingshs, arraypool* missingshbds, |
|
arraypool* missingshverts) { |
|
triface searchtet, spintet; |
|
face neighsh, *parysh; |
|
face neighseg, fakeseg; |
|
point pa, pb, *parypt; |
|
enum interresult dir; |
|
int t1ver; |
|
int i, j; |
|
|
|
smarktest(*missh); |
|
missingshs->newindex((void**)&parysh); |
|
*parysh = *missh; |
|
|
|
// Incrementally find other missing subfaces. |
|
for (i = 0; i < missingshs->objects; i++) { |
|
missh = (face*)fastlookup(missingshs, i); |
|
for (j = 0; j < 3; j++) { |
|
pa = sorg(*missh); |
|
pb = sdest(*missh); |
|
point2tetorg(pa, searchtet); |
|
dir = finddirection(&searchtet, pb); |
|
if (dir != ACROSSVERT) { |
|
// This edge is missing. Its neighbor is a missing subface. |
|
spivot(*missh, neighsh); |
|
if (!smarktested(neighsh)) { |
|
// Adjust the face orientation. |
|
if (sorg(neighsh) != pb) sesymself(neighsh); |
|
smarktest(neighsh); |
|
missingshs->newindex((void**)&parysh); |
|
*parysh = neighsh; |
|
} |
|
} else { |
|
if (dest(searchtet) != pb) { |
|
// Report a PLC problem. |
|
report_selfint_edge(pa, pb, missh, &searchtet, dir); |
|
} |
|
} |
|
// Collect the vertices of R. |
|
if (!pmarktested(pa)) { |
|
pmarktest(pa); |
|
missingshverts->newindex((void**)&parypt); |
|
*parypt = pa; |
|
} |
|
senextself(*missh); |
|
} // j |
|
} // i |
|
|
|
// Get the boundary edges of R. |
|
for (i = 0; i < missingshs->objects; i++) { |
|
missh = (face*)fastlookup(missingshs, i); |
|
for (j = 0; j < 3; j++) { |
|
spivot(*missh, neighsh); |
|
if ((neighsh.sh == NULL) || !smarktested(neighsh)) { |
|
// A boundary edge of R. |
|
// Let the segment point to the adjacent tet. |
|
point2tetorg(sorg(*missh), searchtet); |
|
finddirection(&searchtet, sdest(*missh)); |
|
missingshbds->newindex((void**)&parysh); |
|
*parysh = *missh; |
|
// Check if this edge is a segment. |
|
sspivot(*missh, neighseg); |
|
if (neighseg.sh == NULL) { |
|
// Temporarily create a segment at this edge. |
|
makeshellface(subsegs, &fakeseg); |
|
setsorg(fakeseg, sorg(*missh)); |
|
setsdest(fakeseg, sdest(*missh)); |
|
sinfect(fakeseg); // Mark it as faked. |
|
// Connect it to all tets at this edge. |
|
spintet = searchtet; |
|
while (1) { |
|
tssbond1(spintet, fakeseg); |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) break; |
|
} |
|
neighseg = fakeseg; |
|
} |
|
// Let the segment and the boundary edge point to each other. |
|
ssbond(*missh, neighseg); |
|
sstbond1(neighseg, searchtet); |
|
} |
|
senextself(*missh); |
|
} // j |
|
} // i |
|
|
|
// Unmarktest collected missing subfaces. |
|
for (i = 0; i < missingshs->objects; i++) { |
|
parysh = (face*)fastlookup(missingshs, i); |
|
sunmarktest(*parysh); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// scoutcrossedge() Search an edge that crosses the missing region. // |
|
// // |
|
// Return 1 if a crossing edge is found. It is returned by 'crosstet'. More- // |
|
// over, the edge is oriented such that its origin lies below R. Return 0 // |
|
// if no such edge is found. // |
|
// // |
|
// Assumption: All vertices of the missing region are marktested. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::scoutcrossedge(triface& crosstet, arraypool* missingshbds, arraypool* missingshs) { |
|
triface searchtet, spintet, neightet; |
|
face oldsh, searchsh, *parysh; |
|
face neighseg; |
|
point pa, pb, pc, pd, pe; |
|
REAL ori; |
|
int types[2], poss[4]; |
|
int searchflag, interflag; |
|
int t1ver; |
|
int i, j; |
|
|
|
searchflag = 0; |
|
|
|
// Search the first new subface to fill the region. |
|
for (i = 0; i < missingshbds->objects && !searchflag; i++) { |
|
parysh = (face*)fastlookup(missingshbds, i); |
|
sspivot(*parysh, neighseg); |
|
sstpivot1(neighseg, searchtet); |
|
if (org(searchtet) != sorg(*parysh)) { |
|
esymself(searchtet); |
|
} |
|
spintet = searchtet; |
|
while (1) { |
|
if (pmarktested(apex(spintet))) { |
|
// A possible interior face. |
|
neightet = spintet; |
|
oldsh = *parysh; |
|
// Try to recover an interior edge. |
|
for (j = 0; j < 2; j++) { |
|
enextself(neightet); |
|
if (!issubseg(neightet)) { |
|
if (j == 0) { |
|
senext(oldsh, searchsh); |
|
} else { |
|
senext2(oldsh, searchsh); |
|
sesymself(searchsh); |
|
esymself(neightet); |
|
} |
|
// Calculate a lifted point. |
|
pa = sorg(searchsh); |
|
pb = sdest(searchsh); |
|
pc = sapex(searchsh); |
|
pd = dest(neightet); |
|
calculateabovepoint4(pa, pb, pc, pd); |
|
// The lifted point must lie above 'searchsh'. |
|
ori = orient3d(pa, pb, pc, dummypoint); |
|
if (ori > 0) { |
|
sesymself(searchsh); |
|
senextself(searchsh); |
|
} else if (ori == 0) { |
|
terminatetetgen(this, 2); |
|
} |
|
if (sscoutsegment(&searchsh, dest(neightet), 0, 0, 1) == SHAREEDGE) { |
|
// Insert a temp segment to protect the recovered edge. |
|
face tmpseg; |
|
makeshellface(subsegs, &tmpseg); |
|
ssbond(searchsh, tmpseg); |
|
spivotself(searchsh); |
|
ssbond(searchsh, tmpseg); |
|
// Recover locally Delaunay edges. |
|
lawsonflip(); |
|
// Delete the tmp segment. |
|
spivot(tmpseg, searchsh); |
|
ssdissolve(searchsh); |
|
spivotself(searchsh); |
|
ssdissolve(searchsh); |
|
shellfacedealloc(subsegs, tmpseg.sh); |
|
searchflag = 1; |
|
} else { |
|
// Undo the performed flips. |
|
if (flipstack != NULL) { |
|
lawsonflip(); |
|
} |
|
} |
|
break; |
|
} // if (!issubseg(neightet)) |
|
} // j |
|
if (searchflag) break; |
|
} // if (pmarktested(apex(spintet))) |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) break; |
|
} |
|
} // i |
|
|
|
if (searchflag) { |
|
// Remove faked segments. |
|
face checkseg; |
|
// Remark: We should not use the array 'missingshbds', since the flips may |
|
// change the subfaces. We search them from the subfaces in R. |
|
for (i = 0; i < missingshs->objects; i++) { |
|
parysh = (face*)fastlookup(missingshs, i); |
|
oldsh = *parysh; |
|
for (j = 0; j < 3; j++) { |
|
if (isshsubseg(oldsh)) { |
|
sspivot(oldsh, checkseg); |
|
if (sinfected(checkseg)) { |
|
// It's a faked segment. Delete it. |
|
sstpivot1(checkseg, searchtet); |
|
spintet = searchtet; |
|
while (1) { |
|
tssdissolve1(spintet); |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) break; |
|
} |
|
shellfacedealloc(subsegs, checkseg.sh); |
|
ssdissolve(oldsh); |
|
} |
|
} |
|
senextself(oldsh); |
|
} // j |
|
} |
|
|
|
fillregioncount++; |
|
|
|
return 0; |
|
} // if (i < missingshbds->objects) |
|
|
|
searchflag = -1; |
|
|
|
for (j = 0; j < missingshbds->objects && (searchflag == -1); j++) { |
|
parysh = (face*)fastlookup(missingshbds, j); |
|
sspivot(*parysh, neighseg); |
|
sstpivot1(neighseg, searchtet); |
|
interflag = 0; |
|
// Let 'spintet' be [#,#,d,e] where [#,#] is the boundary edge of R. |
|
spintet = searchtet; |
|
while (1) { |
|
pd = apex(spintet); |
|
pe = oppo(spintet); |
|
// Skip a hull edge. |
|
if ((pd != dummypoint) && (pe != dummypoint)) { |
|
// Skip an edge containing a vertex of R. |
|
if (!pmarktested(pd) && !pmarktested(pe)) { |
|
// Check if [d,e] intersects R. |
|
for (i = 0; i < missingshs->objects && !interflag; i++) { |
|
parysh = (face*)fastlookup(missingshs, i); |
|
pa = sorg(*parysh); |
|
pb = sdest(*parysh); |
|
pc = sapex(*parysh); |
|
interflag = tri_edge_test(pa, pb, pc, pd, pe, NULL, 1, types, poss); |
|
if (interflag > 0) { |
|
if (interflag == 2) { |
|
// They intersect at a single point. |
|
if ((types[0] == (int)ACROSSFACE) || |
|
(types[0] == (int)ACROSSEDGE)) { |
|
// Go to the crossing edge [d,e,#,#]. |
|
edestoppo(spintet, crosstet); // // [d,e,#,#]. |
|
if (issubseg(crosstet)) { |
|
// It is a segment. Report a PLC problem. |
|
report_selfint_face(pa, pb, pc, parysh, &crosstet, |
|
interflag, types, poss); |
|
} else { |
|
triface chkface = crosstet; |
|
while (1) { |
|
if (issubface(chkface)) break; |
|
fsymself(chkface); |
|
if (chkface.tet == crosstet.tet) break; |
|
} |
|
if (issubface(chkface)) { |
|
// Two subfaces are intersecting. |
|
report_selfint_face(pa, pb, pc, parysh, &chkface, |
|
interflag, types, poss); |
|
} |
|
} |
|
// Adjust the edge such that d lies below [a,b,c]. |
|
ori = orient3d(pa, pb, pc, pd); |
|
if (ori < 0) { |
|
esymself(crosstet); |
|
} |
|
searchflag = 1; |
|
} else { |
|
// An improper intersection type, ACROSSVERT, TOUCHFACE, |
|
// TOUCHEDGE, SHAREVERT, ... |
|
// Maybe it is due to a PLC problem. |
|
report_selfint_face(pa, pb, pc, parysh, &crosstet, interflag, |
|
types, poss); |
|
} |
|
} |
|
break; |
|
} // if (interflag > 0) |
|
} |
|
} |
|
} |
|
// Leave search at this bdry edge if an intersection is found. |
|
if (interflag > 0) break; |
|
// Go to the next tetrahedron. |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) break; |
|
} // while (1) |
|
} // j |
|
|
|
return searchflag; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// formcavity() Form the cavity of a missing region. // |
|
// // |
|
// The missing region R is formed by a set of missing subfaces 'missingshs'. // |
|
// In the following, we assume R is horizontal and oriented. (All subfaces // |
|
// of R are oriented in the same way.) 'searchtet' is a tetrahedron [d,e,#, // |
|
// #] which intersects R in its interior, where the edge [d,e] intersects R, // |
|
// and d lies below R. // |
|
// // |
|
// 'crosstets' returns the set of crossing tets. Every tet in it has the // |
|
// form [d,e,#,#] where [d,e] is a crossing edge, and d lies below R. The // |
|
// set of tets form the cavity C, which is divided into two parts by R, one // |
|
// at top and one at bottom. 'topfaces' and 'botfaces' return the upper and // |
|
// lower boundary faces of C. 'toppoints' contains vertices of 'crosstets' // |
|
// in the top part of C, and so does 'botpoints'. Both 'toppoints' and // |
|
// 'botpoints' contain vertices of R. // |
|
// // |
|
// Important: This routine assumes all vertices of the facet containing this // |
|
// subface are marked, i.e., pmarktested(p) returns true. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenmesh::formcavity(triface* searchtet, arraypool* missingshs, arraypool* crosstets, |
|
arraypool* topfaces, arraypool* botfaces, arraypool* toppoints, |
|
arraypool* botpoints) { |
|
arraypool* crossedges; |
|
triface spintet, neightet, chkface, *parytet; |
|
face* parysh = NULL; |
|
point pa, pd, pe, *parypt; |
|
bool testflag, invalidflag; |
|
int intflag, types[2], poss[4]; |
|
int t1ver; |
|
int i, j, k; |
|
|
|
// Temporarily re-use 'topfaces' for all crossing edges. |
|
crossedges = topfaces; |
|
|
|
if (b->verbose > 2) { |
|
printf(" Form the cavity of a missing region.\n"); |
|
} |
|
// Mark this edge to avoid testing it later. |
|
markedge(*searchtet); |
|
crossedges->newindex((void**)&parytet); |
|
*parytet = *searchtet; |
|
|
|
invalidflag = 0; |
|
// Collect all crossing tets. Each cross tet is saved in the standard |
|
// form [d,e,#,#], where [d,e] is a crossing edge, d lies below R. |
|
// NEITHER d NOR e is a vertex of R (!pmarktested). |
|
for (i = 0; i < crossedges->objects && !invalidflag; i++) { |
|
// Get a crossing edge [d,e,#,#]. |
|
searchtet = (triface*)fastlookup(crossedges, i); |
|
// Sort vertices into the bottom and top arrays. |
|
pd = org(*searchtet); |
|
if (!pinfected(pd)) { |
|
pinfect(pd); |
|
botpoints->newindex((void**)&parypt); |
|
*parypt = pd; |
|
} |
|
pe = dest(*searchtet); |
|
if (!pinfected(pe)) { |
|
pinfect(pe); |
|
toppoints->newindex((void**)&parypt); |
|
*parypt = pe; |
|
} |
|
|
|
// All tets sharing this edge are crossing tets. |
|
spintet = *searchtet; |
|
while (1) { |
|
if (!infected(spintet)) { |
|
infect(spintet); |
|
crosstets->newindex((void**)&parytet); |
|
*parytet = spintet; |
|
} |
|
// Go to the next crossing tet. |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet->tet) break; |
|
} // while (1) |
|
|
|
// Detect new crossing edges. |
|
spintet = *searchtet; |
|
while (1) { |
|
// spintet is [d,e,a,#], where d lies below R, and e lies above R. |
|
pa = apex(spintet); |
|
if (pa != dummypoint) { |
|
if (!pmarktested(pa)) { |
|
// There exists a crossing edge, either [e,a] or [a,d]. First check |
|
// if the crossing edge has already be added, i.e.,to check if one |
|
// of the tetrahedron at this edge has been marked. |
|
testflag = true; |
|
for (j = 0; j < 2 && testflag; j++) { |
|
if (j == 0) { |
|
enext(spintet, neightet); |
|
} else { |
|
eprev(spintet, neightet); |
|
} |
|
while (1) { |
|
if (edgemarked(neightet)) { |
|
// This crossing edge has already been tested. Skip it. |
|
testflag = false; |
|
break; |
|
} |
|
fnextself(neightet); |
|
if (neightet.tet == spintet.tet) break; |
|
} |
|
} // j |
|
if (testflag) { |
|
// Test if [e,a] or [a,d] intersects R. |
|
// Do a brute-force search in the set of subfaces of R. Slow! |
|
// Need to be improved! |
|
pd = org(spintet); |
|
pe = dest(spintet); |
|
for (k = 0; k < missingshs->objects; k++) { |
|
parysh = (face*)fastlookup(missingshs, k); |
|
intflag = tri_edge_test(sorg(*parysh), sdest(*parysh), sapex(*parysh), |
|
pe, pa, NULL, 1, types, poss); |
|
if (intflag > 0) { |
|
// Found intersection. 'a' lies below R. |
|
if (intflag == 2) { |
|
enext(spintet, neightet); |
|
if ((types[0] == (int)ACROSSFACE) || |
|
(types[0] == (int)ACROSSEDGE)) { |
|
// Only this case is valid. |
|
} else { |
|
// A non-valid intersection. Maybe a PLC problem. |
|
invalidflag = 1; |
|
} |
|
} else { |
|
// Coplanar intersection. Maybe a PLC problem. |
|
invalidflag = 1; |
|
} |
|
break; |
|
} |
|
intflag = tri_edge_test(sorg(*parysh), sdest(*parysh), sapex(*parysh), |
|
pa, pd, NULL, 1, types, poss); |
|
if (intflag > 0) { |
|
// Found intersection. 'a' lies above R. |
|
if (intflag == 2) { |
|
eprev(spintet, neightet); |
|
if ((types[0] == (int)ACROSSFACE) || |
|
(types[0] == (int)ACROSSEDGE)) { |
|
// Only this case is valid. |
|
} else { |
|
// A non-valid intersection. Maybe a PLC problem. |
|
invalidflag = 1; |
|
} |
|
} else { |
|
// Coplanar intersection. Maybe a PLC problem. |
|
invalidflag = 1; |
|
} |
|
break; |
|
} |
|
} // k |
|
if (k < missingshs->objects) { |
|
// Found a pair of triangle - edge intersection. |
|
if (invalidflag) { |
|
break; // the while (1) loop |
|
} |
|
// Adjust the edge direction, so that its origin lies below R, |
|
// and its destination lies above R. |
|
esymself(neightet); |
|
// This edge may be a segment. |
|
if (issubseg(neightet)) { |
|
report_selfint_face(sorg(*parysh), sdest(*parysh), sapex(*parysh), |
|
parysh, &neightet, intflag, types, poss); |
|
} |
|
// Check if it is an edge of a subface. |
|
chkface = neightet; |
|
while (1) { |
|
if (issubface(chkface)) break; |
|
fsymself(chkface); |
|
if (chkface.tet == neightet.tet) break; |
|
} |
|
if (issubface(chkface)) { |
|
// Two subfaces are intersecting. |
|
report_selfint_face(sorg(*parysh), sdest(*parysh), sapex(*parysh), |
|
parysh, &chkface, intflag, types, poss); |
|
} |
|
|
|
// Mark this edge to avoid testing it again. |
|
markedge(neightet); |
|
crossedges->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} else { |
|
// No intersection is found. It may be a PLC problem. |
|
invalidflag = 1; |
|
break; // the while (1) loop |
|
} // if (k == missingshs->objects) |
|
} // if (testflag) |
|
} |
|
} // if (pa != dummypoint) |
|
// Go to the next crossing tet. |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet->tet) break; |
|
} // while (1) |
|
} // i |
|
|
|
// Unmark all marked edges. |
|
for (i = 0; i < crossedges->objects; i++) { |
|
searchtet = (triface*)fastlookup(crossedges, i); |
|
unmarkedge(*searchtet); |
|
} |
|
crossedges->restart(); |
|
|
|
if (invalidflag) { |
|
// Unmark all collected tets. |
|
for (i = 0; i < crosstets->objects; i++) { |
|
searchtet = (triface*)fastlookup(crosstets, i); |
|
uninfect(*searchtet); |
|
} |
|
// Unmark all collected vertices. |
|
for (i = 0; i < botpoints->objects; i++) { |
|
parypt = (point*)fastlookup(botpoints, i); |
|
puninfect(*parypt); |
|
} |
|
for (i = 0; i < toppoints->objects; i++) { |
|
parypt = (point*)fastlookup(toppoints, i); |
|
puninfect(*parypt); |
|
} |
|
crosstets->restart(); |
|
botpoints->restart(); |
|
toppoints->restart(); |
|
|
|
// Randomly split an interior edge of R. |
|
i = randomnation(missingshs->objects - 1); |
|
recentsh = *(face*)fastlookup(missingshs, i); |
|
return false; |
|
} |
|
|
|
if (b->verbose > 2) { |
|
printf(" Formed cavity: %ld (%ld) cross tets (edges).\n", crosstets->objects, |
|
crossedges->objects); |
|
} |
|
|
|
// Collect the top and bottom faces and the middle vertices. Since all top |
|
// and bottom vertices have been infected. Uninfected vertices must be |
|
// middle vertices (i.e., the vertices of R). |
|
// NOTE 1: Hull tets may be collected. Process them as a normal one. |
|
// NOTE 2: Some previously recovered subfaces may be completely inside the |
|
// cavity. In such case, we remove these subfaces from the cavity and put |
|
// them into 'subfacstack'. They will be recovered later. |
|
// NOTE 3: Some segments may be completely inside the cavity, e.g., they |
|
// attached to a subface which is inside the cavity. Such segments are |
|
// put in 'subsegstack'. They will be recovered later. |
|
// NOTE4 : The interior subfaces and segments mentioned in NOTE 2 and 3 |
|
// are identified in the routine "carvecavity()". |
|
|
|
for (i = 0; i < crosstets->objects; i++) { |
|
searchtet = (triface*)fastlookup(crosstets, i); |
|
// searchtet is [d,e,a,b]. |
|
eorgoppo(*searchtet, spintet); |
|
fsym(spintet, neightet); // neightet is [a,b,e,#] |
|
if (!infected(neightet)) { |
|
// A top face. |
|
topfaces->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
edestoppo(*searchtet, spintet); |
|
fsym(spintet, neightet); // neightet is [b,a,d,#] |
|
if (!infected(neightet)) { |
|
// A bottom face. |
|
botfaces->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
// Add middle vertices if there are (skip dummypoint). |
|
pa = org(neightet); |
|
if (!pinfected(pa)) { |
|
if (pa != dummypoint) { |
|
pinfect(pa); |
|
botpoints->newindex((void**)&parypt); |
|
*parypt = pa; |
|
toppoints->newindex((void**)&parypt); |
|
*parypt = pa; |
|
} |
|
} |
|
pa = dest(neightet); |
|
if (!pinfected(pa)) { |
|
if (pa != dummypoint) { |
|
pinfect(pa); |
|
botpoints->newindex((void**)&parypt); |
|
*parypt = pa; |
|
toppoints->newindex((void**)&parypt); |
|
*parypt = pa; |
|
} |
|
} |
|
} // i |
|
|
|
// Uninfect all collected top, bottom, and middle vertices. |
|
for (i = 0; i < toppoints->objects; i++) { |
|
parypt = (point*)fastlookup(toppoints, i); |
|
puninfect(*parypt); |
|
} |
|
for (i = 0; i < botpoints->objects; i++) { |
|
parypt = (point*)fastlookup(botpoints, i); |
|
puninfect(*parypt); |
|
} |
|
cavitycount++; |
|
|
|
return true; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// delaunizecavity() Fill a cavity by Delaunay tetrahedra. // |
|
// // |
|
// The cavity C to be tetrahedralized is the top or bottom part of a whole // |
|
// cavity. 'cavfaces' contains the boundary faces of C. NOTE: faces in 'cav- // |
|
// faces' do not form a closed polyhedron. The "open" side are subfaces of // |
|
// the missing facet. These faces will be recovered later in fillcavity(). // |
|
// // |
|
// This routine first constructs the DT of the vertices. Then it identifies // |
|
// the half boundary faces of the cavity in DT. Possiblely the cavity C will // |
|
// be enlarged. // |
|
// // |
|
// The DT is returned in 'newtets'. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::delaunizecavity(arraypool* cavpoints, arraypool* cavfaces, arraypool* cavshells, |
|
arraypool* newtets, arraypool* crosstets, arraypool* misfaces) { |
|
triface searchtet, neightet, *parytet, *parytet1; |
|
face tmpsh, *parysh; |
|
point pa, pb, pc, pd, pt[3], *parypt; |
|
insertvertexflags ivf; |
|
REAL ori; |
|
long baknum, bakhullsize; |
|
int bakchecksubsegflag, bakchecksubfaceflag; |
|
int t1ver; |
|
int i, j; |
|
|
|
if (b->verbose > 2) { |
|
printf(" Delaunizing cavity: %ld points, %ld faces.\n", cavpoints->objects, |
|
cavfaces->objects); |
|
} |
|
// Remember the current number of crossing tets. It may be enlarged later. |
|
baknum = crosstets->objects; |
|
bakhullsize = hullsize; |
|
bakchecksubsegflag = checksubsegflag; |
|
bakchecksubfaceflag = checksubfaceflag; |
|
hullsize = 0l; |
|
checksubsegflag = 0; |
|
checksubfaceflag = 0; |
|
b->verbose--; // Suppress informations for creating Delaunay tetra. |
|
b->plc = 0; // Do not check near vertices. |
|
|
|
ivf.bowywat = 1; // Use Bowyer-Watson algorithm. |
|
|
|
// Get four non-coplanar points (no dummypoint). |
|
pa = pb = pc = NULL; |
|
for (i = 0; i < cavfaces->objects; i++) { |
|
parytet = (triface*)fastlookup(cavfaces, i); |
|
parytet->ver = epivot[parytet->ver]; |
|
if (apex(*parytet) != dummypoint) { |
|
pa = org(*parytet); |
|
pb = dest(*parytet); |
|
pc = apex(*parytet); |
|
break; |
|
} |
|
} |
|
pd = NULL; |
|
for (; i < cavfaces->objects; i++) { |
|
parytet = (triface*)fastlookup(cavfaces, i); |
|
pt[0] = org(*parytet); |
|
pt[1] = dest(*parytet); |
|
pt[2] = apex(*parytet); |
|
for (j = 0; j < 3; j++) { |
|
if (pt[j] != dummypoint) { // Do not include a hull point. |
|
ori = orient3d(pa, pb, pc, pt[j]); |
|
if (ori != 0) { |
|
pd = pt[j]; |
|
if (ori > 0) { // Swap pa and pb. |
|
pt[j] = pa; |
|
pa = pb; |
|
pb = pt[j]; |
|
} |
|
break; |
|
} |
|
} |
|
} |
|
if (pd != NULL) break; |
|
} |
|
|
|
// Create an init DT. |
|
initialdelaunay(pa, pb, pc, pd); |
|
|
|
// Incrementally insert the vertices (duplicated vertices are ignored). |
|
for (i = 0; i < cavpoints->objects; i++) { |
|
pt[0] = *(point*)fastlookup(cavpoints, i); |
|
searchtet = recenttet; |
|
ivf.iloc = (int)OUTSIDE; |
|
insertpoint(pt[0], &searchtet, NULL, NULL, &ivf); |
|
} |
|
|
|
if (b->verbose > 2) { |
|
printf(" Identifying %ld boundary faces of the cavity.\n", cavfaces->objects); |
|
} |
|
|
|
while (1) { |
|
|
|
// Identify boundary faces. Mark interior tets. Save missing faces. |
|
for (i = 0; i < cavfaces->objects; i++) { |
|
parytet = (triface*)fastlookup(cavfaces, i); |
|
// Skip an interior face (due to the enlargement of the cavity). |
|
if (infected(*parytet)) continue; |
|
parytet->ver = epivot[parytet->ver]; |
|
pt[0] = org(*parytet); |
|
pt[1] = dest(*parytet); |
|
pt[2] = apex(*parytet); |
|
// Create a temp subface. |
|
makeshellface(subfaces, &tmpsh); |
|
setshvertices(tmpsh, pt[0], pt[1], pt[2]); |
|
// Insert tmpsh in DT. |
|
searchtet.tet = NULL; |
|
if (scoutsubface(&tmpsh, &searchtet, 0)) { // shflag = 0 |
|
// Inserted! 'tmpsh' must face toward the inside of the cavity. |
|
// Remember the boundary tet (outside the cavity) in tmpsh |
|
// (use the adjacent tet slot). |
|
tmpsh.sh[0] = (shellface)encode(*parytet); |
|
// Save this subface. |
|
cavshells->newindex((void**)&parysh); |
|
*parysh = tmpsh; |
|
} else { |
|
// This boundary face is missing. |
|
shellfacedealloc(subfaces, tmpsh.sh); |
|
// Save this face in list. |
|
misfaces->newindex((void**)&parytet1); |
|
*parytet1 = *parytet; |
|
} |
|
} // i |
|
|
|
if (misfaces->objects > 0) { |
|
if (b->verbose > 2) { |
|
printf(" Enlarging the cavity. %ld missing bdry faces\n", misfaces->objects); |
|
} |
|
|
|
// Removing all temporary subfaces. |
|
for (i = 0; i < cavshells->objects; i++) { |
|
parysh = (face*)fastlookup(cavshells, i); |
|
stpivot(*parysh, neightet); |
|
tsdissolve(neightet); // Detach it from adj. tets. |
|
fsymself(neightet); |
|
tsdissolve(neightet); |
|
shellfacedealloc(subfaces, parysh->sh); |
|
} |
|
cavshells->restart(); |
|
|
|
// Infect the points which are of the cavity. |
|
for (i = 0; i < cavpoints->objects; i++) { |
|
pt[0] = *(point*)fastlookup(cavpoints, i); |
|
pinfect(pt[0]); // Mark it as inserted. |
|
} |
|
|
|
// Enlarge the cavity. |
|
for (i = 0; i < misfaces->objects; i++) { |
|
// Get a missing face. |
|
parytet = (triface*)fastlookup(misfaces, i); |
|
if (!infected(*parytet)) { |
|
// Put it into crossing tet list. |
|
infect(*parytet); |
|
crosstets->newindex((void**)&parytet1); |
|
*parytet1 = *parytet; |
|
// Insert the opposite point if it is not in DT. |
|
pd = oppo(*parytet); |
|
if (!pinfected(pd)) { |
|
searchtet = recenttet; |
|
ivf.iloc = (int)OUTSIDE; |
|
insertpoint(pd, &searchtet, NULL, NULL, &ivf); |
|
pinfect(pd); |
|
cavpoints->newindex((void**)&parypt); |
|
*parypt = pd; |
|
} |
|
// Add three opposite faces into the boundary list. |
|
for (j = 0; j < 3; j++) { |
|
esym(*parytet, neightet); |
|
fsymself(neightet); |
|
if (!infected(neightet)) { |
|
cavfaces->newindex((void**)&parytet1); |
|
*parytet1 = neightet; |
|
} |
|
enextself(*parytet); |
|
} // j |
|
} // if (!infected(parytet)) |
|
} // i |
|
|
|
// Uninfect the points which are of the cavity. |
|
for (i = 0; i < cavpoints->objects; i++) { |
|
pt[0] = *(point*)fastlookup(cavpoints, i); |
|
puninfect(pt[0]); |
|
} |
|
|
|
misfaces->restart(); |
|
continue; |
|
} // if (misfaces->objects > 0) |
|
|
|
break; |
|
|
|
} // while (1) |
|
|
|
// Collect all tets of the DT. All new tets are marktested. |
|
marktest(recenttet); |
|
newtets->newindex((void**)&parytet); |
|
*parytet = recenttet; |
|
for (i = 0; i < newtets->objects; i++) { |
|
searchtet = *(triface*)fastlookup(newtets, i); |
|
for (j = 0; j < 4; j++) { |
|
decode(searchtet.tet[j], neightet); |
|
if (!marktested(neightet)) { |
|
marktest(neightet); |
|
newtets->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
} |
|
} |
|
|
|
cavpoints->restart(); |
|
cavfaces->restart(); |
|
|
|
if (crosstets->objects > baknum) { |
|
// The cavity has been enlarged. |
|
cavityexpcount++; |
|
} |
|
|
|
// Restore the original values. |
|
hullsize = bakhullsize; |
|
checksubsegflag = bakchecksubsegflag; |
|
checksubfaceflag = bakchecksubfaceflag; |
|
b->verbose++; |
|
b->plc = 1; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// fillcavity() Fill new tets into the cavity. // |
|
// // |
|
// The new tets are stored in two disjoint sets(which share the same facet). // |
|
// 'topfaces' and 'botfaces' are the boundaries of these two sets, respect- // |
|
// ively. 'midfaces' is empty on input, and will store faces in the facet. // |
|
// // |
|
// Important: This routine assumes all vertices of the missing region R are // |
|
// marktested, i.e., pmarktested(p) returns true. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
bool tetgenmesh::fillcavity(arraypool* topshells, arraypool* botshells, arraypool* midfaces, |
|
arraypool* missingshs, arraypool* topnewtets, arraypool* botnewtets, |
|
triface* crossedge) { |
|
arraypool* cavshells; |
|
triface bdrytet, neightet, *parytet; |
|
triface searchtet, spintet; |
|
face* parysh; |
|
face checkseg; |
|
point pa, pb, pc; |
|
bool mflag; |
|
int t1ver; |
|
int i, j; |
|
|
|
// Connect newtets to tets outside the cavity. These connections are needed |
|
// for identifying the middle faces (which belong to R). |
|
for (j = 0; j < 2; j++) { |
|
cavshells = (j == 0 ? topshells : botshells); |
|
if (cavshells != NULL) { |
|
for (i = 0; i < cavshells->objects; i++) { |
|
// Get a temp subface. |
|
parysh = (face*)fastlookup(cavshells, i); |
|
// Get the boundary tet outside the cavity (saved in sh[0]). |
|
decode(parysh->sh[0], bdrytet); |
|
pa = org(bdrytet); |
|
pb = dest(bdrytet); |
|
pc = apex(bdrytet); |
|
// Get the adjacent new tet inside the cavity. |
|
stpivot(*parysh, neightet); |
|
// Mark neightet as an interior tet of this cavity. |
|
infect(neightet); |
|
// Connect the two tets (the old connections are replaced). |
|
bond(bdrytet, neightet); |
|
tsdissolve(neightet); // Clear the pointer to tmpsh. |
|
// Update the point-to-tets map. |
|
setpoint2tet(pa, (tetrahedron)neightet.tet); |
|
setpoint2tet(pb, (tetrahedron)neightet.tet); |
|
setpoint2tet(pc, (tetrahedron)neightet.tet); |
|
} // i |
|
} // if (cavshells != NULL) |
|
} // j |
|
|
|
if (crossedge != NULL) { |
|
// Glue top and bottom tets at their common facet. |
|
triface toptet, bottet, spintet, *midface; |
|
point pd, pe; |
|
REAL ori; |
|
int types[2], poss[4]; |
|
int interflag; |
|
int bflag; |
|
|
|
mflag = false; |
|
pd = org(*crossedge); |
|
pe = dest(*crossedge); |
|
|
|
// Search the first (middle) face in R. |
|
// Since R may be non-convex, we must make sure that the face is in the |
|
// interior of R. We search a face in 'topnewtets' whose three vertices |
|
// are on R and it intersects 'crossedge' in its interior. Then search |
|
// a matching face in 'botnewtets'. |
|
for (i = 0; i < topnewtets->objects && !mflag; i++) { |
|
searchtet = *(triface*)fastlookup(topnewtets, i); |
|
for (searchtet.ver = 0; searchtet.ver < 4 && !mflag; searchtet.ver++) { |
|
pa = org(searchtet); |
|
if (pmarktested(pa)) { |
|
pb = dest(searchtet); |
|
if (pmarktested(pb)) { |
|
pc = apex(searchtet); |
|
if (pmarktested(pc)) { |
|
// Check if this face intersects [d,e]. |
|
interflag = tri_edge_test(pa, pb, pc, pd, pe, NULL, 1, types, poss); |
|
if (interflag == 2) { |
|
// They intersect at a single point. Found. |
|
toptet = searchtet; |
|
// The face lies in the interior of R. |
|
// Get the tet (in topnewtets) which lies above R. |
|
ori = orient3d(pa, pb, pc, pd); |
|
if (ori < 0) { |
|
fsymself(toptet); |
|
pa = org(toptet); |
|
pb = dest(toptet); |
|
} else if (ori == 0) { |
|
terminatetetgen(this, 2); |
|
} |
|
// Search the face [b,a,c] in 'botnewtets'. |
|
for (j = 0; j < botnewtets->objects; j++) { |
|
neightet = *(triface*)fastlookup(botnewtets, j); |
|
// Is neightet contains 'b'. |
|
if ((point)neightet.tet[4] == pb) { |
|
neightet.ver = 11; |
|
} else if ((point)neightet.tet[5] == pb) { |
|
neightet.ver = 3; |
|
} else if ((point)neightet.tet[6] == pb) { |
|
neightet.ver = 7; |
|
} else if ((point)neightet.tet[7] == pb) { |
|
neightet.ver = 0; |
|
} else { |
|
continue; |
|
} |
|
// Is the 'neightet' contains edge [b,a]. |
|
if (dest(neightet) == pa) { |
|
// 'neightet' is just the edge. |
|
} else if (apex(neightet) == pa) { |
|
eprevesymself(neightet); |
|
} else if (oppo(neightet) == pa) { |
|
esymself(neightet); |
|
enextself(neightet); |
|
} else { |
|
continue; |
|
} |
|
// Is 'neightet' the face [b,a,c]. |
|
if (apex(neightet) == pc) { |
|
bottet = neightet; |
|
mflag = true; |
|
break; |
|
} |
|
} // j |
|
} // if (interflag == 2) |
|
} // pc |
|
} // pb |
|
} // pa |
|
} // toptet.ver |
|
} // i |
|
|
|
if (mflag) { |
|
// Found a pair of matched faces in 'toptet' and 'bottet'. |
|
bond(toptet, bottet); |
|
// Both are interior tets. |
|
infect(toptet); |
|
infect(bottet); |
|
// Add this face into search list. |
|
markface(toptet); |
|
midfaces->newindex((void**)&parytet); |
|
*parytet = toptet; |
|
} else { |
|
// No pair of 'toptet' and 'bottet'. |
|
toptet.tet = NULL; |
|
// Randomly split an interior edge of R. |
|
i = randomnation(missingshs->objects - 1); |
|
recentsh = *(face*)fastlookup(missingshs, i); |
|
} |
|
|
|
// Find other middle faces, connect top and bottom tets. |
|
for (i = 0; i < midfaces->objects && mflag; i++) { |
|
// Get a matched middle face [a, b, c] |
|
midface = (triface*)fastlookup(midfaces, i); |
|
// Check the neighbors at the edges of this face. |
|
for (j = 0; j < 3 && mflag; j++) { |
|
toptet = *midface; |
|
bflag = false; |
|
while (1) { |
|
// Go to the next face in the same tet. |
|
esymself(toptet); |
|
pc = apex(toptet); |
|
if (pmarktested(pc)) { |
|
break; // Find a subface. |
|
} |
|
if (pc == dummypoint) { |
|
terminatetetgen(this, 2); // Check this case. |
|
break; // Find a subface. |
|
} |
|
// Go to the adjacent tet. |
|
fsymself(toptet); |
|
// Do we walk outside the cavity? |
|
if (!marktested(toptet)) { |
|
// Yes, the adjacent face is not a middle face. |
|
bflag = true; |
|
break; |
|
} |
|
} |
|
if (!bflag) { |
|
if (!facemarked(toptet)) { |
|
fsym(*midface, bottet); |
|
spintet = bottet; |
|
while (1) { |
|
esymself(bottet); |
|
pd = apex(bottet); |
|
if (pd == pc) break; // Face matched. |
|
fsymself(bottet); |
|
if (bottet.tet == spintet.tet) { |
|
// Not found a matched bottom face. |
|
mflag = false; |
|
break; |
|
} |
|
} // while (1) |
|
if (mflag) { |
|
if (marktested(bottet)) { |
|
// Connect two tets together. |
|
bond(toptet, bottet); |
|
// Both are interior tets. |
|
infect(toptet); |
|
infect(bottet); |
|
// Add this face into list. |
|
markface(toptet); |
|
midfaces->newindex((void**)&parytet); |
|
*parytet = toptet; |
|
} else { |
|
// The 'bottet' is not inside the cavity! |
|
terminatetetgen(this, 2); // Check this case |
|
} |
|
} else { // mflag == false |
|
// Adjust 'toptet' and 'bottet' to be the crossing edges. |
|
fsym(*midface, bottet); |
|
spintet = bottet; |
|
while (1) { |
|
esymself(bottet); |
|
pd = apex(bottet); |
|
if (pmarktested(pd)) { |
|
// assert(pd != pc); |
|
// Let 'toptet' be [a,b,c,#], and 'bottet' be [b,a,d,*]. |
|
// Adjust 'toptet' and 'bottet' to be the crossing edges. |
|
// Test orient3d(b,c,#,d). |
|
ori = orient3d(dest(toptet), pc, oppo(toptet), pd); |
|
if (ori < 0) { |
|
// Edges [a,d] and [b,c] cross each other. |
|
enextself(toptet); // [b,c] |
|
enextself(bottet); // [a,d] |
|
} else if (ori > 0) { |
|
// Edges [a,c] and [b,d] cross each other. |
|
eprevself(toptet); // [c,a] |
|
eprevself(bottet); // [d,b] |
|
} else { |
|
// b,c,#,and d are coplanar!. |
|
terminatetetgen(this, 2); // assert(0); |
|
} |
|
break; // Not matched |
|
} |
|
fsymself(bottet); |
|
} |
|
} // if (!mflag) |
|
} // if (!facemarked(toptet)) |
|
} // if (!bflag) |
|
enextself(*midface); |
|
} // j |
|
} // i |
|
|
|
if (mflag) { |
|
if (b->verbose > 2) { |
|
printf(" Found %ld middle subfaces.\n", midfaces->objects); |
|
} |
|
face oldsh, newsh, casout, casin, neighsh; |
|
|
|
oldsh = *(face*)fastlookup(missingshs, 0); |
|
|
|
// Create new subfaces to fill the region R. |
|
for (i = 0; i < midfaces->objects; i++) { |
|
// Get a matched middle face [a, b, c] |
|
midface = (triface*)fastlookup(midfaces, i); |
|
unmarkface(*midface); |
|
makeshellface(subfaces, &newsh); |
|
setsorg(newsh, org(*midface)); |
|
setsdest(newsh, dest(*midface)); |
|
setsapex(newsh, apex(*midface)); |
|
// The new subface gets its markers from the old one. |
|
setshellmark(newsh, shellmark(oldsh)); |
|
if (checkconstraints) { |
|
setareabound(newsh, areabound(oldsh)); |
|
} |
|
if (useinsertradius) { |
|
setfacetindex(newsh, getfacetindex(oldsh)); |
|
} |
|
// Connect the new subface to adjacent tets. |
|
tsbond(*midface, newsh); |
|
fsym(*midface, neightet); |
|
sesymself(newsh); |
|
tsbond(neightet, newsh); |
|
} |
|
|
|
// Connect new subfaces together and to the bdry of R. |
|
// Delete faked segments. |
|
for (i = 0; i < midfaces->objects; i++) { |
|
// Get a matched middle face [a, b, c] |
|
midface = (triface*)fastlookup(midfaces, i); |
|
for (j = 0; j < 3; j++) { |
|
tspivot(*midface, newsh); |
|
spivot(newsh, casout); |
|
if (casout.sh == NULL) { |
|
// Search its neighbor. |
|
fnext(*midface, searchtet); |
|
while (1) { |
|
// (1) First check if this side is a bdry edge of R. |
|
tsspivot1(searchtet, checkseg); |
|
if (checkseg.sh != NULL) { |
|
// It's a bdry edge of R. |
|
// Get the old subface. |
|
checkseg.shver = 0; |
|
spivot(checkseg, oldsh); |
|
if (sinfected(checkseg)) { |
|
// It's a faked segment. Delete it. |
|
spintet = searchtet; |
|
while (1) { |
|
tssdissolve1(spintet); |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) break; |
|
} |
|
shellfacedealloc(subsegs, checkseg.sh); |
|
ssdissolve(oldsh); |
|
checkseg.sh = NULL; |
|
} |
|
spivot(oldsh, casout); |
|
if (casout.sh != NULL) { |
|
casin = casout; |
|
if (checkseg.sh != NULL) { |
|
// Make sure that the subface has the right ori at the |
|
// segment. |
|
checkseg.shver = 0; |
|
if (sorg(newsh) != sorg(checkseg)) { |
|
sesymself(newsh); |
|
} |
|
spivot(casin, neighsh); |
|
while (neighsh.sh != oldsh.sh) { |
|
casin = neighsh; |
|
spivot(casin, neighsh); |
|
} |
|
} |
|
sbond1(newsh, casout); |
|
sbond1(casin, newsh); |
|
} |
|
if (checkseg.sh != NULL) { |
|
ssbond(newsh, checkseg); |
|
} |
|
break; |
|
} // if (checkseg.sh != NULL) |
|
// (2) Second check if this side is an interior edge of R. |
|
tspivot(searchtet, neighsh); |
|
if (neighsh.sh != NULL) { |
|
// Found an adjacent subface of newsh (an interior edge). |
|
sbond(newsh, neighsh); |
|
break; |
|
} |
|
fnextself(searchtet); |
|
} // while (1) |
|
} // if (casout.sh == NULL) |
|
enextself(*midface); |
|
} // j |
|
} // i |
|
|
|
// Delete old subfaces. |
|
for (i = 0; i < missingshs->objects; i++) { |
|
parysh = (face*)fastlookup(missingshs, i); |
|
shellfacedealloc(subfaces, parysh->sh); |
|
} |
|
} else { |
|
if (toptet.tet != NULL) { |
|
// Faces at top and bottom are not matched. |
|
// Choose a Steiner point in R. |
|
// Split one of the crossing edges. |
|
pa = org(toptet); |
|
pb = dest(toptet); |
|
pc = org(bottet); |
|
pd = dest(bottet); |
|
// Search an edge in R which is either [a,b] or [c,d]. |
|
// Reminder: Subfaces in this list 'missingshs', except the first |
|
// one, represents an interior edge of R. |
|
parysh = NULL; // Avoid a warning in MSVC |
|
for (i = 1; i < missingshs->objects; i++) { |
|
parysh = (face*)fastlookup(missingshs, i); |
|
if (((sorg(*parysh) == pa) && (sdest(*parysh) == pb)) || |
|
((sorg(*parysh) == pb) && (sdest(*parysh) == pa))) |
|
break; |
|
if (((sorg(*parysh) == pc) && (sdest(*parysh) == pd)) || |
|
((sorg(*parysh) == pd) && (sdest(*parysh) == pc))) |
|
break; |
|
} |
|
if (i < missingshs->objects) { |
|
// Found. Return it. |
|
recentsh = *parysh; |
|
} else { |
|
terminatetetgen(this, 2); // assert(0); |
|
} |
|
} else { |
|
// terminatetetgen(this, 2); // Report a bug |
|
} |
|
} |
|
|
|
midfaces->restart(); |
|
} else { |
|
mflag = true; |
|
} |
|
|
|
// Delete the temp subfaces. |
|
for (j = 0; j < 2; j++) { |
|
cavshells = (j == 0 ? topshells : botshells); |
|
if (cavshells != NULL) { |
|
for (i = 0; i < cavshells->objects; i++) { |
|
parysh = (face*)fastlookup(cavshells, i); |
|
shellfacedealloc(subfaces, parysh->sh); |
|
} |
|
} |
|
} |
|
|
|
topshells->restart(); |
|
if (botshells != NULL) { |
|
botshells->restart(); |
|
} |
|
|
|
return mflag; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// carvecavity() Delete old tets and outer new tets of the cavity. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::carvecavity(arraypool* crosstets, arraypool* topnewtets, arraypool* botnewtets) { |
|
arraypool* newtets; |
|
shellface *sptr, *ssptr; |
|
triface *parytet, *pnewtet, newtet, neightet, spintet; |
|
face checksh, *parysh; |
|
face checkseg, *paryseg; |
|
int t1ver; |
|
int i, j; |
|
|
|
if (b->verbose > 2) { |
|
printf(" Carve cavity: %ld old tets.\n", crosstets->objects); |
|
} |
|
|
|
// First process subfaces and segments which are adjacent to the cavity. |
|
// They must be re-connected to new tets in the cavity. |
|
// Comment: It is possible that some subfaces and segments are completely |
|
// inside the cavity. This can happen even if the cavity is not enlarged. |
|
// Before deleting the old tets, find and queue all interior subfaces |
|
// and segments. They will be recovered later. 2010-05-06. |
|
|
|
// Collect all subfaces and segments which attached to the old tets. |
|
for (i = 0; i < crosstets->objects; i++) { |
|
parytet = (triface*)fastlookup(crosstets, i); |
|
if ((sptr = (shellface*)parytet->tet[9]) != NULL) { |
|
for (j = 0; j < 4; j++) { |
|
if (sptr[j]) { |
|
sdecode(sptr[j], checksh); |
|
if (!sinfected(checksh)) { |
|
sinfect(checksh); |
|
cavetetshlist->newindex((void**)&parysh); |
|
*parysh = checksh; |
|
} |
|
} |
|
} // j |
|
} |
|
if ((ssptr = (shellface*)parytet->tet[8]) != NULL) { |
|
for (j = 0; j < 6; j++) { |
|
if (ssptr[j]) { |
|
sdecode(ssptr[j], checkseg); |
|
// Skip a deleted segment (was a faked segment) |
|
if (checkseg.sh[3] != NULL) { |
|
if (!sinfected(checkseg)) { |
|
sinfect(checkseg); |
|
cavetetseglist->newindex((void**)&paryseg); |
|
*paryseg = checkseg; |
|
} |
|
} |
|
} |
|
} // j |
|
} |
|
} // i |
|
|
|
// Uninfect collected subfaces. |
|
for (i = 0; i < cavetetshlist->objects; i++) { |
|
parysh = (face*)fastlookup(cavetetshlist, i); |
|
suninfect(*parysh); |
|
} |
|
// Uninfect collected segments. |
|
for (i = 0; i < cavetetseglist->objects; i++) { |
|
paryseg = (face*)fastlookup(cavetetseglist, i); |
|
suninfect(*paryseg); |
|
} |
|
|
|
// Connect subfaces to new tets. |
|
for (i = 0; i < cavetetshlist->objects; i++) { |
|
parysh = (face*)fastlookup(cavetetshlist, i); |
|
// Get an adjacent tet at this subface. |
|
stpivot(*parysh, neightet); |
|
// Does this tet lie inside the cavity. |
|
if (infected(neightet)) { |
|
// Yes. Get the other adjacent tet at this subface. |
|
sesymself(*parysh); |
|
stpivot(*parysh, neightet); |
|
// Does this tet lie inside the cavity. |
|
if (infected(neightet)) { |
|
checksh = *parysh; |
|
stdissolve(checksh); |
|
caveencshlist->newindex((void**)&parysh); |
|
*parysh = checksh; |
|
} |
|
} |
|
if (!infected(neightet)) { |
|
// Found an outside tet. Re-connect this subface to a new tet. |
|
fsym(neightet, newtet); |
|
sesymself(*parysh); |
|
tsbond(newtet, *parysh); |
|
} |
|
} // i |
|
|
|
for (i = 0; i < cavetetseglist->objects; i++) { |
|
checkseg = *(face*)fastlookup(cavetetseglist, i); |
|
// Check if the segment is inside the cavity. |
|
sstpivot1(checkseg, neightet); |
|
spintet = neightet; |
|
while (1) { |
|
if (!infected(spintet)) { |
|
// This segment is on the boundary of the cavity. |
|
break; |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == neightet.tet) { |
|
sstdissolve1(checkseg); |
|
caveencseglist->newindex((void**)&paryseg); |
|
*paryseg = checkseg; |
|
break; |
|
} |
|
} |
|
if (!infected(spintet)) { |
|
// A boundary segment. Connect this segment to the new tets. |
|
sstbond1(checkseg, spintet); |
|
neightet = spintet; |
|
while (1) { |
|
tssbond1(spintet, checkseg); |
|
fnextself(spintet); |
|
if (spintet.tet == neightet.tet) break; |
|
} |
|
} |
|
} // i |
|
|
|
cavetetshlist->restart(); |
|
cavetetseglist->restart(); |
|
|
|
// Delete the old tets in cavity. |
|
for (i = 0; i < crosstets->objects; i++) { |
|
parytet = (triface*)fastlookup(crosstets, i); |
|
if (ishulltet(*parytet)) { |
|
hullsize--; |
|
} |
|
tetrahedrondealloc(parytet->tet); |
|
} |
|
|
|
crosstets->restart(); // crosstets will be re-used. |
|
|
|
// Collect new tets in cavity. Some new tets have already been found |
|
// (and infected) in the fillcavity(). We first collect them. |
|
for (j = 0; j < 2; j++) { |
|
newtets = (j == 0 ? topnewtets : botnewtets); |
|
if (newtets != NULL) { |
|
for (i = 0; i < newtets->objects; i++) { |
|
parytet = (triface*)fastlookup(newtets, i); |
|
if (infected(*parytet)) { |
|
crosstets->newindex((void**)&pnewtet); |
|
*pnewtet = *parytet; |
|
} |
|
} // i |
|
} |
|
} // j |
|
|
|
// Now we collect all new tets in cavity. |
|
for (i = 0; i < crosstets->objects; i++) { |
|
parytet = (triface*)fastlookup(crosstets, i); |
|
for (j = 0; j < 4; j++) { |
|
decode(parytet->tet[j], neightet); |
|
if (marktested(neightet)) { // Is it a new tet? |
|
if (!infected(neightet)) { |
|
// Find an interior tet. |
|
// assert((point) neightet.tet[7] != dummypoint); // SELF_CHECK |
|
infect(neightet); |
|
crosstets->newindex((void**)&pnewtet); |
|
*pnewtet = neightet; |
|
} |
|
} |
|
} // j |
|
} // i |
|
|
|
parytet = (triface*)fastlookup(crosstets, 0); |
|
recenttet = *parytet; // Remember a live handle. |
|
|
|
// Delete outer new tets. |
|
for (j = 0; j < 2; j++) { |
|
newtets = (j == 0 ? topnewtets : botnewtets); |
|
if (newtets != NULL) { |
|
for (i = 0; i < newtets->objects; i++) { |
|
parytet = (triface*)fastlookup(newtets, i); |
|
if (infected(*parytet)) { |
|
// This is an interior tet. |
|
uninfect(*parytet); |
|
unmarktest(*parytet); |
|
if (ishulltet(*parytet)) { |
|
hullsize++; |
|
} |
|
} else { |
|
// An outer tet. Delete it. |
|
tetrahedrondealloc(parytet->tet); |
|
} |
|
} |
|
} |
|
} |
|
|
|
crosstets->restart(); |
|
topnewtets->restart(); |
|
if (botnewtets != NULL) { |
|
botnewtets->restart(); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// restorecavity() Reconnect old tets and delete new tets of the cavity. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::restorecavity(arraypool* crosstets, arraypool* topnewtets, arraypool* botnewtets, |
|
arraypool* missingshbds) { |
|
triface *parytet, neightet, spintet; |
|
face* parysh; |
|
face checkseg; |
|
point* ppt; |
|
int t1ver; |
|
int i, j; |
|
|
|
// Reconnect crossing tets to cavity boundary. |
|
for (i = 0; i < crosstets->objects; i++) { |
|
parytet = (triface*)fastlookup(crosstets, i); |
|
parytet->ver = 0; |
|
for (parytet->ver = 0; parytet->ver < 4; parytet->ver++) { |
|
fsym(*parytet, neightet); |
|
if (!infected(neightet)) { |
|
// Restore the old connections of tets. |
|
bond(*parytet, neightet); |
|
} |
|
} |
|
// Update the point-to-tet map. |
|
parytet->ver = 0; |
|
ppt = (point*)&(parytet->tet[4]); |
|
for (j = 0; j < 4; j++) { |
|
setpoint2tet(ppt[j], encode(*parytet)); |
|
} |
|
} |
|
|
|
// Uninfect all crossing tets. |
|
for (i = 0; i < crosstets->objects; i++) { |
|
parytet = (triface*)fastlookup(crosstets, i); |
|
uninfect(*parytet); |
|
} |
|
|
|
// Remember a live handle. |
|
if (crosstets->objects > 0) { |
|
recenttet = *(triface*)fastlookup(crosstets, 0); |
|
} |
|
|
|
// Delete faked segments. |
|
for (i = 0; i < missingshbds->objects; i++) { |
|
parysh = (face*)fastlookup(missingshbds, i); |
|
sspivot(*parysh, checkseg); |
|
if (checkseg.sh[3] != NULL) { |
|
if (sinfected(checkseg)) { |
|
// It's a faked segment. Delete it. |
|
sstpivot1(checkseg, neightet); |
|
spintet = neightet; |
|
while (1) { |
|
tssdissolve1(spintet); |
|
fnextself(spintet); |
|
if (spintet.tet == neightet.tet) break; |
|
} |
|
shellfacedealloc(subsegs, checkseg.sh); |
|
ssdissolve(*parysh); |
|
// checkseg.sh = NULL; |
|
} |
|
} |
|
} // i |
|
|
|
// Delete new tets. |
|
for (i = 0; i < topnewtets->objects; i++) { |
|
parytet = (triface*)fastlookup(topnewtets, i); |
|
tetrahedrondealloc(parytet->tet); |
|
} |
|
|
|
if (botnewtets != NULL) { |
|
for (i = 0; i < botnewtets->objects; i++) { |
|
parytet = (triface*)fastlookup(botnewtets, i); |
|
tetrahedrondealloc(parytet->tet); |
|
} |
|
} |
|
|
|
crosstets->restart(); |
|
topnewtets->restart(); |
|
if (botnewtets != NULL) { |
|
botnewtets->restart(); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// flipcertify() Insert a crossing face into priority queue. // |
|
// // |
|
// A crossing face of a facet must have at least one top and one bottom ver- // |
|
// tex of the facet. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::flipcertify(triface* chkface, badface** pqueue, point plane_pa, point plane_pb, |
|
point plane_pc) { |
|
badface *parybf, *prevbf, *nextbf; |
|
triface neightet; |
|
face checksh; |
|
point p[5]; |
|
REAL w[5]; |
|
REAL insph, ori4; |
|
int topi, boti; |
|
int i; |
|
|
|
// Compute the flip time \tau. |
|
fsym(*chkface, neightet); |
|
|
|
p[0] = org(*chkface); |
|
p[1] = dest(*chkface); |
|
p[2] = apex(*chkface); |
|
p[3] = oppo(*chkface); |
|
p[4] = oppo(neightet); |
|
|
|
// Check if the face is a crossing face. |
|
topi = boti = 0; |
|
for (i = 0; i < 3; i++) { |
|
if (pmarktest2ed(p[i])) topi++; |
|
if (pmarktest3ed(p[i])) boti++; |
|
} |
|
if ((topi == 0) || (boti == 0)) { |
|
// It is not a crossing face. |
|
// return; |
|
for (i = 3; i < 5; i++) { |
|
if (pmarktest2ed(p[i])) topi++; |
|
if (pmarktest3ed(p[i])) boti++; |
|
} |
|
if ((topi == 0) || (boti == 0)) { |
|
// The two tets sharing at this face are on one side of the facet. |
|
// Check if this face is locally Delaunay (due to rounding error). |
|
if ((p[3] != dummypoint) && (p[4] != dummypoint)) { |
|
// Do not check it if it is a subface. |
|
tspivot(*chkface, checksh); |
|
if (checksh.sh == NULL) { |
|
insph = insphere_s(p[1], p[0], p[2], p[3], p[4]); |
|
if (insph > 0) { |
|
// Add the face into queue. |
|
if (b->verbose > 2) { |
|
printf(" A locally non-Delanay face (%d, %d, %d)-%d,%d\n", |
|
pointmark(p[0]), pointmark(p[1]), pointmark(p[2]), |
|
pointmark(p[3]), pointmark(p[4])); |
|
} |
|
parybf = (badface*)flippool->alloc(); |
|
parybf->key = 0.; // tau = 0, do immediately. |
|
parybf->tt = *chkface; |
|
parybf->forg = p[0]; |
|
parybf->fdest = p[1]; |
|
parybf->fapex = p[2]; |
|
parybf->foppo = p[3]; |
|
parybf->noppo = p[4]; |
|
// Add it at the top of the priority queue. |
|
if (*pqueue == NULL) { |
|
*pqueue = parybf; |
|
parybf->nextitem = NULL; |
|
} else { |
|
parybf->nextitem = *pqueue; |
|
*pqueue = parybf; |
|
} |
|
} // if (insph > 0) |
|
} // if (checksh.sh == NULL) |
|
} |
|
} |
|
return; // Test: omit this face. |
|
} |
|
|
|
// Decide the "height" for each point. |
|
for (i = 0; i < 5; i++) { |
|
if (pmarktest2ed(p[i])) { |
|
// A top point has a positive weight. |
|
w[i] = orient3dfast(plane_pa, plane_pb, plane_pc, p[i]); |
|
if (w[i] < 0) w[i] = -w[i]; |
|
} else { |
|
w[i] = 0; |
|
} |
|
} |
|
|
|
insph = insphere(p[1], p[0], p[2], p[3], p[4]); |
|
ori4 = orient4d(p[1], p[0], p[2], p[3], p[4], w[1], w[0], w[2], w[3], w[4]); |
|
if (ori4 > 0) { |
|
// Add the face into queue. |
|
if (b->verbose > 2) { |
|
printf(" Insert face (%d, %d, %d) - %d, %d\n", pointmark(p[0]), pointmark(p[1]), |
|
pointmark(p[2]), pointmark(p[3]), pointmark(p[4])); |
|
} |
|
|
|
parybf = (badface*)flippool->alloc(); |
|
|
|
parybf->key = -insph / ori4; |
|
parybf->tt = *chkface; |
|
parybf->forg = p[0]; |
|
parybf->fdest = p[1]; |
|
parybf->fapex = p[2]; |
|
parybf->foppo = p[3]; |
|
parybf->noppo = p[4]; |
|
|
|
// Push the face into priority queue. |
|
// pq.push(bface); |
|
if (*pqueue == NULL) { |
|
*pqueue = parybf; |
|
parybf->nextitem = NULL; |
|
} else { |
|
// Search an item whose key is larger or equal to current key. |
|
prevbf = NULL; |
|
nextbf = *pqueue; |
|
// if (!b->flipinsert_random) { // Default use a priority queue. |
|
// Insert the item into priority queue. |
|
while (nextbf != NULL) { |
|
if (nextbf->key < parybf->key) { |
|
prevbf = nextbf; |
|
nextbf = nextbf->nextitem; |
|
} else { |
|
break; |
|
} |
|
} |
|
//} // if (!b->flipinsert_random) |
|
// Insert the new item between prev and next items. |
|
if (prevbf == NULL) { |
|
*pqueue = parybf; |
|
} else { |
|
prevbf->nextitem = parybf; |
|
} |
|
parybf->nextitem = nextbf; |
|
} |
|
} else if (ori4 == 0) { |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// flipinsertfacet() Insert a facet into a CDT by flips. // |
|
// // |
|
// The algorithm is described in Shewchuk's paper "Updating and Constructing // |
|
// Constrained Delaunay and Constrained Regular Triangulations by Flips", in // |
|
// Proc. 19th Ann. Symp. on Comput. Geom., 86--95, 2003. // |
|
// // |
|
// 'crosstets' contains the set of crossing tetrahedra (infected) of the // |
|
// facet. 'toppoints' and 'botpoints' are points lies above and below the // |
|
// facet, not on the facet. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::flipinsertfacet(arraypool* crosstets, arraypool* toppoints, arraypool* botpoints, |
|
arraypool* midpoints) { |
|
arraypool *crossfaces, *bfacearray; |
|
triface fliptets[6], baktets[2], fliptet, newface; |
|
triface neightet, *parytet; |
|
badface* pqueue; |
|
badface *popbf, bface; |
|
point plane_pa, plane_pb, plane_pc; |
|
point p1, p2, pd, pe; |
|
point* parypt; |
|
flipconstraints fc; |
|
REAL ori[3]; |
|
int convcount, copcount; |
|
int flipflag, fcount; |
|
int n, i; |
|
long f23count, f32count, f44count; |
|
long totalfcount; |
|
|
|
f23count = flip23count; |
|
f32count = flip32count; |
|
f44count = flip44count; |
|
|
|
// Get three affinely independent vertices in the missing region R. |
|
calculateabovepoint(midpoints, &plane_pa, &plane_pb, &plane_pc); |
|
|
|
// Mark top and bottom points. Do not mark midpoints. |
|
for (i = 0; i < toppoints->objects; i++) { |
|
parypt = (point*)fastlookup(toppoints, i); |
|
if (!pmarktested(*parypt)) { |
|
pmarktest2(*parypt); |
|
} |
|
} |
|
for (i = 0; i < botpoints->objects; i++) { |
|
parypt = (point*)fastlookup(botpoints, i); |
|
if (!pmarktested(*parypt)) { |
|
pmarktest3(*parypt); |
|
} |
|
} |
|
|
|
// Collect crossing faces. |
|
crossfaces = cavetetlist; // Re-use array 'cavetetlist'. |
|
|
|
// Each crossing face contains at least one bottom vertex and |
|
// one top vertex. |
|
for (i = 0; i < crosstets->objects; i++) { |
|
parytet = (triface*)fastlookup(crosstets, i); |
|
fliptet = *parytet; |
|
for (fliptet.ver = 0; fliptet.ver < 4; fliptet.ver++) { |
|
fsym(fliptet, neightet); |
|
if (infected(neightet)) { // It is an interior face. |
|
if (!marktested(neightet)) { // It is an unprocessed face. |
|
crossfaces->newindex((void**)&parytet); |
|
*parytet = fliptet; |
|
} |
|
} |
|
} |
|
marktest(fliptet); |
|
} |
|
|
|
if (b->verbose > 1) { |
|
printf(" Found %ld crossing faces.\n", crossfaces->objects); |
|
} |
|
|
|
for (i = 0; i < crosstets->objects; i++) { |
|
parytet = (triface*)fastlookup(crosstets, i); |
|
unmarktest(*parytet); |
|
uninfect(*parytet); |
|
} |
|
|
|
// Initialize the priority queue. |
|
pqueue = NULL; |
|
|
|
for (i = 0; i < crossfaces->objects; i++) { |
|
parytet = (triface*)fastlookup(crossfaces, i); |
|
flipcertify(parytet, &pqueue, plane_pa, plane_pb, plane_pc); |
|
} |
|
crossfaces->restart(); |
|
|
|
// The list for temporarily storing unflipable faces. |
|
bfacearray = new arraypool(sizeof(triface), 4); |
|
|
|
fcount = 0; // Count the number of flips. |
|
|
|
// Flip insert the facet. |
|
while (pqueue != NULL) { |
|
|
|
// Pop a face from the priority queue. |
|
popbf = pqueue; |
|
bface = *popbf; |
|
// Update the queue. |
|
pqueue = pqueue->nextitem; |
|
// Delete the popped item from the pool. |
|
flippool->dealloc((void*)popbf); |
|
|
|
if (!isdeadtet(bface.tt)) { |
|
if ((org(bface.tt) == bface.forg) && (dest(bface.tt) == bface.fdest) && |
|
(apex(bface.tt) == bface.fapex) && (oppo(bface.tt) == bface.foppo)) { |
|
// It is still a crossing face of R. |
|
fliptet = bface.tt; |
|
fsym(fliptet, neightet); |
|
if (oppo(neightet) == bface.noppo) { |
|
pd = oppo(fliptet); |
|
pe = oppo(neightet); |
|
|
|
if (b->verbose > 2) { |
|
printf(" Get face (%d, %d, %d) - %d, %d, tau = %.17g\n", |
|
pointmark(bface.forg), pointmark(bface.fdest), |
|
pointmark(bface.fapex), pointmark(bface.foppo), |
|
pointmark(bface.noppo), bface.key); |
|
} |
|
flipflag = 0; |
|
|
|
// Check for which type of flip can we do. |
|
convcount = 3; |
|
copcount = 0; |
|
for (i = 0; i < 3; i++) { |
|
p1 = org(fliptet); |
|
p2 = dest(fliptet); |
|
ori[i] = orient3d(p1, p2, pd, pe); |
|
if (ori[i] < 0) { |
|
convcount--; |
|
// break; |
|
} else if (ori[i] == 0) { |
|
convcount--; // Possible 4-to-4 flip. |
|
copcount++; |
|
// break; |
|
} |
|
enextself(fliptet); |
|
} |
|
|
|
if (convcount == 3) { |
|
// A 2-to-3 flip is found. |
|
fliptets[0] = fliptet; // abcd, d may be the new vertex. |
|
fliptets[1] = neightet; // bace. |
|
flip23(fliptets, 1, &fc); |
|
// Put the link faces into check list. |
|
for (i = 0; i < 3; i++) { |
|
eprevesym(fliptets[i], newface); |
|
crossfaces->newindex((void**)&parytet); |
|
*parytet = newface; |
|
} |
|
for (i = 0; i < 3; i++) { |
|
enextesym(fliptets[i], newface); |
|
crossfaces->newindex((void**)&parytet); |
|
*parytet = newface; |
|
} |
|
flipflag = 1; |
|
} else if (convcount == 2) { |
|
// if (copcount <= 1) { |
|
// A 3-to-2 or 4-to-4 may be possible. |
|
// Get the edge which is locally non-convex or flat. |
|
for (i = 0; i < 3; i++) { |
|
if (ori[i] <= 0) break; |
|
enextself(fliptet); |
|
} |
|
|
|
// Collect tets sharing at this edge. |
|
esym(fliptet, fliptets[0]); // [b,a,d,c] |
|
n = 0; |
|
do { |
|
p1 = apex(fliptets[n]); |
|
if (!(pmarktested(p1) || pmarktest2ed(p1) || pmarktest3ed(p1))) { |
|
// This apex is not on the cavity. Hence the face does not |
|
// lie inside the cavity. Do not flip this edge. |
|
n = 1000; |
|
break; |
|
} |
|
fnext(fliptets[n], fliptets[n + 1]); |
|
n++; |
|
} while ((fliptets[n].tet != fliptet.tet) && (n < 5)); |
|
|
|
if (n == 3) { |
|
// Found a 3-to-2 flip. |
|
flip32(fliptets, 1, &fc); |
|
// Put the link faces into check list. |
|
for (i = 0; i < 3; i++) { |
|
esym(fliptets[0], newface); |
|
crossfaces->newindex((void**)&parytet); |
|
*parytet = newface; |
|
enextself(fliptets[0]); |
|
} |
|
for (i = 0; i < 3; i++) { |
|
esym(fliptets[1], newface); |
|
crossfaces->newindex((void**)&parytet); |
|
*parytet = newface; |
|
enextself(fliptets[1]); |
|
} |
|
flipflag = 1; |
|
} else if (n == 4) { |
|
if (copcount == 1) { |
|
// Found a 4-to-4 flip. |
|
// Let the six vertices are: a,b,c,d,e,f, where |
|
// fliptets[0] = [b,a,d,c] |
|
// [1] = [b,a,c,e] |
|
// [2] = [b,a,e,f] |
|
// [3] = [b,a,f,d] |
|
// After the 4-to-4 flip, edge [a,b] is flipped, edge [e,d] |
|
// is created. |
|
// First do a 2-to-3 flip. |
|
// Comment: This flip temporarily creates a degenerated |
|
// tet (whose volume is zero). It will be removed by the |
|
// followed 3-to-2 flip. |
|
fliptets[0] = fliptet; // = [a,b,c,d], d is the new vertex. |
|
// fliptets[1]; // = [b,a,c,e]. |
|
baktets[0] = fliptets[2]; // = [b,a,e,f] |
|
baktets[1] = fliptets[3]; // = [b,a,f,d] |
|
// The flip may involve hull tets. |
|
flip23(fliptets, 1, &fc); |
|
// Put the "outer" link faces into check list. |
|
// fliptets[0] = [e,d,a,b] => will be flipped, so |
|
// [a,b,d] and [a,b,e] are not "outer" link faces. |
|
for (i = 1; i < 3; i++) { |
|
eprevesym(fliptets[i], newface); |
|
crossfaces->newindex((void**)&parytet); |
|
*parytet = newface; |
|
} |
|
for (i = 1; i < 3; i++) { |
|
enextesym(fliptets[i], newface); |
|
crossfaces->newindex((void**)&parytet); |
|
*parytet = newface; |
|
} |
|
// Then do a 3-to-2 flip. |
|
enextesymself(fliptets[0]); // fliptets[0] is [e,d,a,b]. |
|
eprevself(fliptets[0]); // = [b,a,d,c], d is the new vertex. |
|
fliptets[1] = baktets[0]; // = [b,a,e,f] |
|
fliptets[2] = baktets[1]; // = [b,a,f,d] |
|
flip32(fliptets, 1, &fc); |
|
// Put the "outer" link faces into check list. |
|
// fliptets[0] = [d,e,f,a] |
|
// fliptets[1] = [e,d,f,b] |
|
// Faces [a,b,d] and [a,b,e] are not "outer" link faces. |
|
enextself(fliptets[0]); |
|
for (i = 1; i < 3; i++) { |
|
esym(fliptets[0], newface); |
|
crossfaces->newindex((void**)&parytet); |
|
*parytet = newface; |
|
enextself(fliptets[0]); |
|
} |
|
enextself(fliptets[1]); |
|
for (i = 1; i < 3; i++) { |
|
esym(fliptets[1], newface); |
|
crossfaces->newindex((void**)&parytet); |
|
*parytet = newface; |
|
enextself(fliptets[1]); |
|
} |
|
flip23count--; |
|
flip32count--; |
|
flip44count++; |
|
flipflag = 1; |
|
} |
|
} |
|
} else { |
|
// There are more than 1 non-convex or coplanar cases. |
|
flipflag = -1; // Ignore this face. |
|
if (b->verbose > 2) { |
|
printf(" Ignore face (%d, %d, %d) - %d, %d, tau = %.17g\n", |
|
pointmark(bface.forg), pointmark(bface.fdest), |
|
pointmark(bface.fapex), pointmark(bface.foppo), |
|
pointmark(bface.noppo), bface.key); |
|
} |
|
} // if (convcount == 1) |
|
|
|
if (flipflag == 1) { |
|
// Update the priority queue. |
|
for (i = 0; i < crossfaces->objects; i++) { |
|
parytet = (triface*)fastlookup(crossfaces, i); |
|
flipcertify(parytet, &pqueue, plane_pa, plane_pb, plane_pc); |
|
} |
|
crossfaces->restart(); |
|
if (1) { // if (!b->flipinsert_random) { |
|
// Insert all queued unflipped faces. |
|
for (i = 0; i < bfacearray->objects; i++) { |
|
parytet = (triface*)fastlookup(bfacearray, i); |
|
// This face may be changed. |
|
if (!isdeadtet(*parytet)) { |
|
flipcertify(parytet, &pqueue, plane_pa, plane_pb, plane_pc); |
|
} |
|
} |
|
bfacearray->restart(); |
|
} |
|
fcount++; |
|
} else if (flipflag == 0) { |
|
// Queue an unflippable face. To process it later. |
|
bfacearray->newindex((void**)&parytet); |
|
*parytet = fliptet; |
|
} |
|
} // if (pe == bface.noppo) |
|
} // if ((pa == bface.forg) && ...) |
|
} // if (bface.tt != NULL) |
|
|
|
} // while (pqueue != NULL) |
|
|
|
if (bfacearray->objects > 0) { |
|
if (fcount == 0) { |
|
printf("!! No flip is found in %ld faces.\n", bfacearray->objects); |
|
terminatetetgen(this, 2); // assert(0); |
|
} |
|
} |
|
|
|
delete bfacearray; |
|
|
|
// Un-mark top and bottom points. |
|
for (i = 0; i < toppoints->objects; i++) { |
|
parypt = (point*)fastlookup(toppoints, i); |
|
punmarktest2(*parypt); |
|
} |
|
for (i = 0; i < botpoints->objects; i++) { |
|
parypt = (point*)fastlookup(botpoints, i); |
|
punmarktest3(*parypt); |
|
} |
|
|
|
f23count = flip23count - f23count; |
|
f32count = flip32count - f32count; |
|
f44count = flip44count - f44count; |
|
totalfcount = f23count + f32count + f44count; |
|
if (b->verbose > 2) { |
|
printf(" Total %ld flips. f23(%ld), f32(%ld), f44(%ld).\n", totalfcount, f23count, |
|
f32count, f44count); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// insertpoint_cdt() Insert a new point into a CDT. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::insertpoint_cdt(point newpt, triface* searchtet, face* splitsh, face* splitseg, |
|
insertvertexflags* ivf, arraypool* cavpoints, arraypool* cavfaces, |
|
arraypool* cavshells, arraypool* newtets, arraypool* crosstets, |
|
arraypool* misfaces) { |
|
triface neightet, *parytet; |
|
face checksh, *parysh, *parysh1; |
|
face *paryseg, *paryseg1; |
|
point* parypt; |
|
int t1ver; |
|
int i; |
|
|
|
if (b->verbose > 2) { |
|
printf(" Insert point %d into CDT\n", pointmark(newpt)); |
|
} |
|
|
|
if (!insertpoint(newpt, searchtet, NULL, NULL, ivf)) { |
|
// Point is not inserted. Check ivf->iloc for reason. |
|
return 0; |
|
} |
|
|
|
for (i = 0; i < cavetetvertlist->objects; i++) { |
|
cavpoints->newindex((void**)&parypt); |
|
*parypt = *(point*)fastlookup(cavetetvertlist, i); |
|
} |
|
// Add the new point into the point list. |
|
cavpoints->newindex((void**)&parypt); |
|
*parypt = newpt; |
|
|
|
for (i = 0; i < cavebdrylist->objects; i++) { |
|
cavfaces->newindex((void**)&parytet); |
|
*parytet = *(triface*)fastlookup(cavebdrylist, i); |
|
} |
|
|
|
for (i = 0; i < caveoldtetlist->objects; i++) { |
|
crosstets->newindex((void**)&parytet); |
|
*parytet = *(triface*)fastlookup(caveoldtetlist, i); |
|
} |
|
|
|
cavetetvertlist->restart(); |
|
cavebdrylist->restart(); |
|
caveoldtetlist->restart(); |
|
|
|
// Insert the point using the cavity algorithm. |
|
delaunizecavity(cavpoints, cavfaces, cavshells, newtets, crosstets, misfaces); |
|
fillcavity(cavshells, NULL, NULL, NULL, NULL, NULL, NULL); |
|
carvecavity(crosstets, newtets, NULL); |
|
|
|
if ((splitsh != NULL) || (splitseg != NULL)) { |
|
// Insert the point into the surface mesh. |
|
sinsertvertex(newpt, splitsh, splitseg, ivf->sloc, ivf->sbowywat, 0); |
|
|
|
// Put all new subfaces into stack. |
|
for (i = 0; i < caveshbdlist->objects; i++) { |
|
// Get an old subface at edge [a, b]. |
|
parysh = (face*)fastlookup(caveshbdlist, i); |
|
spivot(*parysh, checksh); // The new subface [a, b, p]. |
|
// Do not recover a deleted new face (degenerated). |
|
if (checksh.sh[3] != NULL) { |
|
subfacstack->newindex((void**)&parysh); |
|
*parysh = checksh; |
|
} |
|
} |
|
|
|
if (splitseg != NULL) { |
|
// Queue two new subsegments in C(p) for recovery. |
|
for (i = 0; i < cavesegshlist->objects; i++) { |
|
paryseg = (face*)fastlookup(cavesegshlist, i); |
|
subsegstack->newindex((void**)&paryseg1); |
|
*paryseg1 = *paryseg; |
|
} |
|
} // if (splitseg != NULL) |
|
|
|
// Delete the old subfaces in sC(p). |
|
for (i = 0; i < caveshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshlist, i); |
|
if (checksubfaceflag) { |
|
// It is possible that this subface still connects to adjacent |
|
// tets which are not in C(p). If so, clear connections in the |
|
// adjacent tets at this subface. |
|
stpivot(*parysh, neightet); |
|
if (neightet.tet != NULL) { |
|
if (neightet.tet[4] != NULL) { |
|
// Found an adjacent tet. It must be not in C(p). |
|
tsdissolve(neightet); |
|
fsymself(neightet); |
|
tsdissolve(neightet); |
|
} |
|
} |
|
} |
|
shellfacedealloc(subfaces, parysh->sh); |
|
} |
|
if (splitseg != NULL) { |
|
// Delete the old segment in sC(p). |
|
shellfacedealloc(subsegs, splitseg->sh); |
|
} |
|
|
|
// Clear working lists. |
|
caveshlist->restart(); |
|
caveshbdlist->restart(); |
|
cavesegshlist->restart(); |
|
} // if ((splitsh != NULL) || (splitseg != NULL)) |
|
|
|
// Put all interior subfaces into stack for recovery. |
|
// They were collected in carvecavity(). |
|
// Note: Some collected subfaces may be deleted by sinsertvertex(). |
|
for (i = 0; i < caveencshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveencshlist, i); |
|
if (parysh->sh[3] != NULL) { |
|
subfacstack->newindex((void**)&parysh1); |
|
*parysh1 = *parysh; |
|
} |
|
} |
|
|
|
// Put all interior segments into stack for recovery. |
|
// They were collected in carvecavity(). |
|
// Note: Some collected segments may be deleted by sinsertvertex(). |
|
for (i = 0; i < caveencseglist->objects; i++) { |
|
paryseg = (face*)fastlookup(caveencseglist, i); |
|
if (paryseg->sh[3] != NULL) { |
|
subsegstack->newindex((void**)&paryseg1); |
|
*paryseg1 = *paryseg; |
|
} |
|
} |
|
|
|
caveencshlist->restart(); |
|
caveencseglist->restart(); |
|
|
|
return 1; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// refineregion() Refine a missing region by inserting points. // |
|
// // |
|
// 'splitsh' represents an edge of the facet to be split. It must be not a // |
|
// segment. |
|
// // |
|
// Assumption: The current mesh is a CDT and is convex. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::refineregion(face& splitsh, arraypool* cavpoints, arraypool* cavfaces, |
|
arraypool* cavshells, arraypool* newtets, arraypool* crosstets, |
|
arraypool* misfaces) { |
|
triface searchtet, spintet; |
|
face splitseg, *paryseg; |
|
point steinpt, pa, pb, refpt; |
|
insertvertexflags ivf; |
|
enum interresult dir; |
|
long baknum = points->items; |
|
int t1ver; |
|
int i; |
|
|
|
// Do not split a segment. |
|
for (i = 0; i < 3; i++) { |
|
sspivot(splitsh, splitseg); |
|
if (splitseg.sh == NULL) break; |
|
senextself(splitsh); |
|
} |
|
|
|
if (b->verbose > 2) { |
|
printf(" Refining region at edge (%d, %d, %d).\n", pointmark(sorg(splitsh)), |
|
pointmark(sdest(splitsh)), pointmark(sapex(splitsh))); |
|
} |
|
|
|
// Add the Steiner point at the barycenter of the face. |
|
pa = sorg(splitsh); |
|
pb = sdest(splitsh); |
|
// Create a new point. |
|
makepoint(&steinpt, FREEFACETVERTEX); |
|
for (i = 0; i < 3; i++) { |
|
steinpt[i] = 0.5 * (pa[i] + pb[i]); |
|
} |
|
|
|
ivf.bowywat = 1; // Use the Bowyer-Watson algorrithm. |
|
ivf.cdtflag = 1; // Only create the initial cavity. |
|
ivf.sloc = (int)ONEDGE; |
|
ivf.sbowywat = 1; |
|
ivf.assignmeshsize = b->metric; |
|
ivf.smlenflag = useinsertradius; // Return the closet mesh vertex. |
|
|
|
point2tetorg(pa, searchtet); // Start location from it. |
|
ivf.iloc = (int)OUTSIDE; |
|
|
|
ivf.rejflag = 1; // Reject it if it encroaches upon any segment. |
|
if (!insertpoint_cdt(steinpt, &searchtet, &splitsh, NULL, &ivf, cavpoints, cavfaces, cavshells, |
|
newtets, crosstets, misfaces)) { |
|
if (ivf.iloc == (int)ENCSEGMENT) { |
|
pointdealloc(steinpt); |
|
// Split an encroached segment. |
|
i = randomnation(encseglist->objects); |
|
paryseg = (face*)fastlookup(encseglist, i); |
|
splitseg = *paryseg; |
|
encseglist->restart(); |
|
|
|
// Split the segment. |
|
pa = sorg(splitseg); |
|
pb = sdest(splitseg); |
|
// Create a new point. |
|
makepoint(&steinpt, FREESEGVERTEX); |
|
for (i = 0; i < 3; i++) { |
|
steinpt[i] = 0.5 * (pa[i] + pb[i]); |
|
} |
|
point2tetorg(pa, searchtet); |
|
ivf.iloc = (int)OUTSIDE; |
|
ivf.rejflag = 0; |
|
if (!insertpoint_cdt(steinpt, &searchtet, &splitsh, &splitseg, &ivf, cavpoints, |
|
cavfaces, cavshells, newtets, crosstets, misfaces)) { |
|
terminatetetgen(this, 2); |
|
} |
|
if (useinsertradius) { |
|
save_segmentpoint_insradius(steinpt, ivf.parentpt, ivf.smlen); |
|
} |
|
st_segref_count++; |
|
if (steinerleft > 0) steinerleft--; |
|
} else { |
|
terminatetetgen(this, 2); // assert(0); |
|
} |
|
} else { |
|
if (useinsertradius) { |
|
save_facetpoint_insradius(steinpt, ivf.parentpt, ivf.smlen); |
|
} |
|
st_facref_count++; |
|
if (steinerleft > 0) steinerleft--; |
|
} |
|
|
|
while (subsegstack->objects > 0l) { |
|
// seglist is used as a stack. |
|
subsegstack->objects--; |
|
paryseg = (face*)fastlookup(subsegstack, subsegstack->objects); |
|
splitseg = *paryseg; |
|
|
|
// Check if this segment has been recovered. |
|
sstpivot1(splitseg, searchtet); |
|
if (searchtet.tet != NULL) continue; |
|
|
|
// Search the segment. |
|
dir = scoutsegment(sorg(splitseg), sdest(splitseg), &splitseg, &searchtet, &refpt, NULL); |
|
if (dir == SHAREEDGE) { |
|
// Found this segment, insert it. |
|
// Let the segment remember an adjacent tet. |
|
sstbond1(splitseg, searchtet); |
|
// Bond the segment to all tets containing it. |
|
spintet = searchtet; |
|
do { |
|
tssbond1(spintet, splitseg); |
|
fnextself(spintet); |
|
} while (spintet.tet != searchtet.tet); |
|
} else { |
|
if ((dir == ACROSSFACE) || (dir == ACROSSEDGE)) { |
|
// Split the segment. |
|
makepoint(&steinpt, FREESEGVERTEX); |
|
getsteinerptonsegment(&splitseg, refpt, steinpt); |
|
ivf.iloc = (int)OUTSIDE; |
|
ivf.rejflag = 0; |
|
if (!insertpoint_cdt(steinpt, &searchtet, &splitsh, &splitseg, &ivf, cavpoints, |
|
cavfaces, cavshells, newtets, crosstets, misfaces)) { |
|
terminatetetgen(this, 2); |
|
} |
|
if (useinsertradius) { |
|
save_segmentpoint_insradius(steinpt, ivf.parentpt, ivf.smlen); |
|
} |
|
st_segref_count++; |
|
if (steinerleft > 0) steinerleft--; |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
} |
|
} // while |
|
|
|
if (b->verbose > 2) { |
|
printf(" Added %ld Steiner points.\n", points->items - baknum); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// constrainedfacets() Recover constrained facets in a CDT. // |
|
// // |
|
// All unrecovered subfaces are queued in 'subfacestack'. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::constrainedfacets() { |
|
arraypool *tg_crosstets, *tg_topnewtets, *tg_botnewtets; |
|
arraypool *tg_topfaces, *tg_botfaces, *tg_midfaces; |
|
arraypool *tg_topshells, *tg_botshells, *tg_facfaces; |
|
arraypool *tg_toppoints, *tg_botpoints; |
|
arraypool *tg_missingshs, *tg_missingshbds, *tg_missingshverts; |
|
triface searchtet, neightet, crossedge; |
|
face searchsh, *parysh, *parysh1; |
|
face* paryseg; |
|
point* parypt; |
|
enum interresult dir; |
|
int facetcount; |
|
int success; |
|
int t1ver; |
|
int i, j; |
|
|
|
// Initialize arrays. |
|
tg_crosstets = new arraypool(sizeof(triface), 10); |
|
tg_topnewtets = new arraypool(sizeof(triface), 10); |
|
tg_botnewtets = new arraypool(sizeof(triface), 10); |
|
tg_topfaces = new arraypool(sizeof(triface), 10); |
|
tg_botfaces = new arraypool(sizeof(triface), 10); |
|
tg_midfaces = new arraypool(sizeof(triface), 10); |
|
tg_toppoints = new arraypool(sizeof(point), 8); |
|
tg_botpoints = new arraypool(sizeof(point), 8); |
|
tg_facfaces = new arraypool(sizeof(face), 10); |
|
tg_topshells = new arraypool(sizeof(face), 10); |
|
tg_botshells = new arraypool(sizeof(face), 10); |
|
tg_missingshs = new arraypool(sizeof(face), 10); |
|
tg_missingshbds = new arraypool(sizeof(face), 10); |
|
tg_missingshverts = new arraypool(sizeof(point), 8); |
|
// This is a global array used by refineregion(). |
|
encseglist = new arraypool(sizeof(face), 4); |
|
|
|
facetcount = 0; |
|
|
|
while (subfacstack->objects > 0l) { |
|
|
|
subfacstack->objects--; |
|
parysh = (face*)fastlookup(subfacstack, subfacstack->objects); |
|
searchsh = *parysh; |
|
|
|
if (searchsh.sh[3] == NULL) continue; // It is dead. |
|
if (isshtet(searchsh)) continue; // It is recovered. |
|
|
|
// Collect all unrecovered subfaces which are co-facet. |
|
smarktest(searchsh); |
|
tg_facfaces->newindex((void**)&parysh); |
|
*parysh = searchsh; |
|
for (i = 0; i < tg_facfaces->objects; i++) { |
|
parysh = (face*)fastlookup(tg_facfaces, i); |
|
for (j = 0; j < 3; j++) { |
|
if (!isshsubseg(*parysh)) { |
|
spivot(*parysh, searchsh); |
|
if (!smarktested(searchsh)) { |
|
if (!isshtet(searchsh)) { |
|
smarktest(searchsh); |
|
tg_facfaces->newindex((void**)&parysh1); |
|
*parysh1 = searchsh; |
|
} |
|
} |
|
} |
|
senextself(*parysh); |
|
} // j |
|
} // i |
|
// Have found all facet subfaces. Unmark them. |
|
for (i = 0; i < tg_facfaces->objects; i++) { |
|
parysh = (face*)fastlookup(tg_facfaces, i); |
|
sunmarktest(*parysh); |
|
} |
|
|
|
if (b->verbose > 1) { |
|
printf(" Recovering facet #%d: %ld subfaces.\n", facetcount + 1, |
|
tg_facfaces->objects); |
|
} |
|
facetcount++; |
|
|
|
while (tg_facfaces->objects > 0l) { |
|
|
|
tg_facfaces->objects--; |
|
parysh = (face*)fastlookup(tg_facfaces, tg_facfaces->objects); |
|
searchsh = *parysh; |
|
|
|
if (searchsh.sh[3] == NULL) continue; // It is dead. |
|
if (isshtet(searchsh)) continue; // It is recovered. |
|
|
|
searchtet.tet = NULL; |
|
if (scoutsubface(&searchsh, &searchtet, 1)) continue; |
|
|
|
// The subface is missing. Form the missing region. |
|
// Re-use 'tg_crosstets' for 'adjtets'. |
|
formregion(&searchsh, tg_missingshs, tg_missingshbds, tg_missingshverts); |
|
|
|
int searchflag = scoutcrossedge(searchtet, tg_missingshbds, tg_missingshs); |
|
if (searchflag > 0) { |
|
// Save this crossing edge, will be used by fillcavity(). |
|
crossedge = searchtet; |
|
// Form a cavity of crossing tets. |
|
success = formcavity(&searchtet, tg_missingshs, tg_crosstets, tg_topfaces, |
|
tg_botfaces, tg_toppoints, tg_botpoints); |
|
if (success) { |
|
if (!b->flipinsert) { |
|
// Tetrahedralize the top part. Re-use 'tg_midfaces'. |
|
delaunizecavity(tg_toppoints, tg_topfaces, tg_topshells, tg_topnewtets, |
|
tg_crosstets, tg_midfaces); |
|
// Tetrahedralize the bottom part. Re-use 'tg_midfaces'. |
|
delaunizecavity(tg_botpoints, tg_botfaces, tg_botshells, tg_botnewtets, |
|
tg_crosstets, tg_midfaces); |
|
// Fill the cavity with new tets. |
|
success = fillcavity(tg_topshells, tg_botshells, tg_midfaces, tg_missingshs, |
|
tg_topnewtets, tg_botnewtets, &crossedge); |
|
if (success) { |
|
// Cavity is remeshed. Delete old tets and outer new tets. |
|
carvecavity(tg_crosstets, tg_topnewtets, tg_botnewtets); |
|
} else { |
|
restorecavity(tg_crosstets, tg_topnewtets, tg_botnewtets, |
|
tg_missingshbds); |
|
} |
|
} else { |
|
// Use the flip algorithm of Shewchuk to recover the subfaces. |
|
flipinsertfacet(tg_crosstets, tg_toppoints, tg_botpoints, |
|
tg_missingshverts); |
|
// Put all subfaces in R back to tg_facfaces. |
|
for (i = 0; i < tg_missingshs->objects; i++) { |
|
parysh = (face*)fastlookup(tg_missingshs, i); |
|
tg_facfaces->newindex((void**)&parysh1); |
|
*parysh1 = *parysh; |
|
} |
|
success = 1; |
|
// Clear working lists. |
|
tg_crosstets->restart(); |
|
tg_topfaces->restart(); |
|
tg_botfaces->restart(); |
|
tg_toppoints->restart(); |
|
tg_botpoints->restart(); |
|
} // b->flipinsert |
|
|
|
if (success) { |
|
// Recover interior subfaces. |
|
for (i = 0; i < caveencshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveencshlist, i); |
|
if (!scoutsubface(parysh, &searchtet, 1)) { |
|
// Add this face at the end of the list, so it will be |
|
// processed immediately. |
|
tg_facfaces->newindex((void**)&parysh1); |
|
*parysh1 = *parysh; |
|
} |
|
} |
|
caveencshlist->restart(); |
|
// Recover interior segments. This should always be recovered. |
|
for (i = 0; i < caveencseglist->objects; i++) { |
|
paryseg = (face*)fastlookup(caveencseglist, i); |
|
dir = scoutsegment(sorg(*paryseg), sdest(*paryseg), paryseg, &searchtet, |
|
NULL, NULL); |
|
if (dir != SHAREEDGE) { |
|
terminatetetgen(this, 2); |
|
} |
|
// Insert this segment. |
|
// Let the segment remember an adjacent tet. |
|
sstbond1(*paryseg, searchtet); |
|
// Bond the segment to all tets containing it. |
|
neightet = searchtet; |
|
do { |
|
tssbond1(neightet, *paryseg); |
|
fnextself(neightet); |
|
} while (neightet.tet != searchtet.tet); |
|
} |
|
caveencseglist->restart(); |
|
} // success - remesh cavity |
|
} // success - form cavity |
|
else { |
|
terminatetetgen(this, 2); // Report a bug. |
|
} // Not success - form cavity |
|
} else { |
|
// Put all subfaces in R back to tg_facfaces. |
|
for (i = 0; i < tg_missingshs->objects; i++) { |
|
parysh = (face*)fastlookup(tg_missingshs, i); |
|
tg_facfaces->newindex((void**)&parysh1); |
|
*parysh1 = *parysh; |
|
} |
|
if (searchflag != -1) { |
|
// Some edge(s) in the missing regions were flipped. |
|
success = 1; |
|
} else { |
|
restorecavity(tg_crosstets, tg_topnewtets, tg_botnewtets, |
|
tg_missingshbds); // Only remove fake segments. |
|
// Choose an edge to split (set in recentsh) |
|
recentsh = searchsh; |
|
success = 0; // Do refineregion(); |
|
} |
|
} // if (scoutcrossedge) |
|
|
|
// Unmarktest all points of the missing region. |
|
for (i = 0; i < tg_missingshverts->objects; i++) { |
|
parypt = (point*)fastlookup(tg_missingshverts, i); |
|
punmarktest(*parypt); |
|
} |
|
tg_missingshverts->restart(); |
|
tg_missingshbds->restart(); |
|
tg_missingshs->restart(); |
|
|
|
if (!success) { |
|
// The missing region can not be recovered. Refine it. |
|
refineregion(recentsh, tg_toppoints, tg_topfaces, tg_topshells, tg_topnewtets, |
|
tg_crosstets, tg_midfaces); |
|
} |
|
} // while (tg_facfaces->objects) |
|
|
|
} // while ((subfacstack->objects) |
|
|
|
// Accumulate the dynamic memory. |
|
totalworkmemory += |
|
(tg_crosstets->totalmemory + tg_topnewtets->totalmemory + tg_botnewtets->totalmemory + |
|
tg_topfaces->totalmemory + tg_botfaces->totalmemory + tg_midfaces->totalmemory + |
|
tg_toppoints->totalmemory + tg_botpoints->totalmemory + tg_facfaces->totalmemory + |
|
tg_topshells->totalmemory + tg_botshells->totalmemory + tg_missingshs->totalmemory + |
|
tg_missingshbds->totalmemory + tg_missingshverts->totalmemory + encseglist->totalmemory); |
|
|
|
// Delete arrays. |
|
delete tg_crosstets; |
|
delete tg_topnewtets; |
|
delete tg_botnewtets; |
|
delete tg_topfaces; |
|
delete tg_botfaces; |
|
delete tg_midfaces; |
|
delete tg_toppoints; |
|
delete tg_botpoints; |
|
delete tg_facfaces; |
|
delete tg_topshells; |
|
delete tg_botshells; |
|
delete tg_missingshs; |
|
delete tg_missingshbds; |
|
delete tg_missingshverts; |
|
delete encseglist; |
|
encseglist = NULL; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// constraineddelaunay() Create a constrained Delaunay tetrahedralization.// |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::constraineddelaunay(clock_t& tv) { |
|
face searchsh, *parysh; |
|
face searchseg, *paryseg; |
|
int s, i; |
|
|
|
// Statistics. |
|
long bakfillregioncount; |
|
long bakcavitycount, bakcavityexpcount; |
|
long bakseg_ref_count; |
|
|
|
if (!b->quiet) { |
|
printf("Constrained Delaunay...\n"); |
|
} |
|
|
|
makesegmentendpointsmap(); |
|
makefacetverticesmap(); |
|
|
|
if (b->verbose) { |
|
printf(" Delaunizing segments.\n"); |
|
} |
|
|
|
checksubsegflag = 1; |
|
|
|
// Put all segments into the list (in random order). |
|
subsegs->traversalinit(); |
|
for (i = 0; i < subsegs->items; i++) { |
|
s = randomnation(i + 1); |
|
// Move the s-th seg to the i-th. |
|
subsegstack->newindex((void**)&paryseg); |
|
*paryseg = *(face*)fastlookup(subsegstack, s); |
|
// Put i-th seg to be the s-th. |
|
searchseg.sh = shellfacetraverse(subsegs); |
|
// sinfect(searchseg); // Only save it once. |
|
paryseg = (face*)fastlookup(subsegstack, s); |
|
*paryseg = searchseg; |
|
} |
|
|
|
// Recover non-Delaunay segments. |
|
delaunizesegments(); |
|
|
|
if (b->verbose) { |
|
printf(" Inserted %ld Steiner points.\n", st_segref_count); |
|
} |
|
|
|
tv = clock(); |
|
|
|
if (b->verbose) { |
|
printf(" Constraining facets.\n"); |
|
} |
|
|
|
// Subfaces will be introduced. |
|
checksubfaceflag = 1; |
|
|
|
bakfillregioncount = fillregioncount; |
|
bakcavitycount = cavitycount; |
|
bakcavityexpcount = cavityexpcount; |
|
bakseg_ref_count = st_segref_count; |
|
|
|
// Randomly order the subfaces. |
|
subfaces->traversalinit(); |
|
for (i = 0; i < subfaces->items; i++) { |
|
s = randomnation(i + 1); |
|
// Move the s-th subface to the i-th. |
|
subfacstack->newindex((void**)&parysh); |
|
*parysh = *(face*)fastlookup(subfacstack, s); |
|
// Put i-th subface to be the s-th. |
|
searchsh.sh = shellfacetraverse(subfaces); |
|
parysh = (face*)fastlookup(subfacstack, s); |
|
*parysh = searchsh; |
|
} |
|
|
|
// Recover facets. |
|
constrainedfacets(); |
|
|
|
if (b->verbose) { |
|
if (fillregioncount > bakfillregioncount) { |
|
printf(" Remeshed %ld regions.\n", fillregioncount - bakfillregioncount); |
|
} |
|
if (cavitycount > bakcavitycount) { |
|
printf(" Remeshed %ld cavities", cavitycount - bakcavitycount); |
|
if (cavityexpcount - bakcavityexpcount) { |
|
printf(" (%ld enlarged)", cavityexpcount - bakcavityexpcount); |
|
} |
|
printf(".\n"); |
|
} |
|
if (st_segref_count + st_facref_count - bakseg_ref_count > 0) { |
|
printf(" Inserted %ld (%ld, %ld) refine points.\n", |
|
st_segref_count + st_facref_count - bakseg_ref_count, |
|
st_segref_count - bakseg_ref_count, st_facref_count); |
|
} |
|
} |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// constrained_cxx ////////////////////////////////////////////////////////// |
|
|
|
//// steiner_cxx ////////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// checkflipeligibility() A call back function for boundary recovery. // |
|
// // |
|
// 'fliptype' indicates which elementary flip will be performed: 1 : 2-to-3, // |
|
// and 2 : 3-to-2, respectively. // |
|
// // |
|
// 'pa, ..., pe' are the vertices involved in this flip, where [a,b,c] is // |
|
// the flip face, and [d,e] is the flip edge. NOTE: 'pc' may be 'dummypoint',// |
|
// other points must not be 'dummypoint'. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::checkflipeligibility(int fliptype, point pa, point pb, point pc, point pd, point pe, |
|
int level, int edgepivot, flipconstraints* fc) { |
|
point tmppts[3]; |
|
enum interresult dir; |
|
int types[2], poss[4]; |
|
int intflag; |
|
int rejflag = 0; |
|
int i; |
|
|
|
if (fc->seg[0] != NULL) { |
|
// A constraining edge is given (e.g., for edge recovery). |
|
if (fliptype == 1) { |
|
// A 2-to-3 flip: [a,b,c] => [e,d,a], [e,d,b], [e,d,c]. |
|
tmppts[0] = pa; |
|
tmppts[1] = pb; |
|
tmppts[2] = pc; |
|
for (i = 0; i < 3 && !rejflag; i++) { |
|
if (tmppts[i] != dummypoint) { |
|
// Test if the face [e,d,#] intersects the edge. |
|
intflag = tri_edge_test(pe, pd, tmppts[i], fc->seg[0], fc->seg[1], NULL, 1, |
|
types, poss); |
|
if (intflag == 2) { |
|
// They intersect at a single point. |
|
dir = (enum interresult)types[0]; |
|
if (dir == ACROSSFACE) { |
|
// The interior of [e,d,#] intersect the segment. |
|
rejflag = 1; |
|
} else if (dir == ACROSSEDGE) { |
|
if (poss[0] == 0) { |
|
// The interior of [e,d] intersect the segment. |
|
// Since [e,d] is the newly created edge. Reject this flip. |
|
rejflag = 1; |
|
} |
|
} |
|
} else if (intflag == 4) { |
|
// They may intersect at either a point or a line segment. |
|
dir = (enum interresult)types[0]; |
|
if (dir == ACROSSEDGE) { |
|
if (poss[0] == 0) { |
|
// The interior of [e,d] intersect the segment. |
|
// Since [e,d] is the newly created edge. Reject this flip. |
|
rejflag = 1; |
|
} |
|
} |
|
} |
|
} // if (tmppts[0] != dummypoint) |
|
} // i |
|
} else if (fliptype == 2) { |
|
// A 3-to-2 flip: [e,d,a], [e,d,b], [e,d,c] => [a,b,c] |
|
if (pc != dummypoint) { |
|
// Check if the new face [a,b,c] intersect the edge in its interior. |
|
intflag = tri_edge_test(pa, pb, pc, fc->seg[0], fc->seg[1], NULL, 1, types, poss); |
|
if (intflag == 2) { |
|
// They intersect at a single point. |
|
dir = (enum interresult)types[0]; |
|
if (dir == ACROSSFACE) { |
|
// The interior of [a,b,c] intersect the segment. |
|
rejflag = 1; // Do not flip. |
|
} |
|
} else if (intflag == 4) { |
|
// [a,b,c] is coplanar with the edge. |
|
dir = (enum interresult)types[0]; |
|
if (dir == ACROSSEDGE) { |
|
// The boundary of [a,b,c] intersect the segment. |
|
rejflag = 1; // Do not flip. |
|
} |
|
} |
|
} // if (pc != dummypoint) |
|
} |
|
} // if (fc->seg[0] != NULL) |
|
|
|
if ((fc->fac[0] != NULL) && !rejflag) { |
|
// A constraining face is given (e.g., for face recovery). |
|
if (fliptype == 1) { |
|
// A 2-to-3 flip. |
|
// Test if the new edge [e,d] intersects the face. |
|
intflag = |
|
tri_edge_test(fc->fac[0], fc->fac[1], fc->fac[2], pe, pd, NULL, 1, types, poss); |
|
if (intflag == 2) { |
|
// They intersect at a single point. |
|
dir = (enum interresult)types[0]; |
|
if (dir == ACROSSFACE) { |
|
rejflag = 1; |
|
} else if (dir == ACROSSEDGE) { |
|
rejflag = 1; |
|
} |
|
} else if (intflag == 4) { |
|
// The edge [e,d] is coplanar with the face. |
|
// There may be two intersections. |
|
for (i = 0; i < 2 && !rejflag; i++) { |
|
dir = (enum interresult)types[i]; |
|
if (dir == ACROSSFACE) { |
|
rejflag = 1; |
|
} else if (dir == ACROSSEDGE) { |
|
rejflag = 1; |
|
} |
|
} |
|
} |
|
} // if (fliptype == 1) |
|
} // if (fc->fac[0] != NULL) |
|
|
|
if ((fc->remvert != NULL) && !rejflag) { |
|
// The vertex is going to be removed. Do not create a new edge which |
|
// contains this vertex. |
|
if (fliptype == 1) { |
|
// A 2-to-3 flip. |
|
if ((pd == fc->remvert) || (pe == fc->remvert)) { |
|
rejflag = 1; |
|
} |
|
} |
|
} |
|
|
|
if (fc->remove_large_angle && !rejflag) { |
|
// Remove a large dihedral angle. Do not create a new small angle. |
|
REAL cosmaxd = 0, diff; |
|
if (fliptype == 1) { |
|
// We assume that neither 'a' nor 'b' is dummypoint. |
|
// A 2-to-3 flip: [a,b,c] => [e,d,a], [e,d,b], [e,d,c]. |
|
// The new tet [e,d,a,b] will be flipped later. Only two new tets: |
|
// [e,d,b,c] and [e,d,c,a] need to be checked. |
|
if ((pc != dummypoint) && (pe != dummypoint) && (pd != dummypoint)) { |
|
// Get the largest dihedral angle of [e,d,b,c]. |
|
tetalldihedral(pe, pd, pb, pc, NULL, &cosmaxd, NULL); |
|
diff = cosmaxd - fc->cosdihed_in; |
|
if (fabs(diff / fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding. |
|
if (diff <= 0) { // if (cosmaxd <= fc->cosdihed_in) { |
|
rejflag = 1; |
|
} else { |
|
// Record the largest new angle. |
|
if (cosmaxd < fc->cosdihed_out) { |
|
fc->cosdihed_out = cosmaxd; |
|
} |
|
// Get the largest dihedral angle of [e,d,c,a]. |
|
tetalldihedral(pe, pd, pc, pa, NULL, &cosmaxd, NULL); |
|
diff = cosmaxd - fc->cosdihed_in; |
|
if (fabs(diff / fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding. |
|
if (diff <= 0) { // if (cosmaxd <= fc->cosdihed_in) { |
|
rejflag = 1; |
|
} else { |
|
// Record the largest new angle. |
|
if (cosmaxd < fc->cosdihed_out) { |
|
fc->cosdihed_out = cosmaxd; |
|
} |
|
} |
|
} |
|
} // if (pc != dummypoint && ...) |
|
} else if (fliptype == 2) { |
|
// A 3-to-2 flip: [e,d,a], [e,d,b], [e,d,c] => [a,b,c] |
|
// We assume that neither 'e' nor 'd' is dummypoint. |
|
if (level == 0) { |
|
// Both new tets [a,b,c,d] and [b,a,c,e] are new tets. |
|
if ((pa != dummypoint) && (pb != dummypoint) && (pc != dummypoint)) { |
|
// Get the largest dihedral angle of [a,b,c,d]. |
|
tetalldihedral(pa, pb, pc, pd, NULL, &cosmaxd, NULL); |
|
diff = cosmaxd - fc->cosdihed_in; |
|
if (fabs(diff / fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding |
|
if (diff <= 0) { // if (cosmaxd <= fc->cosdihed_in) { |
|
rejflag = 1; |
|
} else { |
|
// Record the largest new angle. |
|
if (cosmaxd < fc->cosdihed_out) { |
|
fc->cosdihed_out = cosmaxd; |
|
} |
|
// Get the largest dihedral angle of [b,a,c,e]. |
|
tetalldihedral(pb, pa, pc, pe, NULL, &cosmaxd, NULL); |
|
diff = cosmaxd - fc->cosdihed_in; |
|
if (fabs(diff / fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding |
|
if (diff <= 0) { // if (cosmaxd <= fc->cosdihed_in) { |
|
rejflag = 1; |
|
} else { |
|
// Record the largest new angle. |
|
if (cosmaxd < fc->cosdihed_out) { |
|
fc->cosdihed_out = cosmaxd; |
|
} |
|
} |
|
} |
|
} |
|
} else { // level > 0 |
|
if (edgepivot == 1) { |
|
// The new tet [a,b,c,d] will be flipped. Only check [b,a,c,e]. |
|
if ((pa != dummypoint) && (pb != dummypoint) && (pc != dummypoint)) { |
|
// Get the largest dihedral angle of [b,a,c,e]. |
|
tetalldihedral(pb, pa, pc, pe, NULL, &cosmaxd, NULL); |
|
diff = cosmaxd - fc->cosdihed_in; |
|
if (fabs(diff / fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding |
|
if (diff <= 0) { // if (cosmaxd <= fc->cosdihed_in) { |
|
rejflag = 1; |
|
} else { |
|
// Record the largest new angle. |
|
if (cosmaxd < fc->cosdihed_out) { |
|
fc->cosdihed_out = cosmaxd; |
|
} |
|
} |
|
} |
|
} else { |
|
// The new tet [b,a,c,e] will be flipped. Only check [a,b,c,d]. |
|
if ((pa != dummypoint) && (pb != dummypoint) && (pc != dummypoint)) { |
|
// Get the largest dihedral angle of [b,a,c,e]. |
|
tetalldihedral(pa, pb, pc, pd, NULL, &cosmaxd, NULL); |
|
diff = cosmaxd - fc->cosdihed_in; |
|
if (fabs(diff / fc->cosdihed_in) < b->epsilon) diff = 0.0; // Rounding |
|
if (diff <= 0) { // if (cosmaxd <= fc->cosdihed_in) { |
|
rejflag = 1; |
|
} else { |
|
// Record the largest new angle. |
|
if (cosmaxd < fc->cosdihed_out) { |
|
fc->cosdihed_out = cosmaxd; |
|
} |
|
} |
|
} |
|
} // edgepivot |
|
} // level |
|
} |
|
} |
|
|
|
return rejflag; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// removeedgebyflips() Attempt to remove an edge by flips. // |
|
// // |
|
// 'flipedge' is a non-convex or flat edge [a,b,#,#] to be removed. // |
|
// // |
|
// The return value is a positive integer, it indicates whether the edge is // |
|
// removed or not. A value "2" means the edge is removed, otherwise, the // |
|
// edge is not removed and the value (must >= 3) is the current number of // |
|
// tets in the edge star. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::removeedgebyflips(triface* flipedge, flipconstraints* fc) { |
|
triface *abtets, spintet; |
|
int t1ver; |
|
int n, nn, i; |
|
|
|
if (checksubsegflag) { |
|
// Do not flip a segment. |
|
if (issubseg(*flipedge)) { |
|
if (fc->collectencsegflag) { |
|
face checkseg, *paryseg; |
|
tsspivot1(*flipedge, checkseg); |
|
if (!sinfected(checkseg)) { |
|
// Queue this segment in list. |
|
sinfect(checkseg); |
|
caveencseglist->newindex((void**)&paryseg); |
|
*paryseg = checkseg; |
|
} |
|
} |
|
return 0; |
|
} |
|
} |
|
|
|
// Count the number of tets at edge [a,b]. |
|
n = 0; |
|
spintet = *flipedge; |
|
while (1) { |
|
n++; |
|
fnextself(spintet); |
|
if (spintet.tet == flipedge->tet) break; |
|
} |
|
if (n < 3) { |
|
// It is only possible when the mesh contains inverted tetrahedra. |
|
terminatetetgen(this, 2); // Report a bug |
|
} |
|
|
|
if ((b->flipstarsize > 0) && (n > b->flipstarsize)) { |
|
// The star size exceeds the limit. |
|
return 0; // Do not flip it. |
|
} |
|
|
|
// Allocate spaces. |
|
abtets = new triface[n]; |
|
// Collect the tets at edge [a,b]. |
|
spintet = *flipedge; |
|
i = 0; |
|
while (1) { |
|
abtets[i] = spintet; |
|
setelemcounter(abtets[i], 1); |
|
i++; |
|
fnextself(spintet); |
|
if (spintet.tet == flipedge->tet) break; |
|
} |
|
|
|
// Try to flip the edge (level = 0, edgepivot = 0). |
|
nn = flipnm(abtets, n, 0, 0, fc); |
|
|
|
if (nn > 2) { |
|
// Edge is not flipped. Unmarktest the remaining tets in Star(ab). |
|
for (i = 0; i < nn; i++) { |
|
setelemcounter(abtets[i], 0); |
|
} |
|
// Restore the input edge (needed by Lawson's flip). |
|
*flipedge = abtets[0]; |
|
} |
|
|
|
// Release the temporary allocated spaces. |
|
// NOTE: fc->unflip must be 0. |
|
int bakunflip = fc->unflip; |
|
fc->unflip = 0; |
|
flipnm_post(abtets, n, nn, 0, fc); |
|
fc->unflip = bakunflip; |
|
|
|
delete[] abtets; |
|
|
|
return nn; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// removefacebyflips() Remove a face by flips. // |
|
// // |
|
// Return 1 if the face is removed. Otherwise, return 0. // |
|
// // |
|
// ASSUMPTIONS: // |
|
// - 'flipface' must not be a subface. // |
|
// - 'flipface' must not be a hull face. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::removefacebyflips(triface* flipface, flipconstraints* fc) { |
|
triface fliptets[3], flipedge; |
|
point pa, pb, pc, pd, pe; |
|
REAL ori; |
|
int reducflag = 0; |
|
|
|
fliptets[0] = *flipface; |
|
fsym(*flipface, fliptets[1]); |
|
pa = org(fliptets[0]); |
|
pb = dest(fliptets[0]); |
|
pc = apex(fliptets[0]); |
|
pd = oppo(fliptets[0]); |
|
pe = oppo(fliptets[1]); |
|
|
|
ori = orient3d(pa, pb, pd, pe); |
|
if (ori > 0) { |
|
ori = orient3d(pb, pc, pd, pe); |
|
if (ori > 0) { |
|
ori = orient3d(pc, pa, pd, pe); |
|
if (ori > 0) { |
|
// Found a 2-to-3 flip. |
|
reducflag = 1; |
|
} else { |
|
eprev(*flipface, flipedge); // [c,a] |
|
} |
|
} else { |
|
enext(*flipface, flipedge); // [b,c] |
|
} |
|
} else { |
|
flipedge = *flipface; // [a,b] |
|
} |
|
|
|
if (reducflag) { |
|
// A 2-to-3 flip is found. |
|
flip23(fliptets, 0, fc); |
|
return 1; |
|
} else { |
|
// Try to flip the selected edge of this face. |
|
if (removeedgebyflips(&flipedge, fc) == 2) { |
|
return 1; |
|
} |
|
} |
|
|
|
// Face is not removed. |
|
return 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// recoveredge() Recover an edge in current tetrahedralization. // |
|
// // |
|
// If the edge is recovered, 'searchtet' returns a tet containing the edge. // |
|
// // |
|
// This edge may intersect a set of faces and edges in the mesh. All these // |
|
// faces or edges are needed to be removed. // |
|
// // |
|
// If the parameter 'fullsearch' is set, it tries to flip any face or edge // |
|
// that intersects the recovering edge. Otherwise, only the face or edge // |
|
// which is visible by 'startpt' is tried. // |
|
// // |
|
// The parameter 'sedge' is used to report self-intersection. If it is not // |
|
// a NULL, it is EITHER a segment OR a subface that contains this edge. // |
|
// // |
|
// Note that this routine assumes that the tetrahedralization is convex. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::recoveredgebyflips(point startpt, point endpt, face* sedge, triface* searchtet, |
|
int fullsearch) { |
|
flipconstraints fc; |
|
enum interresult dir; |
|
|
|
fc.seg[0] = startpt; |
|
fc.seg[1] = endpt; |
|
fc.checkflipeligibility = 1; |
|
|
|
// The mainloop of the edge reocvery. |
|
while (1) { // Loop I |
|
|
|
// Search the edge from 'startpt'. |
|
point2tetorg(startpt, *searchtet); |
|
dir = finddirection(searchtet, endpt); |
|
if (dir == ACROSSVERT) { |
|
if (dest(*searchtet) == endpt) { |
|
return 1; // Edge is recovered. |
|
} else { |
|
if (sedge) { |
|
return report_selfint_edge(startpt, endpt, sedge, searchtet, dir); |
|
} else { |
|
return 0; |
|
} |
|
} |
|
} |
|
|
|
// The edge is missing. |
|
|
|
// Try to remove the first intersecting face/edge. |
|
enextesymself(*searchtet); // Go to the opposite face. |
|
if (dir == ACROSSFACE) { |
|
if (checksubfaceflag) { |
|
if (issubface(*searchtet)) { |
|
if (sedge) { |
|
return report_selfint_edge(startpt, endpt, sedge, searchtet, dir); |
|
} else { |
|
return 0; // Cannot flip a subface. |
|
} |
|
} |
|
} |
|
// Try to flip a crossing face. |
|
if (removefacebyflips(searchtet, &fc)) { |
|
continue; |
|
} |
|
} else if (dir == ACROSSEDGE) { |
|
if (checksubsegflag) { |
|
if (issubseg(*searchtet)) { |
|
if (sedge) { |
|
return report_selfint_edge(startpt, endpt, sedge, searchtet, dir); |
|
} else { |
|
return 0; // Cannot flip a segment. |
|
} |
|
} |
|
} |
|
// Try to flip an intersecting edge. |
|
if (removeedgebyflips(searchtet, &fc) == 2) { |
|
continue; |
|
} |
|
} |
|
|
|
// The edge is missing. |
|
|
|
if (fullsearch) { |
|
// Try to flip one of the faces/edges which intersects the edge. |
|
triface neightet, spintet; |
|
point pa, pb, pc, pd; |
|
badface bakface; |
|
enum interresult dir1; |
|
int types[2], poss[4], pos = 0; |
|
int success = 0; |
|
int t1ver; |
|
int i, j; |
|
|
|
// Loop through the sequence of intersecting faces/edges from |
|
// 'startpt' to 'endpt'. |
|
point2tetorg(startpt, *searchtet); |
|
dir = finddirection(searchtet, endpt); |
|
|
|
// Go to the face/edge intersecting the searching edge. |
|
enextesymself(*searchtet); // Go to the opposite face. |
|
// This face/edge has been tried in previous step. |
|
|
|
while (1) { // Loop I-I |
|
|
|
// Find the next intersecting face/edge. |
|
fsymself(*searchtet); |
|
if (dir == ACROSSFACE) { |
|
neightet = *searchtet; |
|
j = (neightet.ver & 3); // j is the current face number. |
|
for (i = j + 1; i < j + 4; i++) { |
|
neightet.ver = (i % 4); |
|
pa = org(neightet); |
|
pb = dest(neightet); |
|
pc = apex(neightet); |
|
pd = oppo(neightet); // The above point. |
|
if (tri_edge_test(pa, pb, pc, startpt, endpt, pd, 1, types, poss)) { |
|
dir = (enum interresult)types[0]; |
|
pos = poss[0]; |
|
break; |
|
} else { |
|
dir = DISJOINT; |
|
pos = 0; |
|
} |
|
} // i |
|
// There must be an intersection face/edge. |
|
if (dir == DISJOINT) { |
|
terminatetetgen(this, 2); |
|
} |
|
} else if (dir == ACROSSEDGE) { |
|
while (1) { // Loop I-I-I |
|
// Check the two opposite faces (of the edge) in 'searchtet'. |
|
for (i = 0; i < 2; i++) { |
|
if (i == 0) { |
|
enextesym(*searchtet, neightet); |
|
} else { |
|
eprevesym(*searchtet, neightet); |
|
} |
|
pa = org(neightet); |
|
pb = dest(neightet); |
|
pc = apex(neightet); |
|
pd = oppo(neightet); // The above point. |
|
if (tri_edge_test(pa, pb, pc, startpt, endpt, pd, 1, types, poss)) { |
|
dir = (enum interresult)types[0]; |
|
pos = poss[0]; |
|
break; // for loop |
|
} else { |
|
dir = DISJOINT; |
|
pos = 0; |
|
} |
|
} // i |
|
if (dir != DISJOINT) { |
|
// Find an intersection face/edge. |
|
break; // Loop I-I-I |
|
} |
|
// No intersection. Rotate to the next tet at the edge. |
|
fnextself(*searchtet); |
|
} // while (1) // Loop I-I-I |
|
} else { |
|
terminatetetgen(this, 2); // Report a bug |
|
} |
|
|
|
// Adjust to the intersecting edge/vertex. |
|
for (i = 0; i < pos; i++) { |
|
enextself(neightet); |
|
} |
|
|
|
if (dir == SHAREVERT) { |
|
// Check if we have reached the 'endpt'. |
|
pd = org(neightet); |
|
if (pd == endpt) { |
|
// Failed to recover the edge. |
|
break; // Loop I-I |
|
} else { |
|
terminatetetgen(this, 2); // Report a bug |
|
} |
|
} |
|
|
|
// The next to be flipped face/edge. |
|
*searchtet = neightet; |
|
|
|
// Bakup this face (tetrahedron). |
|
bakface.forg = org(*searchtet); |
|
bakface.fdest = dest(*searchtet); |
|
bakface.fapex = apex(*searchtet); |
|
bakface.foppo = oppo(*searchtet); |
|
|
|
// Try to flip this intersecting face/edge. |
|
if (dir == ACROSSFACE) { |
|
if (checksubfaceflag) { |
|
if (issubface(*searchtet)) { |
|
if (sedge) { |
|
return report_selfint_edge(startpt, endpt, sedge, searchtet, dir); |
|
} else { |
|
return 0; // Cannot flip a subface. |
|
} |
|
} |
|
} |
|
if (removefacebyflips(searchtet, &fc)) { |
|
success = 1; |
|
break; // Loop I-I |
|
} |
|
} else if (dir == ACROSSEDGE) { |
|
if (checksubsegflag) { |
|
if (issubseg(*searchtet)) { |
|
if (sedge) { |
|
return report_selfint_edge(startpt, endpt, sedge, searchtet, dir); |
|
} else { |
|
return 0; // Cannot flip a segment. |
|
} |
|
} |
|
} |
|
if (removeedgebyflips(searchtet, &fc) == 2) { |
|
success = 1; |
|
break; // Loop I-I |
|
} |
|
} else if (dir == ACROSSVERT) { |
|
if (sedge) { |
|
// return report_selfint_edge(startpt, endpt, sedge, searchtet, dir); |
|
terminatetetgen(this, 2); |
|
} else { |
|
return 0; |
|
} |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
|
|
// The face/edge is not flipped. |
|
if ((searchtet->tet == NULL) || (org(*searchtet) != bakface.forg) || |
|
(dest(*searchtet) != bakface.fdest) || (apex(*searchtet) != bakface.fapex) || |
|
(oppo(*searchtet) != bakface.foppo)) { |
|
// 'searchtet' was flipped. We must restore it. |
|
point2tetorg(bakface.forg, *searchtet); |
|
dir1 = finddirection(searchtet, bakface.fdest); |
|
if (dir1 == ACROSSVERT) { |
|
if (dest(*searchtet) == bakface.fdest) { |
|
spintet = *searchtet; |
|
while (1) { |
|
if (apex(spintet) == bakface.fapex) { |
|
// Found the face. |
|
*searchtet = spintet; |
|
break; |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet->tet) { |
|
searchtet->tet = NULL; |
|
break; // Not find. |
|
} |
|
} // while (1) |
|
if (searchtet->tet != NULL) { |
|
if (oppo(*searchtet) != bakface.foppo) { |
|
fsymself(*searchtet); |
|
if (oppo(*searchtet) != bakface.foppo) { |
|
// The original (intersecting) tet has been flipped. |
|
searchtet->tet = NULL; |
|
break; // Not find. |
|
} |
|
} |
|
} |
|
} else { |
|
searchtet->tet = NULL; // Not find. |
|
} |
|
} else { |
|
searchtet->tet = NULL; // Not find. |
|
} |
|
if (searchtet->tet == NULL) { |
|
success = 0; // This face/edge has been destroyed. |
|
break; // Loop I-I |
|
} |
|
} |
|
} // while (1) // Loop I-I |
|
|
|
if (success) { |
|
// One of intersecting faces/edges is flipped. |
|
continue; |
|
} |
|
|
|
} // if (fullsearch) |
|
|
|
// The edge is missing. |
|
break; // Loop I |
|
|
|
} // while (1) // Loop I |
|
|
|
return 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// add_steinerpt_in_schoenhardtpoly() Insert a Steiner point in a Schoen- // |
|
// hardt polyhedron. // |
|
// // |
|
// 'abtets' is an array of n tets which all share at the edge [a,b]. Let the // |
|
// tets are [a,b,p0,p1], [a,b,p1,p2], ..., [a,b,p_(n-2),p_(n-1)]. Moreover, // |
|
// the edge [p0,p_(n-1)] intersects all of the tets in 'abtets'. A special // |
|
// case is that the edge [p0,p_(n-1)] is coplanar with the edge [a,b]. // |
|
// Such set of tets arises when we want to recover an edge from 'p0' to 'p_ // |
|
// (n-1)', and the number of tets at [a,b] can not be reduced by any flip. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::add_steinerpt_in_schoenhardtpoly(triface* abtets, int n, int chkencflag) { |
|
triface worktet, *parytet; |
|
triface faketet1, faketet2; |
|
point pc, pd, steinerpt; |
|
insertvertexflags ivf; |
|
optparameters opm; |
|
REAL vcd[3], sampt[3], smtpt[3]; |
|
REAL maxminvol = 0.0, minvol = 0.0, ori; |
|
int success, maxidx = 0; |
|
int it, i; |
|
|
|
pc = apex(abtets[0]); // pc = p0 |
|
pd = oppo(abtets[n - 1]); // pd = p_(n-1) |
|
|
|
// Find an optimial point in edge [c,d]. It is visible by all outer faces |
|
// of 'abtets', and it maxmizes the min volume. |
|
|
|
// initialize the list of 2n boundary faces. |
|
for (i = 0; i < n; i++) { |
|
edestoppo(abtets[i], worktet); // [p_i,p_i+1,a] |
|
cavetetlist->newindex((void**)&parytet); |
|
*parytet = worktet; |
|
eorgoppo(abtets[i], worktet); // [p_i+1,p_i,b] |
|
cavetetlist->newindex((void**)&parytet); |
|
*parytet = worktet; |
|
} |
|
|
|
int N = 100; |
|
REAL stepi = 0.01; |
|
|
|
// Search the point along the edge [c,d]. |
|
for (i = 0; i < 3; i++) |
|
vcd[i] = pd[i] - pc[i]; |
|
|
|
// Sample N points in edge [c,d]. |
|
for (it = 1; it < N; it++) { |
|
for (i = 0; i < 3; i++) { |
|
sampt[i] = pc[i] + (stepi * (double)it) * vcd[i]; |
|
} |
|
for (i = 0; i < cavetetlist->objects; i++) { |
|
parytet = (triface*)fastlookup(cavetetlist, i); |
|
ori = orient3d(dest(*parytet), org(*parytet), apex(*parytet), sampt); |
|
if (i == 0) { |
|
minvol = ori; |
|
} else { |
|
if (minvol > ori) minvol = ori; |
|
} |
|
} // i |
|
if (it == 1) { |
|
maxminvol = minvol; |
|
maxidx = it; |
|
} else { |
|
if (maxminvol < minvol) { |
|
maxminvol = minvol; |
|
maxidx = it; |
|
} |
|
} |
|
} // it |
|
|
|
if (maxminvol <= 0) { |
|
cavetetlist->restart(); |
|
return 0; |
|
} |
|
|
|
for (i = 0; i < 3; i++) { |
|
smtpt[i] = pc[i] + (stepi * (double)maxidx) * vcd[i]; |
|
} |
|
|
|
// Create two faked tets to hold the two non-existing boundary faces: |
|
// [d,c,a] and [c,d,b]. |
|
maketetrahedron(&faketet1); |
|
setvertices(faketet1, pd, pc, org(abtets[0]), dummypoint); |
|
cavetetlist->newindex((void**)&parytet); |
|
*parytet = faketet1; |
|
maketetrahedron(&faketet2); |
|
setvertices(faketet2, pc, pd, dest(abtets[0]), dummypoint); |
|
cavetetlist->newindex((void**)&parytet); |
|
*parytet = faketet2; |
|
|
|
// Point smooth options. |
|
opm.max_min_volume = 1; |
|
opm.numofsearchdirs = 20; |
|
opm.searchstep = 0.001; |
|
opm.maxiter = 100; // Limit the maximum iterations. |
|
opm.initval = 0.0; // Initial volume is zero. |
|
|
|
// Try to relocate the point into the inside of the polyhedron. |
|
success = smoothpoint(smtpt, cavetetlist, 1, &opm); |
|
|
|
if (success) { |
|
while (opm.smthiter == 100) { |
|
// It was relocated and the prescribed maximum iteration reached. |
|
// Try to increase the search stepsize. |
|
opm.searchstep *= 10.0; |
|
// opm.maxiter = 100; // Limit the maximum iterations. |
|
opm.initval = opm.imprval; |
|
opm.smthiter = 0; // Init. |
|
smoothpoint(smtpt, cavetetlist, 1, &opm); |
|
} |
|
} // if (success) |
|
|
|
// Delete the two faked tets. |
|
tetrahedrondealloc(faketet1.tet); |
|
tetrahedrondealloc(faketet2.tet); |
|
|
|
cavetetlist->restart(); |
|
|
|
if (!success) { |
|
return 0; |
|
} |
|
|
|
// Insert the Steiner point. |
|
makepoint(&steinerpt, FREEVOLVERTEX); |
|
for (i = 0; i < 3; i++) |
|
steinerpt[i] = smtpt[i]; |
|
|
|
// Insert the created Steiner point. |
|
for (i = 0; i < n; i++) { |
|
infect(abtets[i]); |
|
caveoldtetlist->newindex((void**)&parytet); |
|
*parytet = abtets[i]; |
|
} |
|
worktet = abtets[0]; // No need point location. |
|
ivf.iloc = (int)INSTAR; |
|
ivf.chkencflag = chkencflag; |
|
ivf.assignmeshsize = b->metric; |
|
if (ivf.assignmeshsize) { |
|
// Search the tet containing 'steinerpt' for size interpolation. |
|
locate(steinerpt, &(abtets[0])); |
|
worktet = abtets[0]; |
|
} |
|
|
|
// Insert the new point into the tetrahedralization T. |
|
// Note that T is convex (nonconvex = 0). |
|
if (insertpoint(steinerpt, &worktet, NULL, NULL, &ivf)) { |
|
// The vertex has been inserted. |
|
st_volref_count++; |
|
if (steinerleft > 0) steinerleft--; |
|
return 1; |
|
} else { |
|
// Not inserted. |
|
pointdealloc(steinerpt); |
|
return 0; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// add_steinerpt_in_segment() Add a Steiner point inside a segment. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::add_steinerpt_in_segment(face* misseg, int searchlevel) { |
|
triface searchtet; |
|
face *paryseg, candseg; |
|
point startpt, endpt, pc, pd; |
|
flipconstraints fc; |
|
enum interresult dir; |
|
REAL P[3], Q[3], tp, tq; |
|
REAL len, smlen = 0, split = 0, split_q = 0; |
|
int success; |
|
int i; |
|
|
|
startpt = sorg(*misseg); |
|
endpt = sdest(*misseg); |
|
|
|
fc.seg[0] = startpt; |
|
fc.seg[1] = endpt; |
|
fc.checkflipeligibility = 1; |
|
fc.collectencsegflag = 1; |
|
|
|
point2tetorg(startpt, searchtet); |
|
dir = finddirection(&searchtet, endpt); |
|
// Try to flip the first intersecting face/edge. |
|
enextesymself(searchtet); // Go to the opposite face. |
|
|
|
int bak_fliplinklevel = b->fliplinklevel; |
|
b->fliplinklevel = searchlevel; |
|
|
|
if (dir == ACROSSFACE) { |
|
// A face is intersected with the segment. Try to flip it. |
|
success = removefacebyflips(&searchtet, &fc); |
|
} else if (dir == ACROSSEDGE) { |
|
// An edge is intersected with the segment. Try to flip it. |
|
success = removeedgebyflips(&searchtet, &fc); |
|
} |
|
|
|
split = 0; |
|
for (i = 0; i < caveencseglist->objects; i++) { |
|
paryseg = (face*)fastlookup(caveencseglist, i); |
|
suninfect(*paryseg); |
|
// Calculate the shortest edge between the two lines. |
|
pc = sorg(*paryseg); |
|
pd = sdest(*paryseg); |
|
tp = tq = 0; |
|
if (linelineint(startpt, endpt, pc, pd, P, Q, &tp, &tq)) { |
|
// Does the shortest edge lie between the two segments? |
|
// Round tp and tq. |
|
if ((tp > 0) && (tq < 1)) { |
|
if (tp < 0.5) { |
|
if (tp < (b->epsilon * 1e+3)) tp = 0.0; |
|
} else { |
|
if ((1.0 - tp) < (b->epsilon * 1e+3)) tp = 1.0; |
|
} |
|
} |
|
if ((tp <= 0) || (tp >= 1)) continue; |
|
if ((tq > 0) && (tq < 1)) { |
|
if (tq < 0.5) { |
|
if (tq < (b->epsilon * 1e+3)) tq = 0.0; |
|
} else { |
|
if ((1.0 - tq) < (b->epsilon * 1e+3)) tq = 1.0; |
|
} |
|
} |
|
if ((tq <= 0) || (tq >= 1)) continue; |
|
// It is a valid shortest edge. Calculate its length. |
|
len = distance(P, Q); |
|
if (split == 0) { |
|
smlen = len; |
|
split = tp; |
|
split_q = tq; |
|
candseg = *paryseg; |
|
} else { |
|
if (len < smlen) { |
|
smlen = len; |
|
split = tp; |
|
split_q = tq; |
|
candseg = *paryseg; |
|
} |
|
} |
|
} |
|
} |
|
|
|
caveencseglist->restart(); |
|
b->fliplinklevel = bak_fliplinklevel; |
|
|
|
if (split == 0) { |
|
// Found no crossing segment. |
|
return 0; |
|
} |
|
|
|
face splitsh; |
|
face splitseg; |
|
point steinerpt, *parypt; |
|
insertvertexflags ivf; |
|
|
|
if (b->addsteiner_algo == 1) { |
|
// Split the segment at the closest point to a near segment. |
|
makepoint(&steinerpt, FREESEGVERTEX); |
|
for (i = 0; i < 3; i++) { |
|
steinerpt[i] = startpt[i] + split * (endpt[i] - startpt[i]); |
|
} |
|
} else { // b->addsteiner_algo == 2 |
|
for (i = 0; i < 3; i++) { |
|
P[i] = startpt[i] + split * (endpt[i] - startpt[i]); |
|
} |
|
pc = sorg(candseg); |
|
pd = sdest(candseg); |
|
for (i = 0; i < 3; i++) { |
|
Q[i] = pc[i] + split_q * (pd[i] - pc[i]); |
|
} |
|
makepoint(&steinerpt, FREEVOLVERTEX); |
|
for (i = 0; i < 3; i++) { |
|
steinerpt[i] = 0.5 * (P[i] + Q[i]); |
|
} |
|
} |
|
|
|
// We need to locate the point. Start searching from 'searchtet'. |
|
if (split < 0.5) { |
|
point2tetorg(startpt, searchtet); |
|
} else { |
|
point2tetorg(endpt, searchtet); |
|
} |
|
if (b->addsteiner_algo == 1) { |
|
splitseg = *misseg; |
|
spivot(*misseg, splitsh); |
|
} else { |
|
splitsh.sh = NULL; |
|
splitseg.sh = NULL; |
|
} |
|
ivf.iloc = (int)OUTSIDE; |
|
ivf.bowywat = 1; |
|
ivf.lawson = 0; |
|
ivf.rejflag = 0; |
|
ivf.chkencflag = 0; |
|
ivf.sloc = (int)ONEDGE; |
|
ivf.sbowywat = 1; |
|
ivf.splitbdflag = 0; |
|
ivf.validflag = 1; |
|
ivf.respectbdflag = 1; |
|
ivf.assignmeshsize = b->metric; |
|
|
|
if (!insertpoint(steinerpt, &searchtet, &splitsh, &splitseg, &ivf)) { |
|
pointdealloc(steinerpt); |
|
return 0; |
|
} |
|
|
|
if (b->addsteiner_algo == 1) { |
|
// Save this Steiner point (for removal). |
|
// Re-use the array 'subvertstack'. |
|
subvertstack->newindex((void**)&parypt); |
|
*parypt = steinerpt; |
|
st_segref_count++; |
|
} else { // b->addsteiner_algo == 2 |
|
// Queue the segment for recovery. |
|
subsegstack->newindex((void**)&paryseg); |
|
*paryseg = *misseg; |
|
st_volref_count++; |
|
} |
|
if (steinerleft > 0) steinerleft--; |
|
|
|
return 1; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// addsteiner4recoversegment() Add a Steiner point for recovering a seg. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::addsteiner4recoversegment(face* misseg, int splitsegflag) { |
|
triface *abtets, searchtet, spintet; |
|
face splitsh; |
|
face* paryseg; |
|
point startpt, endpt; |
|
point pa, pb, pd, steinerpt, *parypt; |
|
enum interresult dir; |
|
insertvertexflags ivf; |
|
int types[2], poss[4]; |
|
int n, endi, success; |
|
int t1ver; |
|
int i; |
|
|
|
startpt = sorg(*misseg); |
|
if (pointtype(startpt) == FREESEGVERTEX) { |
|
sesymself(*misseg); |
|
startpt = sorg(*misseg); |
|
} |
|
endpt = sdest(*misseg); |
|
|
|
// Try to recover the edge by adding Steiner points. |
|
point2tetorg(startpt, searchtet); |
|
dir = finddirection(&searchtet, endpt); |
|
enextself(searchtet); |
|
|
|
if (dir == ACROSSFACE) { |
|
// The segment is crossing at least 3 faces. Find the common edge of |
|
// the first 3 crossing faces. |
|
esymself(searchtet); |
|
fsym(searchtet, spintet); |
|
pd = oppo(spintet); |
|
for (i = 0; i < 3; i++) { |
|
pa = org(spintet); |
|
pb = dest(spintet); |
|
if (tri_edge_test(pa, pb, pd, startpt, endpt, NULL, 1, types, poss)) { |
|
break; // Found the edge. |
|
} |
|
enextself(spintet); |
|
eprevself(searchtet); |
|
} |
|
esymself(searchtet); |
|
} |
|
|
|
spintet = searchtet; |
|
n = 0; |
|
endi = -1; |
|
while (1) { |
|
// Check if the endpt appears in the star. |
|
if (apex(spintet) == endpt) { |
|
endi = n; // Remember the position of endpt. |
|
} |
|
n++; // Count a tet in the star. |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) break; |
|
} |
|
|
|
if (endi > 0) { |
|
// endpt is also in the edge star |
|
// Get all tets in the edge star. |
|
abtets = new triface[n]; |
|
spintet = searchtet; |
|
for (i = 0; i < n; i++) { |
|
abtets[i] = spintet; |
|
fnextself(spintet); |
|
} |
|
|
|
success = 0; |
|
|
|
if (dir == ACROSSFACE) { |
|
// Find a Steiner points inside the polyhedron. |
|
if (add_steinerpt_in_schoenhardtpoly(abtets, endi, 0)) { |
|
success = 1; |
|
} |
|
} else if (dir == ACROSSEDGE) { |
|
// PLC check. |
|
if (issubseg(searchtet)) { |
|
terminatetetgen(this, 2); |
|
} |
|
if (n > 4) { |
|
// In this case, 'abtets' is separated by the plane (containing the |
|
// two intersecting edges) into two parts, P1 and P2, where P1 |
|
// consists of 'endi' tets: abtets[0], abtets[1], ..., |
|
// abtets[endi-1], and P2 consists of 'n - endi' tets: |
|
// abtets[endi], abtets[endi+1], abtets[n-1]. |
|
if (endi > 2) { // P1 |
|
// There are at least 3 tets in the first part. |
|
if (add_steinerpt_in_schoenhardtpoly(abtets, endi, 0)) { |
|
success++; |
|
} |
|
} |
|
if ((n - endi) > 2) { // P2 |
|
// There are at least 3 tets in the first part. |
|
if (add_steinerpt_in_schoenhardtpoly(&(abtets[endi]), n - endi, 0)) { |
|
success++; |
|
} |
|
} |
|
} else { |
|
// In this case, a 4-to-4 flip should be re-cover the edge [c,d]. |
|
// However, there will be invalid tets (either zero or negtive |
|
// volume). Otherwise, [c,d] should already be recovered by the |
|
// recoveredge() function. |
|
terminatetetgen(this, 2); |
|
} |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
|
|
delete[] abtets; |
|
|
|
if (success) { |
|
// Add the missing segment back to the recovering list. |
|
subsegstack->newindex((void**)&paryseg); |
|
*paryseg = *misseg; |
|
return 1; |
|
} |
|
} // if (endi > 0) |
|
|
|
if (!splitsegflag) { |
|
return 0; |
|
} |
|
|
|
if (b->verbose > 2) { |
|
printf(" Splitting segment (%d, %d)\n", pointmark(startpt), pointmark(endpt)); |
|
} |
|
steinerpt = NULL; |
|
|
|
if (b->addsteiner_algo > 0) { // -Y/1 or -Y/2 |
|
if (add_steinerpt_in_segment(misseg, 3)) { |
|
return 1; |
|
} |
|
sesymself(*misseg); |
|
if (add_steinerpt_in_segment(misseg, 3)) { |
|
return 1; |
|
} |
|
sesymself(*misseg); |
|
} |
|
|
|
if (steinerpt == NULL) { |
|
// Split the segment at its midpoint. |
|
makepoint(&steinerpt, FREESEGVERTEX); |
|
for (i = 0; i < 3; i++) { |
|
steinerpt[i] = 0.5 * (startpt[i] + endpt[i]); |
|
} |
|
|
|
// We need to locate the point. |
|
spivot(*misseg, splitsh); |
|
ivf.iloc = (int)OUTSIDE; |
|
ivf.bowywat = 1; |
|
ivf.lawson = 0; |
|
ivf.rejflag = 0; |
|
ivf.chkencflag = 0; |
|
ivf.sloc = (int)ONEDGE; |
|
ivf.sbowywat = 1; |
|
ivf.splitbdflag = 0; |
|
ivf.validflag = 1; |
|
ivf.respectbdflag = 1; |
|
ivf.assignmeshsize = b->metric; |
|
if (!insertpoint(steinerpt, &searchtet, &splitsh, misseg, &ivf)) { |
|
terminatetetgen(this, 2); |
|
} |
|
} // if (endi > 0) |
|
|
|
// Save this Steiner point (for removal). |
|
// Re-use the array 'subvertstack'. |
|
subvertstack->newindex((void**)&parypt); |
|
*parypt = steinerpt; |
|
|
|
st_segref_count++; |
|
if (steinerleft > 0) steinerleft--; |
|
|
|
return 1; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// recoversegments() Recover all segments. // |
|
// // |
|
// All segments need to be recovered are in 'subsegstack'. // |
|
// // |
|
// This routine first tries to recover each segment by only using flips. If // |
|
// no flip is possible, and the flag 'steinerflag' is set, it then tries to // |
|
// insert Steiner points near or in the segment. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::recoversegments(arraypool* misseglist, int fullsearch, int steinerflag) { |
|
triface searchtet, spintet; |
|
face sseg, *paryseg; |
|
point startpt, endpt; |
|
int success; |
|
int t1ver; |
|
|
|
long bak_inpoly_count = st_volref_count; |
|
long bak_segref_count = st_segref_count; |
|
|
|
if (b->verbose > 1) { |
|
printf(" Recover segments [%s level = %2d] #: %ld.\n", |
|
(b->fliplinklevel > 0) ? "fixed" : "auto", |
|
(b->fliplinklevel > 0) ? b->fliplinklevel : autofliplinklevel, subsegstack->objects); |
|
} |
|
|
|
// Loop until 'subsegstack' is empty. |
|
while (subsegstack->objects > 0l) { |
|
// seglist is used as a stack. |
|
subsegstack->objects--; |
|
paryseg = (face*)fastlookup(subsegstack, subsegstack->objects); |
|
sseg = *paryseg; |
|
|
|
// Check if this segment has been recovered. |
|
sstpivot1(sseg, searchtet); |
|
if (searchtet.tet != NULL) { |
|
continue; // Not a missing segment. |
|
} |
|
|
|
startpt = sorg(sseg); |
|
endpt = sdest(sseg); |
|
|
|
if (b->verbose > 2) { |
|
printf(" Recover segment (%d, %d).\n", pointmark(startpt), pointmark(endpt)); |
|
} |
|
|
|
success = 0; |
|
|
|
if (recoveredgebyflips(startpt, endpt, &sseg, &searchtet, 0)) { |
|
success = 1; |
|
} else { |
|
// Try to recover it from the other direction. |
|
if (recoveredgebyflips(endpt, startpt, &sseg, &searchtet, 0)) { |
|
success = 1; |
|
} |
|
} |
|
|
|
if (!success && fullsearch) { |
|
if (recoveredgebyflips(startpt, endpt, &sseg, &searchtet, fullsearch)) { |
|
success = 1; |
|
} |
|
} |
|
|
|
if (success) { |
|
// Segment is recovered. Insert it. |
|
// Let the segment remember an adjacent tet. |
|
sstbond1(sseg, searchtet); |
|
// Bond the segment to all tets containing it. |
|
spintet = searchtet; |
|
do { |
|
tssbond1(spintet, sseg); |
|
fnextself(spintet); |
|
} while (spintet.tet != searchtet.tet); |
|
} else { |
|
if (steinerflag > 0) { |
|
// Try to recover the segment but do not split it. |
|
if (addsteiner4recoversegment(&sseg, 0)) { |
|
success = 1; |
|
} |
|
if (!success && (steinerflag > 1)) { |
|
// Split the segment. |
|
addsteiner4recoversegment(&sseg, 1); |
|
success = 1; |
|
} |
|
} |
|
if (!success) { |
|
if (misseglist != NULL) { |
|
// Save this segment. |
|
misseglist->newindex((void**)&paryseg); |
|
*paryseg = sseg; |
|
} |
|
} |
|
} |
|
|
|
} // while (subsegstack->objects > 0l) |
|
|
|
if (steinerflag) { |
|
if (b->verbose > 1) { |
|
// Report the number of added Steiner points. |
|
if (st_volref_count > bak_inpoly_count) { |
|
printf(" Add %ld Steiner points in volume.\n", |
|
st_volref_count - bak_inpoly_count); |
|
} |
|
if (st_segref_count > bak_segref_count) { |
|
printf(" Add %ld Steiner points in segments.\n", |
|
st_segref_count - bak_segref_count); |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// recoverfacebyflips() Recover a face by flips. // |
|
// // |
|
// 'pa', 'pb', and 'pc' are the three vertices of this face. This routine // |
|
// tries to recover it in the tetrahedral mesh. It is assumed that the three // |
|
// edges, i.e., pa->pb, pb->pc, and pc->pa all exist. // |
|
// // |
|
// If the face is recovered, it is returned by 'searchtet'. // |
|
// // |
|
// If 'searchsh' is not NULL, it is a subface to be recovered. Its vertices // |
|
// must be pa, pb, and pc. It is mainly used to check self-intersections. // |
|
// Another use of this subface is to split it when a Steiner point is found // |
|
// inside this subface. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::recoverfacebyflips(point pa, point pb, point pc, face* searchsh, |
|
triface* searchtet) { |
|
triface spintet, flipedge; |
|
point pd, pe; |
|
flipconstraints fc; |
|
int types[2], poss[4], intflag; |
|
int success; |
|
int t1ver; |
|
int i, j; |
|
|
|
fc.fac[0] = pa; |
|
fc.fac[1] = pb; |
|
fc.fac[2] = pc; |
|
fc.checkflipeligibility = 1; |
|
success = 0; |
|
|
|
for (i = 0; i < 3 && !success; i++) { |
|
while (1) { |
|
// Get a tet containing the edge [a,b]. |
|
point2tetorg(fc.fac[i], *searchtet); |
|
finddirection(searchtet, fc.fac[(i + 1) % 3]); |
|
// Search the face [a,b,c] |
|
spintet = *searchtet; |
|
while (1) { |
|
if (apex(spintet) == fc.fac[(i + 2) % 3]) { |
|
// Found the face. |
|
*searchtet = spintet; |
|
// Return the face [a,b,c]. |
|
for (j = i; j > 0; j--) { |
|
eprevself(*searchtet); |
|
} |
|
success = 1; |
|
break; |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet->tet) break; |
|
} // while (1) |
|
if (success) break; |
|
// The face is missing. Try to recover it. |
|
flipedge.tet = NULL; |
|
// Find a crossing edge of this face. |
|
spintet = *searchtet; |
|
while (1) { |
|
pd = apex(spintet); |
|
pe = oppo(spintet); |
|
if ((pd != dummypoint) && (pe != dummypoint)) { |
|
// Check if [d,e] intersects [a,b,c] |
|
intflag = tri_edge_test(pa, pb, pc, pd, pe, NULL, 1, types, poss); |
|
if (intflag > 0) { |
|
// By the assumption that all edges of the face exist, they can |
|
// only intersect at a single point. |
|
if (intflag == 2) { |
|
// Go to the edge [d,e]. |
|
edestoppo(spintet, flipedge); // [d,e,a,b] |
|
if (searchsh != NULL) { |
|
// Check the intersection type. |
|
if ((types[0] == (int)ACROSSFACE) || |
|
(types[0] == (int)ACROSSEDGE)) { |
|
// Check if [e,d] is a segment. |
|
if (issubseg(flipedge)) { |
|
return report_selfint_face(pa, pb, pc, searchsh, &flipedge, |
|
intflag, types, poss); |
|
} else { |
|
// Check if [e,d] is an edge of a subface. |
|
triface chkface = flipedge; |
|
while (1) { |
|
if (issubface(chkface)) break; |
|
fsymself(chkface); |
|
if (chkface.tet == flipedge.tet) break; |
|
} |
|
if (issubface(chkface)) { |
|
// Two subfaces are intersecting. |
|
return report_selfint_face(pa, pb, pc, searchsh, |
|
&chkface, intflag, types, |
|
poss); |
|
} |
|
} |
|
} else if (types[0] == TOUCHFACE) { |
|
// This is possible when a Steiner point was added on it. |
|
point touchpt, *parypt; |
|
if (poss[1] == 0) { |
|
touchpt = pd; // pd is a coplanar vertex. |
|
} else { |
|
touchpt = pe; // pe is a coplanar vertex. |
|
} |
|
if (pointtype(touchpt) == FREEVOLVERTEX) { |
|
// A volume Steiner point was added in this subface. |
|
// Split this subface by this point. |
|
face checksh, *parysh; |
|
int siloc = (int)ONFACE; |
|
int sbowat = 0; // Only split this subface. A 1-to-3 flip. |
|
setpointtype(touchpt, FREEFACETVERTEX); |
|
sinsertvertex(touchpt, searchsh, NULL, siloc, sbowat, 0); |
|
st_volref_count--; |
|
st_facref_count++; |
|
// Queue this vertex for removal. |
|
subvertstack->newindex((void**)&parypt); |
|
*parypt = touchpt; |
|
// Queue new subfaces for recovery. |
|
// Put all new subfaces into stack for recovery. |
|
for (i = 0; i < caveshbdlist->objects; i++) { |
|
// Get an old subface at edge [a, b]. |
|
parysh = (face*)fastlookup(caveshbdlist, i); |
|
spivot(*parysh, checksh); // The new subface [a, b, p]. |
|
// Do not recover a deleted new face (degenerated). |
|
if (checksh.sh[3] != NULL) { |
|
subfacstack->newindex((void**)&parysh); |
|
*parysh = checksh; |
|
} |
|
} |
|
// Delete the old subfaces in sC(p). |
|
for (i = 0; i < caveshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshlist, i); |
|
shellfacedealloc(subfaces, parysh->sh); |
|
} |
|
// Clear working lists. |
|
caveshlist->restart(); |
|
caveshbdlist->restart(); |
|
cavesegshlist->restart(); |
|
// We can return this function. |
|
searchsh->sh = NULL; // It has been split. |
|
return 1; |
|
} else { |
|
// Other cases may be due to a bug or a PLC error. |
|
return report_selfint_face(pa, pb, pc, searchsh, &flipedge, |
|
intflag, types, poss); |
|
} |
|
} else { |
|
// The other intersection types: ACROSSVERT, TOUCHEDGE, |
|
// SHAREVERTEX should not be possible or due to a PLC error. |
|
return report_selfint_face(pa, pb, pc, searchsh, &flipedge, |
|
intflag, types, poss); |
|
} |
|
} // if (searchsh != NULL) |
|
} else { // intflag == 4. Coplanar case. |
|
terminatetetgen(this, 2); |
|
} |
|
break; |
|
} // if (intflag > 0) |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet->tet) { |
|
terminatetetgen(this, 2); |
|
} |
|
} // while (1) |
|
// Try to flip the edge [d,e]. |
|
if (removeedgebyflips(&flipedge, &fc) == 2) { |
|
// A crossing edge is removed. |
|
continue; |
|
} |
|
break; |
|
} // while (1) |
|
} // i |
|
|
|
return success; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// recoversubfaces() Recover all subfaces. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::recoversubfaces(arraypool* misshlist, int steinerflag) { |
|
triface searchtet, neightet, spintet; |
|
face searchsh, neighsh, neineish, *parysh; |
|
face bdsegs[3]; |
|
point startpt, endpt, apexpt, *parypt; |
|
point steinerpt; |
|
insertvertexflags ivf; |
|
int success; |
|
int t1ver; |
|
int i, j; |
|
|
|
if (b->verbose > 1) { |
|
printf(" Recover subfaces [%s level = %2d] #: %ld.\n", |
|
(b->fliplinklevel > 0) ? "fixed" : "auto", |
|
(b->fliplinklevel > 0) ? b->fliplinklevel : autofliplinklevel, subfacstack->objects); |
|
} |
|
|
|
// Loop until 'subfacstack' is empty. |
|
while (subfacstack->objects > 0l) { |
|
|
|
subfacstack->objects--; |
|
parysh = (face*)fastlookup(subfacstack, subfacstack->objects); |
|
searchsh = *parysh; |
|
|
|
if (searchsh.sh[3] == NULL) continue; // Skip a dead subface. |
|
|
|
stpivot(searchsh, neightet); |
|
if (neightet.tet != NULL) continue; // Skip a recovered subface. |
|
|
|
if (b->verbose > 2) { |
|
printf(" Recover subface (%d, %d, %d).\n", pointmark(sorg(searchsh)), |
|
pointmark(sdest(searchsh)), pointmark(sapex(searchsh))); |
|
} |
|
|
|
// The three edges of the face need to be existed first. |
|
for (i = 0; i < 3; i++) { |
|
sspivot(searchsh, bdsegs[i]); |
|
if (bdsegs[i].sh != NULL) { |
|
// The segment must exist. |
|
sstpivot1(bdsegs[i], searchtet); |
|
if (searchtet.tet == NULL) { |
|
terminatetetgen(this, 2); |
|
} |
|
} else { |
|
// This edge is not a segment (due to a Steiner point). |
|
// Check whether it exists or not. |
|
success = 0; |
|
startpt = sorg(searchsh); |
|
endpt = sdest(searchsh); |
|
point2tetorg(startpt, searchtet); |
|
finddirection(&searchtet, endpt); |
|
if (dest(searchtet) == endpt) { |
|
success = 1; |
|
} else { |
|
// The edge is missing. Try to recover it. |
|
if (recoveredgebyflips(startpt, endpt, &searchsh, &searchtet, 0)) { |
|
success = 1; |
|
} else { |
|
if (recoveredgebyflips(endpt, startpt, &searchsh, &searchtet, 0)) { |
|
success = 1; |
|
} |
|
} |
|
} |
|
if (success) { |
|
// Insert a temporary segment to protect this edge. |
|
makeshellface(subsegs, &(bdsegs[i])); |
|
setshvertices(bdsegs[i], startpt, endpt, NULL); |
|
smarktest2(bdsegs[i]); // It's a temporary segment. |
|
// Insert this segment into surface mesh. |
|
ssbond(searchsh, bdsegs[i]); |
|
spivot(searchsh, neighsh); |
|
if (neighsh.sh != NULL) { |
|
ssbond(neighsh, bdsegs[i]); |
|
} |
|
// Insert this segment into tetrahedralization. |
|
sstbond1(bdsegs[i], searchtet); |
|
// Bond the segment to all tets containing it. |
|
spintet = searchtet; |
|
do { |
|
tssbond1(spintet, bdsegs[i]); |
|
fnextself(spintet); |
|
} while (spintet.tet != searchtet.tet); |
|
} else { |
|
// An edge of this subface is missing. Can't recover this subface. |
|
// Delete any temporary segment that has been created. |
|
for (j = (i - 1); j >= 0; j--) { |
|
if (smarktest2ed(bdsegs[j])) { |
|
spivot(bdsegs[j], neineish); |
|
ssdissolve(neineish); |
|
spivot(neineish, neighsh); |
|
if (neighsh.sh != NULL) { |
|
ssdissolve(neighsh); |
|
} |
|
sstpivot1(bdsegs[j], searchtet); |
|
spintet = searchtet; |
|
while (1) { |
|
tssdissolve1(spintet); |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) break; |
|
} |
|
shellfacedealloc(subsegs, bdsegs[j].sh); |
|
} |
|
} // j |
|
if (steinerflag) { |
|
// Add a Steiner point at the midpoint of this edge. |
|
if (b->verbose > 2) { |
|
printf(" Add a Steiner point in subedge (%d, %d).\n", |
|
pointmark(startpt), pointmark(endpt)); |
|
} |
|
makepoint(&steinerpt, FREEFACETVERTEX); |
|
for (j = 0; j < 3; j++) { |
|
steinerpt[j] = 0.5 * (startpt[j] + endpt[j]); |
|
} |
|
|
|
point2tetorg(startpt, searchtet); // Start from 'searchtet'. |
|
ivf.iloc = (int)OUTSIDE; // Need point location. |
|
ivf.bowywat = 1; |
|
ivf.lawson = 0; |
|
ivf.rejflag = 0; |
|
ivf.chkencflag = 0; |
|
ivf.sloc = (int)ONEDGE; |
|
ivf.sbowywat = 1; // Allow flips in facet. |
|
ivf.splitbdflag = 0; |
|
ivf.validflag = 1; |
|
ivf.respectbdflag = 1; |
|
ivf.assignmeshsize = b->metric; |
|
if (!insertpoint(steinerpt, &searchtet, &searchsh, NULL, &ivf)) { |
|
terminatetetgen(this, 2); |
|
} |
|
// Save this Steiner point (for removal). |
|
// Re-use the array 'subvertstack'. |
|
subvertstack->newindex((void**)&parypt); |
|
*parypt = steinerpt; |
|
|
|
st_facref_count++; |
|
if (steinerleft > 0) steinerleft--; |
|
} // if (steinerflag) |
|
break; |
|
} |
|
} |
|
senextself(searchsh); |
|
} // i |
|
|
|
if (i == 3) { |
|
// Recover the subface. |
|
startpt = sorg(searchsh); |
|
endpt = sdest(searchsh); |
|
apexpt = sapex(searchsh); |
|
|
|
success = recoverfacebyflips(startpt, endpt, apexpt, &searchsh, &searchtet); |
|
|
|
// Delete any temporary segment that has been created. |
|
for (j = 0; j < 3; j++) { |
|
if (smarktest2ed(bdsegs[j])) { |
|
spivot(bdsegs[j], neineish); |
|
ssdissolve(neineish); |
|
spivot(neineish, neighsh); |
|
if (neighsh.sh != NULL) { |
|
ssdissolve(neighsh); |
|
} |
|
sstpivot1(bdsegs[j], neightet); |
|
spintet = neightet; |
|
while (1) { |
|
tssdissolve1(spintet); |
|
fnextself(spintet); |
|
if (spintet.tet == neightet.tet) break; |
|
} |
|
shellfacedealloc(subsegs, bdsegs[j].sh); |
|
} |
|
} // j |
|
|
|
if (success) { |
|
if (searchsh.sh != NULL) { |
|
// Face is recovered. Insert it. |
|
tsbond(searchtet, searchsh); |
|
fsymself(searchtet); |
|
sesymself(searchsh); |
|
tsbond(searchtet, searchsh); |
|
} |
|
} else { |
|
if (steinerflag) { |
|
// Add a Steiner point at the barycenter of this subface. |
|
if (b->verbose > 2) { |
|
printf(" Add a Steiner point in subface (%d, %d, %d).\n", |
|
pointmark(startpt), pointmark(endpt), pointmark(apexpt)); |
|
} |
|
makepoint(&steinerpt, FREEFACETVERTEX); |
|
for (j = 0; j < 3; j++) { |
|
steinerpt[j] = (startpt[j] + endpt[j] + apexpt[j]) / 3.0; |
|
} |
|
|
|
point2tetorg(startpt, searchtet); // Start from 'searchtet'. |
|
ivf.iloc = (int)OUTSIDE; // Need point location. |
|
ivf.bowywat = 1; |
|
ivf.lawson = 0; |
|
ivf.rejflag = 0; |
|
ivf.chkencflag = 0; |
|
ivf.sloc = (int)ONFACE; |
|
ivf.sbowywat = 1; // Allow flips in facet. |
|
ivf.splitbdflag = 0; |
|
ivf.validflag = 1; |
|
ivf.respectbdflag = 1; |
|
ivf.assignmeshsize = b->metric; |
|
if (!insertpoint(steinerpt, &searchtet, &searchsh, NULL, &ivf)) { |
|
terminatetetgen(this, 2); |
|
} |
|
// Save this Steiner point (for removal). |
|
// Re-use the array 'subvertstack'. |
|
subvertstack->newindex((void**)&parypt); |
|
*parypt = steinerpt; |
|
|
|
st_facref_count++; |
|
if (steinerleft > 0) steinerleft--; |
|
} // if (steinerflag) |
|
} |
|
} else { |
|
success = 0; |
|
} |
|
|
|
if (!success) { |
|
if (misshlist != NULL) { |
|
// Save this subface. |
|
misshlist->newindex((void**)&parysh); |
|
*parysh = searchsh; |
|
} |
|
} |
|
|
|
} // while (subfacstack->objects > 0l) |
|
|
|
return 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// getvertexstar() Return the star of a vertex. // |
|
// // |
|
// If the flag 'fullstar' is set, return the complete star of this vertex. // |
|
// Otherwise, only a part of the star which is bounded by facets is returned.// |
|
// // |
|
// 'tetlist' returns the list of tets in the star of the vertex 'searchpt'. // |
|
// Every tet in 'tetlist' is at the face opposing to 'searchpt'. // |
|
// // |
|
// 'vertlist' returns the list of vertices in the star (exclude 'searchpt'). // |
|
// // |
|
// 'shlist' returns the list of subfaces in the star. Each subface must face // |
|
// to the interior of this star. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::getvertexstar(int fullstar, point searchpt, arraypool* tetlist, arraypool* vertlist, |
|
arraypool* shlist) { |
|
triface searchtet, neightet, *parytet; |
|
face checksh, *parysh; |
|
point pt, *parypt; |
|
int collectflag; |
|
int t1ver; |
|
int i, j; |
|
|
|
point2tetorg(searchpt, searchtet); |
|
|
|
// Go to the opposite face (the link face) of the vertex. |
|
enextesymself(searchtet); |
|
// assert(oppo(searchtet) == searchpt); |
|
infect(searchtet); // Collect this tet (link face). |
|
tetlist->newindex((void**)&parytet); |
|
*parytet = searchtet; |
|
if (vertlist != NULL) { |
|
// Collect three (link) vertices. |
|
j = (searchtet.ver & 3); // The current vertex index. |
|
for (i = 1; i < 4; i++) { |
|
pt = (point)searchtet.tet[4 + ((j + i) % 4)]; |
|
pinfect(pt); |
|
vertlist->newindex((void**)&parypt); |
|
*parypt = pt; |
|
} |
|
} |
|
|
|
collectflag = 1; |
|
esym(searchtet, neightet); |
|
if (issubface(neightet)) { |
|
if (shlist != NULL) { |
|
tspivot(neightet, checksh); |
|
if (!sinfected(checksh)) { |
|
// Collect this subface (link edge). |
|
sinfected(checksh); |
|
shlist->newindex((void**)&parysh); |
|
*parysh = checksh; |
|
} |
|
} |
|
if (!fullstar) { |
|
collectflag = 0; |
|
} |
|
} |
|
if (collectflag) { |
|
fsymself(neightet); // Goto the adj tet of this face. |
|
esymself(neightet); // Goto the oppo face of this vertex. |
|
// assert(oppo(neightet) == searchpt); |
|
infect(neightet); // Collect this tet (link face). |
|
tetlist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
if (vertlist != NULL) { |
|
// Collect its apex. |
|
pt = apex(neightet); |
|
pinfect(pt); |
|
vertlist->newindex((void**)&parypt); |
|
*parypt = pt; |
|
} |
|
} // if (collectflag) |
|
|
|
// Continue to collect all tets in the star. |
|
for (i = 0; i < tetlist->objects; i++) { |
|
searchtet = *(triface*)fastlookup(tetlist, i); |
|
// Note that 'searchtet' is a face opposite to 'searchpt', and the neighbor |
|
// tet at the current edge is already collected. |
|
// Check the neighbors at the other two edges of this face. |
|
for (j = 0; j < 2; j++) { |
|
collectflag = 1; |
|
enextself(searchtet); |
|
esym(searchtet, neightet); |
|
if (issubface(neightet)) { |
|
if (shlist != NULL) { |
|
tspivot(neightet, checksh); |
|
if (!sinfected(checksh)) { |
|
// Collect this subface (link edge). |
|
sinfected(checksh); |
|
shlist->newindex((void**)&parysh); |
|
*parysh = checksh; |
|
} |
|
} |
|
if (!fullstar) { |
|
collectflag = 0; |
|
} |
|
} |
|
if (collectflag) { |
|
fsymself(neightet); |
|
if (!infected(neightet)) { |
|
esymself(neightet); // Go to the face opposite to 'searchpt'. |
|
infect(neightet); |
|
tetlist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
if (vertlist != NULL) { |
|
// Check if a vertex is collected. |
|
pt = apex(neightet); |
|
if (!pinfected(pt)) { |
|
pinfect(pt); |
|
vertlist->newindex((void**)&parypt); |
|
*parypt = pt; |
|
} |
|
} |
|
} // if (!infected(neightet)) |
|
} // if (collectflag) |
|
} // j |
|
} // i |
|
|
|
// Uninfect the list of tets and vertices. |
|
for (i = 0; i < tetlist->objects; i++) { |
|
parytet = (triface*)fastlookup(tetlist, i); |
|
uninfect(*parytet); |
|
} |
|
|
|
if (vertlist != NULL) { |
|
for (i = 0; i < vertlist->objects; i++) { |
|
parypt = (point*)fastlookup(vertlist, i); |
|
puninfect(*parypt); |
|
} |
|
} |
|
|
|
if (shlist != NULL) { |
|
for (i = 0; i < shlist->objects; i++) { |
|
parysh = (face*)fastlookup(shlist, i); |
|
suninfect(*parysh); |
|
} |
|
} |
|
|
|
return (int)tetlist->objects; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// getedge() Get a tetrahedron having the two endpoints. // |
|
// // |
|
// The method here is to search the second vertex in the link faces of the // |
|
// first vertex. The global array 'cavetetlist' is re-used for searching. // |
|
// // |
|
// This function is used for the case when the mesh is non-convex. Otherwise,// |
|
// the function finddirection() should be faster than this. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::getedge(point e1, point e2, triface* tedge) { |
|
triface searchtet, neightet, *parytet; |
|
point pt; |
|
int done; |
|
int i, j; |
|
|
|
if (b->verbose > 2) { |
|
printf(" Get edge from %d to %d.\n", pointmark(e1), pointmark(e2)); |
|
} |
|
|
|
// Quickly check if 'tedge' is just this edge. |
|
if (!isdeadtet(*tedge)) { |
|
if (org(*tedge) == e1) { |
|
if (dest(*tedge) == e2) { |
|
return 1; |
|
} |
|
} else if (org(*tedge) == e2) { |
|
if (dest(*tedge) == e1) { |
|
esymself(*tedge); |
|
return 1; |
|
} |
|
} |
|
} |
|
|
|
// Search for the edge [e1, e2]. |
|
point2tetorg(e1, *tedge); |
|
finddirection(tedge, e2); |
|
if (dest(*tedge) == e2) { |
|
return 1; |
|
} else { |
|
// Search for the edge [e2, e1]. |
|
point2tetorg(e2, *tedge); |
|
finddirection(tedge, e1); |
|
if (dest(*tedge) == e1) { |
|
esymself(*tedge); |
|
return 1; |
|
} |
|
} |
|
|
|
// Go to the link face of e1. |
|
point2tetorg(e1, searchtet); |
|
enextesymself(searchtet); |
|
arraypool* tetlist = cavebdrylist; |
|
|
|
// Search e2. |
|
for (i = 0; i < 3; i++) { |
|
pt = apex(searchtet); |
|
if (pt == e2) { |
|
// Found. 'searchtet' is [#,#,e2,e1]. |
|
eorgoppo(searchtet, *tedge); // [e1,e2,#,#]. |
|
return 1; |
|
} |
|
enextself(searchtet); |
|
} |
|
|
|
// Get the adjacent link face at 'searchtet'. |
|
fnext(searchtet, neightet); |
|
esymself(neightet); |
|
// assert(oppo(neightet) == e1); |
|
pt = apex(neightet); |
|
if (pt == e2) { |
|
// Found. 'neightet' is [#,#,e2,e1]. |
|
eorgoppo(neightet, *tedge); // [e1,e2,#,#]. |
|
return 1; |
|
} |
|
|
|
// Continue searching in the link face of e1. |
|
infect(searchtet); |
|
tetlist->newindex((void**)&parytet); |
|
*parytet = searchtet; |
|
infect(neightet); |
|
tetlist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
|
|
done = 0; |
|
|
|
for (i = 0; (i < tetlist->objects) && !done; i++) { |
|
parytet = (triface*)fastlookup(tetlist, i); |
|
searchtet = *parytet; |
|
for (j = 0; (j < 2) && !done; j++) { |
|
enextself(searchtet); |
|
fnext(searchtet, neightet); |
|
if (!infected(neightet)) { |
|
esymself(neightet); |
|
pt = apex(neightet); |
|
if (pt == e2) { |
|
// Found. 'neightet' is [#,#,e2,e1]. |
|
eorgoppo(neightet, *tedge); |
|
done = 1; |
|
} else { |
|
infect(neightet); |
|
tetlist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
} |
|
} // j |
|
} // i |
|
|
|
// Uninfect the list of visited tets. |
|
for (i = 0; i < tetlist->objects; i++) { |
|
parytet = (triface*)fastlookup(tetlist, i); |
|
uninfect(*parytet); |
|
} |
|
tetlist->restart(); |
|
|
|
return done; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// reduceedgesatvertex() Reduce the number of edges at a given vertex. // |
|
// // |
|
// 'endptlist' contains the endpoints of edges connecting at the vertex. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::reduceedgesatvertex(point startpt, arraypool* endptlist) { |
|
triface searchtet; |
|
point *pendpt, *parypt; |
|
enum interresult dir; |
|
flipconstraints fc; |
|
int reduceflag; |
|
int count; |
|
int n, i, j; |
|
|
|
fc.remvert = startpt; |
|
fc.checkflipeligibility = 1; |
|
|
|
while (1) { |
|
|
|
count = 0; |
|
|
|
for (i = 0; i < endptlist->objects; i++) { |
|
pendpt = (point*)fastlookup(endptlist, i); |
|
if (*pendpt == dummypoint) { |
|
continue; // Do not reduce a virtual edge. |
|
} |
|
reduceflag = 0; |
|
// Find the edge. |
|
if (nonconvex) { |
|
if (getedge(startpt, *pendpt, &searchtet)) { |
|
dir = ACROSSVERT; |
|
} else { |
|
// The edge does not exist (was flipped). |
|
dir = INTERSECT; |
|
} |
|
} else { |
|
point2tetorg(startpt, searchtet); |
|
dir = finddirection(&searchtet, *pendpt); |
|
} |
|
if (dir == ACROSSVERT) { |
|
if (dest(searchtet) == *pendpt) { |
|
// Do not flip a segment. |
|
if (!issubseg(searchtet)) { |
|
n = removeedgebyflips(&searchtet, &fc); |
|
if (n == 2) { |
|
reduceflag = 1; |
|
} |
|
} |
|
} |
|
} else { |
|
// The edge has been flipped. |
|
reduceflag = 1; |
|
} |
|
if (reduceflag) { |
|
count++; |
|
// Move the last vertex into this slot. |
|
j = endptlist->objects - 1; |
|
parypt = (point*)fastlookup(endptlist, j); |
|
*pendpt = *parypt; |
|
endptlist->objects--; |
|
i--; |
|
} |
|
} // i |
|
|
|
if (count == 0) { |
|
// No edge is reduced. |
|
break; |
|
} |
|
|
|
} // while (1) |
|
|
|
return (int)endptlist->objects; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// removevertexbyflips() Remove a vertex by flips. // |
|
// // |
|
// This routine attempts to remove the given vertex 'rempt' (p) from the // |
|
// tetrahedralization (T) by a sequence of flips. // |
|
// // |
|
// The algorithm used here is a simple edge reduce method. Suppose there are // |
|
// n edges connected at p. We try to reduce the number of edges by flipping // |
|
// any edge (not a segment) that is connecting at p. // |
|
// // |
|
// Unless T is a Delaunay tetrahedralization, there is no guarantee that 'p' // |
|
// can be successfully removed. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::removevertexbyflips(point steinerpt) { |
|
triface *fliptets = NULL, wrktets[4]; |
|
triface searchtet, spintet, neightet; |
|
face parentsh, spinsh, checksh; |
|
face leftseg, rightseg, checkseg; |
|
point lpt = NULL, rpt = NULL, apexpt; //, *parypt; |
|
flipconstraints fc; |
|
enum verttype vt; |
|
enum locateresult loc; |
|
int valence, removeflag; |
|
int slawson; |
|
int t1ver; |
|
int n, i; |
|
|
|
vt = pointtype(steinerpt); |
|
|
|
if (vt == FREESEGVERTEX) { |
|
sdecode(point2sh(steinerpt), leftseg); |
|
leftseg.shver = 0; |
|
if (sdest(leftseg) == steinerpt) { |
|
senext(leftseg, rightseg); |
|
spivotself(rightseg); |
|
rightseg.shver = 0; |
|
} else { |
|
rightseg = leftseg; |
|
senext2(rightseg, leftseg); |
|
spivotself(leftseg); |
|
leftseg.shver = 0; |
|
} |
|
lpt = sorg(leftseg); |
|
rpt = sdest(rightseg); |
|
if (b->verbose > 2) { |
|
printf(" Removing Steiner point %d in segment (%d, %d).\n", pointmark(steinerpt), |
|
pointmark(lpt), pointmark(rpt)); |
|
} |
|
} else if (vt == FREEFACETVERTEX) { |
|
if (b->verbose > 2) { |
|
printf(" Removing Steiner point %d in facet.\n", pointmark(steinerpt)); |
|
} |
|
} else if (vt == FREEVOLVERTEX) { |
|
if (b->verbose > 2) { |
|
printf(" Removing Steiner point %d in volume.\n", pointmark(steinerpt)); |
|
} |
|
} else if (vt == VOLVERTEX) { |
|
if (b->verbose > 2) { |
|
printf(" Removing a point %d in volume.\n", pointmark(steinerpt)); |
|
} |
|
} else { |
|
// It is not a Steiner point. |
|
return 0; |
|
} |
|
|
|
// Try to reduce the number of edges at 'p' by flips. |
|
getvertexstar(1, steinerpt, cavetetlist, cavetetvertlist, NULL); |
|
cavetetlist->restart(); // This list may be re-used. |
|
if (cavetetvertlist->objects > 3l) { |
|
valence = reduceedgesatvertex(steinerpt, cavetetvertlist); |
|
} else { |
|
valence = cavetetvertlist->objects; |
|
} |
|
cavetetvertlist->restart(); |
|
|
|
removeflag = 0; |
|
|
|
if (valence == 4) { |
|
// Only 4 vertices (4 tets) left! 'p' is inside the convex hull of the 4 |
|
// vertices. This case is due to that 'p' is not exactly on the segment. |
|
point2tetorg(steinerpt, searchtet); |
|
loc = INTETRAHEDRON; |
|
removeflag = 1; |
|
} else if (valence == 5) { |
|
// There are 5 edges. |
|
if (vt == FREESEGVERTEX) { |
|
sstpivot1(leftseg, searchtet); |
|
if (org(searchtet) != steinerpt) { |
|
esymself(searchtet); |
|
} |
|
i = 0; // Count the numbe of tet at the edge [p,lpt]. |
|
neightet.tet = NULL; // Init the face. |
|
spintet = searchtet; |
|
while (1) { |
|
i++; |
|
if (apex(spintet) == rpt) { |
|
// Remember the face containing the edge [lpt, rpt]. |
|
neightet = spintet; |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) break; |
|
} |
|
if (i == 3) { |
|
// This case has been checked below. |
|
} else if (i == 4) { |
|
// There are 4 tets sharing at [p,lpt]. There must be 4 tets sharing |
|
// at [p,rpt]. There must be a face [p, lpt, rpt]. |
|
if (apex(neightet) == rpt) { |
|
// The edge (segment) has been already recovered! |
|
// Check if a 6-to-2 flip is possible (to remove 'p'). |
|
// Let 'searchtet' be [p,d,a,b] |
|
esym(neightet, searchtet); |
|
enextself(searchtet); |
|
// Check if there are exactly three tets at edge [p,d]. |
|
wrktets[0] = searchtet; // [p,d,a,b] |
|
for (i = 0; i < 2; i++) { |
|
fnext(wrktets[i], wrktets[i + 1]); // [p,d,b,c], [p,d,c,a] |
|
} |
|
if (apex(wrktets[0]) == oppo(wrktets[2])) { |
|
loc = ONFACE; |
|
removeflag = 1; |
|
} |
|
} |
|
} |
|
} else if (vt == FREEFACETVERTEX) { |
|
// It is possible to do a 6-to-2 flip to remove the vertex. |
|
point2tetorg(steinerpt, searchtet); |
|
// Get the three faces of 'searchtet' which share at p. |
|
// All faces has p as origin. |
|
wrktets[0] = searchtet; |
|
wrktets[1] = searchtet; |
|
esymself(wrktets[1]); |
|
enextself(wrktets[1]); |
|
wrktets[2] = searchtet; |
|
eprevself(wrktets[2]); |
|
esymself(wrktets[2]); |
|
// All internal edges of the six tets have valance either 3 or 4. |
|
// Get one edge which has valance 3. |
|
searchtet.tet = NULL; |
|
for (i = 0; i < 3; i++) { |
|
spintet = wrktets[i]; |
|
valence = 0; |
|
while (1) { |
|
valence++; |
|
fnextself(spintet); |
|
if (spintet.tet == wrktets[i].tet) break; |
|
} |
|
if (valence == 3) { |
|
// Found the edge. |
|
searchtet = wrktets[i]; |
|
break; |
|
} |
|
} |
|
// Note, we do not detach the three subfaces at p. |
|
// They will be removed within a 4-to-1 flip. |
|
loc = ONFACE; |
|
removeflag = 1; |
|
} |
|
// removeflag = 1; |
|
} |
|
|
|
if (!removeflag) { |
|
if (vt == FREESEGVERTEX) { |
|
// Check is it possible to recover the edge [lpt,rpt]. |
|
// The condition to check is: Whether each tet containing 'leftseg' is |
|
// adjacent to a tet containing 'rightseg'. |
|
sstpivot1(leftseg, searchtet); |
|
if (org(searchtet) != steinerpt) { |
|
esymself(searchtet); |
|
} |
|
spintet = searchtet; |
|
while (1) { |
|
// Go to the bottom face of this tet. |
|
eprev(spintet, neightet); |
|
esymself(neightet); // [steinerpt, p1, p2, lpt] |
|
// Get the adjacent tet. |
|
fsymself(neightet); // [p1, steinerpt, p2, rpt] |
|
if (oppo(neightet) != rpt) { |
|
// Found a non-matching adjacent tet. |
|
break; |
|
} |
|
{ |
|
// [2017-10-15] Check if the tet is inverted? |
|
point chkp1 = org(neightet); |
|
point chkp2 = apex(neightet); |
|
REAL chkori = orient3d(rpt, lpt, chkp1, chkp2); |
|
if (chkori >= 0.0) { |
|
// Either inverted or degenerated. |
|
break; |
|
} |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) { |
|
// 'searchtet' is [p,d,p1,p2]. |
|
loc = ONEDGE; |
|
removeflag = 1; |
|
break; |
|
} |
|
} |
|
} // if (vt == FREESEGVERTEX) |
|
} |
|
|
|
if (!removeflag) { |
|
if (vt == FREESEGVERTEX) { |
|
// Check if the edge [lpt, rpt] exists. |
|
if (getedge(lpt, rpt, &searchtet)) { |
|
// We have recovered this edge. Shift the vertex into the volume. |
|
// We can recover this edge if the subfaces are not recovered yet. |
|
if (!checksubfaceflag) { |
|
// Remove the vertex from the surface mesh. |
|
// This will re-create the segment [lpt, rpt] and re-triangulate |
|
// all the facets at the segment. |
|
// Detach the subsegments from their surrounding tets. |
|
for (i = 0; i < 2; i++) { |
|
checkseg = (i == 0) ? leftseg : rightseg; |
|
sstpivot1(checkseg, neightet); |
|
spintet = neightet; |
|
while (1) { |
|
tssdissolve1(spintet); |
|
fnextself(spintet); |
|
if (spintet.tet == neightet.tet) break; |
|
} |
|
sstdissolve1(checkseg); |
|
} // i |
|
slawson = 1; // Do lawson flip after removal. |
|
spivot(rightseg, parentsh); // 'rightseg' has p as its origin. |
|
sremovevertex(steinerpt, &parentsh, &rightseg, slawson); |
|
// Clear the list for new subfaces. |
|
caveshbdlist->restart(); |
|
// Insert the new segment. |
|
sstbond1(rightseg, searchtet); |
|
spintet = searchtet; |
|
while (1) { |
|
tssbond1(spintet, rightseg); |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) break; |
|
} |
|
// The Steiner point has been shifted into the volume. |
|
setpointtype(steinerpt, FREEVOLVERTEX); |
|
st_segref_count--; |
|
st_volref_count++; |
|
return 1; |
|
} // if (!checksubfaceflag) |
|
} // if (getedge(...)) |
|
} // if (vt == FREESEGVERTEX) |
|
} // if (!removeflag) |
|
|
|
if (!removeflag) { |
|
return 0; |
|
} |
|
|
|
if (vt == FREESEGVERTEX) { |
|
// Detach the subsegments from their surronding tets. |
|
for (i = 0; i < 2; i++) { |
|
checkseg = (i == 0) ? leftseg : rightseg; |
|
sstpivot1(checkseg, neightet); |
|
spintet = neightet; |
|
while (1) { |
|
tssdissolve1(spintet); |
|
fnextself(spintet); |
|
if (spintet.tet == neightet.tet) break; |
|
} |
|
sstdissolve1(checkseg); |
|
} // i |
|
if (checksubfaceflag) { |
|
// Detach the subfaces at the subsegments from their attached tets. |
|
for (i = 0; i < 2; i++) { |
|
checkseg = (i == 0) ? leftseg : rightseg; |
|
spivot(checkseg, parentsh); |
|
if (parentsh.sh != NULL) { |
|
spinsh = parentsh; |
|
while (1) { |
|
stpivot(spinsh, neightet); |
|
if (neightet.tet != NULL) { |
|
tsdissolve(neightet); |
|
} |
|
sesymself(spinsh); |
|
stpivot(spinsh, neightet); |
|
if (neightet.tet != NULL) { |
|
tsdissolve(neightet); |
|
} |
|
stdissolve(spinsh); |
|
spivotself(spinsh); // Go to the next subface. |
|
if (spinsh.sh == parentsh.sh) break; |
|
} |
|
} |
|
} // i |
|
} // if (checksubfaceflag) |
|
} |
|
|
|
if (loc == INTETRAHEDRON) { |
|
// Collect the four tets containing 'p'. |
|
fliptets = new triface[4]; |
|
fliptets[0] = searchtet; // [p,d,a,b] |
|
for (i = 0; i < 2; i++) { |
|
fnext(fliptets[i], fliptets[i + 1]); // [p,d,b,c], [p,d,c,a] |
|
} |
|
eprev(fliptets[0], fliptets[3]); |
|
fnextself(fliptets[3]); // it is [a,p,b,c] |
|
eprevself(fliptets[3]); |
|
esymself(fliptets[3]); // [a,b,c,p]. |
|
// Remove p by a 4-to-1 flip. |
|
// flip41(fliptets, 1, 0, 0); |
|
/* |
|
{ // Do not flip if there are wrong number of subfaces inside. |
|
// Check if there are three subfaces at 'p'. |
|
triface newface; face flipshs[3]; |
|
int spivot = 0, scount = 0; |
|
for (i = 0; i < 3; i++) { |
|
fnext(fliptets[3], newface); // [a,b,p,d],[b,c,p,d],[c,a,p,d]. |
|
tspivot(newface, flipshs[i]); |
|
if (flipshs[i].sh != NULL) { |
|
spivot = i; // Remember this subface. |
|
scount++; |
|
} |
|
enextself(fliptets[3]); |
|
} |
|
if (scount > 0) { |
|
// There are three subfaces connecting at p. |
|
// Only do flip if a 3-to-1 flip is possible at p at the bottom face. |
|
if (scount != 3) { |
|
// Wrong number of subfaces. Do not flip. |
|
delete [] fliptets; |
|
return 0; |
|
} |
|
// [2018-03-07] an old fix, not 100% safe. |
|
// if (scount < 3) { |
|
// // The new subface is one of {[a,b,d], [b,c,d], [c,a,d]}. |
|
// // assert(scount == 1); // spivot >= 0 |
|
// if (scount != 1) { |
|
// // Wrong number of subfaces. Do not flip. |
|
// delete [] fliptets; |
|
// return 0; |
|
// } |
|
//} |
|
} |
|
} |
|
*/ |
|
if (vt == FREEFACETVERTEX) { |
|
// [2018-03-08] Check if the last 4-to-1 flip is valid. |
|
// fliptets[0],[1],[2] are [p,d,a,b],[p,d,b,c],[p,d,c,a] |
|
triface checktet, chkface; |
|
for (i = 0; i < 3; i++) { |
|
enext(fliptets[i], checktet); |
|
esymself(checktet); // [a,d,b,p],[b,d,c,p],[c,d,a,p] |
|
int scount = 0; |
|
int k; |
|
for (k = 0; k < 3; k++) { |
|
esym(checktet, chkface); |
|
if (issubface(chkface)) scount++; |
|
enextself(checktet); |
|
} |
|
if (scount == 3) { |
|
break; // Found a tet which support a 3-to-1 flip. |
|
} else if (scount == 2) { |
|
// This is a strange configuration. Debug it. |
|
// Do not do this flip. |
|
delete[] fliptets; |
|
return 0; |
|
} |
|
} |
|
if (i == 3) { |
|
// No tet in [p,d,a,b],[p,d,b,c],[p,d,c,a] support it. |
|
int scount = 0; |
|
for (i = 0; i < 3; i++) { |
|
eprev(fliptets[i], checktet); |
|
esymself(checktet); // [p,a,b,d],[p,b,c,d],[p,c,a,d] |
|
if (issubface(chkface)) scount++; |
|
} |
|
if (scount != 3) { |
|
// Do not do this flip. |
|
delete[] fliptets; |
|
return 0; |
|
} |
|
} |
|
} // if (vt == FREEFACETVERTEX) |
|
flip41(fliptets, 1, &fc); |
|
// recenttet = fliptets[0]; |
|
} else if (loc == ONFACE) { |
|
// Let the original two tets be [a,b,c,d] and [b,a,c,e]. And p is in |
|
// face [a,b,c]. Let 'searchtet' be the tet [p,d,a,b]. |
|
// Collect the six tets containing 'p'. |
|
fliptets = new triface[6]; |
|
fliptets[0] = searchtet; // [p,d,a,b] |
|
for (i = 0; i < 2; i++) { |
|
fnext(fliptets[i], fliptets[i + 1]); // [p,d,b,c], [p,d,c,a] |
|
} |
|
eprev(fliptets[0], fliptets[3]); |
|
fnextself(fliptets[3]); // [a,p,b,e] |
|
esymself(fliptets[3]); // [p,a,e,b] |
|
eprevself(fliptets[3]); // [e,p,a,b] |
|
for (i = 3; i < 5; i++) { |
|
fnext(fliptets[i], fliptets[i + 1]); // [e,p,b,c], [e,p,c,a] |
|
} |
|
if (vt == FREEFACETVERTEX) { |
|
// We need to determine the location of three subfaces at p. |
|
valence = 0; // Re-use it. |
|
for (i = 3; i < 6; i++) { |
|
if (issubface(fliptets[i])) valence++; |
|
} |
|
if (valence > 0) { |
|
// We must do 3-to-2 flip in the upper part. We simply re-arrange |
|
// the six tets. |
|
for (i = 0; i < 3; i++) { |
|
esym(fliptets[i + 3], wrktets[i]); |
|
esym(fliptets[i], fliptets[i + 3]); |
|
fliptets[i] = wrktets[i]; |
|
} |
|
// Swap the last two pairs, i.e., [1]<->[[2], and [4]<->[5] |
|
wrktets[1] = fliptets[1]; |
|
fliptets[1] = fliptets[2]; |
|
fliptets[2] = wrktets[1]; |
|
wrktets[1] = fliptets[4]; |
|
fliptets[4] = fliptets[5]; |
|
fliptets[5] = wrktets[1]; |
|
} |
|
// [2018-03-08] Check if the last 4-to-1 flip is valid. |
|
// fliptets[0],[1],[2] are [p,d,a,b],[p,d,b,c],[p,d,c,a] |
|
triface checktet, chkface; |
|
for (i = 0; i < 3; i++) { |
|
enext(fliptets[i], checktet); |
|
esymself(checktet); // [a,d,b,p],[b,d,c,p],[c,d,a,p] |
|
int scount = 0; |
|
int k; |
|
for (k = 0; k < 3; k++) { |
|
esym(checktet, chkface); |
|
if (issubface(chkface)) scount++; |
|
enextself(checktet); |
|
} |
|
if (scount == 3) { |
|
break; // Found a tet which support a 3-to-1 flip. |
|
} else if (scount == 2) { |
|
// This is a strange configuration. Debug it. |
|
// Do not do this flip. |
|
delete[] fliptets; |
|
return 0; |
|
} |
|
} |
|
if (i == 3) { |
|
// No tet in [p,d,a,b],[p,d,b,c],[p,d,c,a] support it. |
|
int scount = 0; |
|
for (i = 0; i < 3; i++) { |
|
eprev(fliptets[i], checktet); |
|
esymself(checktet); // [p,a,b,d],[p,b,c,d],[p,c,a,d] |
|
if (issubface(chkface)) scount++; |
|
} |
|
if (scount != 3) { |
|
// Do not do this flip. |
|
delete[] fliptets; |
|
return 0; |
|
} |
|
} |
|
} // vt == FREEFACETVERTEX |
|
// Remove p by a 6-to-2 flip, which is a combination of two flips: |
|
// a 3-to-2 (deletes the edge [e,p]), and |
|
// a 4-to-1 (deletes the vertex p). |
|
// First do a 3-to-2 flip on [e,p,a,b],[e,p,b,c],[e,p,c,a]. It creates |
|
// two new tets: [a,b,c,p] and [b,a,c,e]. The new tet [a,b,c,p] is |
|
// degenerate (has zero volume). It will be deleted in the followed |
|
// 4-to-1 flip. |
|
// flip32(&(fliptets[3]), 1, 0, 0); |
|
flip32(&(fliptets[3]), 1, &fc); |
|
// Second do a 4-to-1 flip on [p,d,a,b],[p,d,b,c],[p,d,c,a],[a,b,c,p]. |
|
// This creates a new tet [a,b,c,d]. |
|
// flip41(fliptets, 1, 0, 0); |
|
flip41(fliptets, 1, &fc); |
|
// recenttet = fliptets[0]; |
|
} else if (loc == ONEDGE) { |
|
// Let the original edge be [e,d] and p is in [e,d]. Assume there are n |
|
// tets sharing at edge [e,d] originally. We number the link vertices |
|
// of [e,d]: p_0, p_1, ..., p_n-1. 'searchtet' is [p,d,p_0,p_1]. |
|
// Count the number of tets at edge [e,p] and [p,d] (this is n). |
|
n = 0; |
|
spintet = searchtet; |
|
while (1) { |
|
n++; |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) break; |
|
} |
|
// Collect the 2n tets containing 'p'. |
|
fliptets = new triface[2 * n]; |
|
fliptets[0] = searchtet; // [p,b,p_0,p_1] |
|
for (i = 0; i < (n - 1); i++) { |
|
fnext(fliptets[i], fliptets[i + 1]); // [p,d,p_i,p_i+1]. |
|
} |
|
eprev(fliptets[0], fliptets[n]); |
|
fnextself(fliptets[n]); // [p_0,p,p_1,e] |
|
esymself(fliptets[n]); // [p,p_0,e,p_1] |
|
eprevself(fliptets[n]); // [e,p,p_0,p_1] |
|
for (i = n; i < (2 * n - 1); i++) { |
|
fnext(fliptets[i], fliptets[i + 1]); // [e,p,p_i,p_i+1]. |
|
} |
|
// Remove p by a 2n-to-n flip, it is a sequence of n flips: |
|
// - Do a 2-to-3 flip on |
|
// [p_0,p_1,p,d] and |
|
// [p,p_1,p_0,e]. |
|
// This produces: |
|
// [e,d,p_0,p_1], |
|
// [e,d,p_1,p] (degenerated), and |
|
// [e,d,p,p_0] (degenerated). |
|
wrktets[0] = fliptets[0]; // [p,d,p_0,p_1] |
|
eprevself(wrktets[0]); // [p_0,p,d,p_1] |
|
esymself(wrktets[0]); // [p,p_0,p_1,d] |
|
enextself(wrktets[0]); // [p_0,p_1,p,d] [0] |
|
wrktets[1] = fliptets[n]; // [e,p,p_0,p_1] |
|
enextself(wrktets[1]); // [p,p_0,e,p_1] |
|
esymself(wrktets[1]); // [p_0,p,p_1,e] |
|
eprevself(wrktets[1]); // [p_1,p_0,p,e] [1] |
|
// flip23(wrktets, 1, 0, 0); |
|
flip23(wrktets, 1, &fc); |
|
// Save the new tet [e,d,p,p_0] (degenerated). |
|
fliptets[n] = wrktets[2]; |
|
// Save the new tet [e,d,p_0,p_1]. |
|
fliptets[0] = wrktets[0]; |
|
// - Repeat from i = 1 to n-2: (n - 2) flips |
|
// - Do a 3-to-2 flip on |
|
// [p,p_i,d,e], |
|
// [p,p_i,e,p_i+1], and |
|
// [p,p_i,p_i+1,d]. |
|
// This produces: |
|
// [d,e,p_i+1,p_i], and |
|
// [e,d,p_i+1,p] (degenerated). |
|
for (i = 1; i < (n - 1); i++) { |
|
wrktets[0] = wrktets[1]; // [e,d,p_i,p] (degenerated). |
|
enextself(wrktets[0]); // [d,p_i,e,p] (...) |
|
esymself(wrktets[0]); // [p_i,d,p,e] (...) |
|
eprevself(wrktets[0]); // [p,p_i,d,e] (degenerated) [0]. |
|
wrktets[1] = fliptets[n + i]; // [e,p,p_i,p_i+1] |
|
enextself(wrktets[1]); // [p,p_i,e,p_i+1] [1] |
|
wrktets[2] = fliptets[i]; // [p,d,p_i,p_i+1] |
|
eprevself(wrktets[2]); // [p_i,p,d,p_i+1] |
|
esymself(wrktets[2]); // [p,p_i,p_i+1,d] [2] |
|
// flip32(wrktets, 1, 0, 0); |
|
flip32(wrktets, 1, &fc); |
|
// Save the new tet [e,d,p_i,p_i+1]. // FOR DEBUG ONLY |
|
fliptets[i] = wrktets[0]; // [d,e,p_i+1,p_i] // FOR DEBUG ONLY |
|
esymself(fliptets[i]); // [e,d,p_i,p_i+1] // FOR DEBUG ONLY |
|
} |
|
// - Do a 4-to-1 flip on |
|
// [p,p_0,e,d], [d,e,p_0,p], |
|
// [p,p_0,d,p_n-1], [e,p_n-1,p_0,p], |
|
// [p,p_0,p_n-1,e], [p_0,p_n-1,d,p], and |
|
// [e,d,p_n-1,p]. |
|
// This produces |
|
// [e,d,p_n-1,p_0] and |
|
// deletes p. |
|
wrktets[3] = wrktets[1]; // [e,d,p_n-1,p] (degenerated) [3] |
|
wrktets[0] = fliptets[n]; // [e,d,p,p_0] (degenerated) |
|
eprevself(wrktets[0]); // [p,e,d,p_0] (...) |
|
esymself(wrktets[0]); // [e,p,p_0,d] (...) |
|
enextself(wrktets[0]); // [p,p_0,e,d] (degenerated) [0] |
|
wrktets[1] = fliptets[n - 1]; // [p,d,p_n-1,p_0] |
|
esymself(wrktets[1]); // [d,p,p_0,p_n-1] |
|
enextself(wrktets[1]); // [p,p_0,d,p_n-1] [1] |
|
wrktets[2] = fliptets[2 * n - 1]; // [e,p,p_n-1,p_0] |
|
enextself(wrktets[2]); // [p_p_n-1,e,p_0] |
|
esymself(wrktets[2]); // [p_n-1,p,p_0,e] |
|
enextself(wrktets[2]); // [p,p_0,p_n-1,e] [2] |
|
// flip41(wrktets, 1, 0, 0); |
|
flip41(wrktets, 1, &fc); |
|
// Save the new tet [e,d,p_n-1,p_0] // FOR DEBUG ONLY |
|
fliptets[n - 1] = wrktets[0]; // [e,d,p_n-1,p_0] // FOR DEBUG ONLY |
|
// recenttet = fliptets[0]; |
|
} |
|
|
|
delete[] fliptets; |
|
|
|
if (vt == FREESEGVERTEX) { |
|
// Remove the vertex from the surface mesh. |
|
// This will re-create the segment [lpt, rpt] and re-triangulate |
|
// all the facets at the segment. |
|
// Only do lawson flip when subfaces are not recovery yet. |
|
slawson = (checksubfaceflag ? 0 : 1); |
|
spivot(rightseg, parentsh); // 'rightseg' has p as its origin. |
|
sremovevertex(steinerpt, &parentsh, &rightseg, slawson); |
|
|
|
// The original segment is returned in 'rightseg'. |
|
rightseg.shver = 0; |
|
// Insert the new segment. |
|
point2tetorg(lpt, searchtet); |
|
finddirection(&searchtet, rpt); |
|
sstbond1(rightseg, searchtet); |
|
spintet = searchtet; |
|
while (1) { |
|
tssbond1(spintet, rightseg); |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) break; |
|
} |
|
|
|
if (checksubfaceflag) { |
|
// Insert subfaces at segment [lpt,rpt] into the tetrahedralization. |
|
spivot(rightseg, parentsh); |
|
if (parentsh.sh != NULL) { |
|
spinsh = parentsh; |
|
while (1) { |
|
if (sorg(spinsh) != lpt) { |
|
sesymself(spinsh); |
|
} |
|
apexpt = sapex(spinsh); |
|
// Find the adjacent tet of [lpt,rpt,apexpt]; |
|
spintet = searchtet; |
|
while (1) { |
|
if (apex(spintet) == apexpt) { |
|
tsbond(spintet, spinsh); |
|
sesymself(spinsh); // Get to another side of this face. |
|
fsym(spintet, neightet); |
|
tsbond(neightet, spinsh); |
|
sesymself(spinsh); // Get back to the original side. |
|
break; |
|
} |
|
fnextself(spintet); |
|
} |
|
spivotself(spinsh); |
|
if (spinsh.sh == parentsh.sh) break; |
|
} |
|
} |
|
} // if (checksubfaceflag) |
|
|
|
// Clear the set of new subfaces. |
|
caveshbdlist->restart(); |
|
} // if (vt == FREESEGVERTEX) |
|
|
|
// The point has been removed. |
|
if (pointtype(steinerpt) != UNUSEDVERTEX) { |
|
setpointtype(steinerpt, UNUSEDVERTEX); |
|
unuverts++; |
|
} |
|
if (vt != VOLVERTEX) { |
|
// Update the correspinding counters. |
|
if (vt == FREESEGVERTEX) { |
|
st_segref_count--; |
|
} else if (vt == FREEFACETVERTEX) { |
|
st_facref_count--; |
|
} else if (vt == FREEVOLVERTEX) { |
|
st_volref_count--; |
|
} |
|
if (steinerleft > 0) steinerleft++; |
|
} |
|
|
|
return 1; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// suppressbdrysteinerpoint() Suppress a boundary Steiner point // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::suppressbdrysteinerpoint(point steinerpt) { |
|
face parentsh, spinsh, *parysh; |
|
face leftseg, rightseg; |
|
point lpt = NULL, rpt = NULL; |
|
int i; |
|
|
|
verttype vt = pointtype(steinerpt); |
|
|
|
if (vt == FREESEGVERTEX) { |
|
sdecode(point2sh(steinerpt), leftseg); |
|
leftseg.shver = 0; |
|
if (sdest(leftseg) == steinerpt) { |
|
senext(leftseg, rightseg); |
|
spivotself(rightseg); |
|
rightseg.shver = 0; |
|
} else { |
|
rightseg = leftseg; |
|
senext2(rightseg, leftseg); |
|
spivotself(leftseg); |
|
leftseg.shver = 0; |
|
} |
|
lpt = sorg(leftseg); |
|
rpt = sdest(rightseg); |
|
if (b->verbose > 2) { |
|
printf(" Suppressing Steiner point %d in segment (%d, %d).\n", |
|
pointmark(steinerpt), pointmark(lpt), pointmark(rpt)); |
|
} |
|
// Get all subfaces at the left segment [lpt, steinerpt]. |
|
spivot(leftseg, parentsh); |
|
if (parentsh.sh != NULL) { |
|
// It is not a dangling segment. |
|
spinsh = parentsh; |
|
while (1) { |
|
cavesegshlist->newindex((void**)&parysh); |
|
*parysh = spinsh; |
|
// Orient the face consistently. |
|
if (sorg(*parysh) != sorg(parentsh)) sesymself(*parysh); |
|
spivotself(spinsh); |
|
if (spinsh.sh == NULL) break; |
|
if (spinsh.sh == parentsh.sh) break; |
|
} |
|
} |
|
if (cavesegshlist->objects < 2) { |
|
// It is a single segment. Not handle it yet. |
|
cavesegshlist->restart(); |
|
return 0; |
|
} |
|
} else if (vt == FREEFACETVERTEX) { |
|
if (b->verbose > 2) { |
|
printf(" Suppressing Steiner point %d from facet.\n", pointmark(steinerpt)); |
|
} |
|
sdecode(point2sh(steinerpt), parentsh); |
|
// A facet Steiner point. There are exactly two sectors. |
|
for (i = 0; i < 2; i++) { |
|
cavesegshlist->newindex((void**)&parysh); |
|
*parysh = parentsh; |
|
sesymself(parentsh); |
|
} |
|
} else { |
|
return 0; |
|
} |
|
|
|
triface searchtet, neightet, *parytet; |
|
point pa, pb, pc, pd; |
|
REAL v1[3], v2[3], len, u; |
|
|
|
REAL startpt[3] = |
|
{ |
|
0, |
|
}, |
|
samplept[3] = |
|
{ |
|
0, |
|
}, |
|
candpt[3] = { |
|
0, |
|
}; |
|
REAL ori, minvol, smallvol; |
|
int samplesize; |
|
int it, j, k; |
|
|
|
int n = (int)cavesegshlist->objects; |
|
point* newsteiners = new point[n]; |
|
for (i = 0; i < n; i++) |
|
newsteiners[i] = NULL; |
|
|
|
// Search for each sector an interior vertex. |
|
for (i = 0; i < cavesegshlist->objects; i++) { |
|
parysh = (face*)fastlookup(cavesegshlist, i); |
|
stpivot(*parysh, searchtet); |
|
// Skip it if it is outside. |
|
if (ishulltet(searchtet)) continue; |
|
// Get the "half-ball". Tets in 'cavetetlist' all contain 'steinerpt' as |
|
// opposite. Subfaces in 'caveshlist' all contain 'steinerpt' as apex. |
|
// Moreover, subfaces are oriented towards the interior of the ball. |
|
setpoint2tet(steinerpt, encode(searchtet)); |
|
getvertexstar(0, steinerpt, cavetetlist, NULL, caveshlist); |
|
// Calculate the searching vector. |
|
pa = sorg(*parysh); |
|
pb = sdest(*parysh); |
|
pc = sapex(*parysh); |
|
facenormal(pa, pb, pc, v1, 1, NULL); |
|
len = sqrt(dot(v1, v1)); |
|
v1[0] /= len; |
|
v1[1] /= len; |
|
v1[2] /= len; |
|
if (vt == FREESEGVERTEX) { |
|
parysh = (face*)fastlookup(cavesegshlist, (i + 1) % n); |
|
pd = sapex(*parysh); |
|
facenormal(pb, pa, pd, v2, 1, NULL); |
|
len = sqrt(dot(v2, v2)); |
|
v2[0] /= len; |
|
v2[1] /= len; |
|
v2[2] /= len; |
|
// Average the two vectors. |
|
v1[0] = 0.5 * (v1[0] + v2[0]); |
|
v1[1] = 0.5 * (v1[1] + v2[1]); |
|
v1[2] = 0.5 * (v1[2] + v2[2]); |
|
} |
|
// Search the intersection of the ray starting from 'steinerpt' to |
|
// the search direction 'v1' and the shell of the half-ball. |
|
// - Construct an endpoint. |
|
len = distance(pa, pb); |
|
v2[0] = steinerpt[0] + len * v1[0]; |
|
v2[1] = steinerpt[1] + len * v1[1]; |
|
v2[2] = steinerpt[2] + len * v1[2]; |
|
for (j = 0; j < cavetetlist->objects; j++) { |
|
parytet = (triface*)fastlookup(cavetetlist, j); |
|
pa = org(*parytet); |
|
pb = dest(*parytet); |
|
pc = apex(*parytet); |
|
// Test if the ray startpt->v2 lies in the cone: where 'steinerpt' |
|
// is the apex, and three sides are defined by the triangle |
|
// [pa, pb, pc]. |
|
ori = orient3d(steinerpt, pa, pb, v2); |
|
if (ori >= 0) { |
|
ori = orient3d(steinerpt, pb, pc, v2); |
|
if (ori >= 0) { |
|
ori = orient3d(steinerpt, pc, pa, v2); |
|
if (ori >= 0) { |
|
// Found! Calculate the intersection. |
|
planelineint(pa, pb, pc, steinerpt, v2, startpt, &u); |
|
break; |
|
} |
|
} |
|
} |
|
} // j |
|
if (j == cavetetlist->objects) { |
|
break; // There is no intersection!! Debug is needed. |
|
} |
|
// Close the ball by adding the subfaces. |
|
for (j = 0; j < caveshlist->objects; j++) { |
|
parysh = (face*)fastlookup(caveshlist, j); |
|
stpivot(*parysh, neightet); |
|
cavetetlist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
// Search a best point inside the segment [startpt, steinerpt]. |
|
it = 0; |
|
samplesize = 100; |
|
v1[0] = steinerpt[0] - startpt[0]; |
|
v1[1] = steinerpt[1] - startpt[1]; |
|
v1[2] = steinerpt[2] - startpt[2]; |
|
minvol = -1.0; |
|
while (it < 3) { |
|
for (j = 1; j < samplesize - 1; j++) { |
|
samplept[0] = startpt[0] + ((REAL)j / (REAL)samplesize) * v1[0]; |
|
samplept[1] = startpt[1] + ((REAL)j / (REAL)samplesize) * v1[1]; |
|
samplept[2] = startpt[2] + ((REAL)j / (REAL)samplesize) * v1[2]; |
|
// Find the minimum volume for 'samplept'. |
|
smallvol = -1; |
|
for (k = 0; k < cavetetlist->objects; k++) { |
|
parytet = (triface*)fastlookup(cavetetlist, k); |
|
pa = org(*parytet); |
|
pb = dest(*parytet); |
|
pc = apex(*parytet); |
|
ori = orient3d(pb, pa, pc, samplept); |
|
{ |
|
// [2017-10-15] Rounding |
|
REAL lab = distance(pa, pb); |
|
REAL lbc = distance(pb, pc); |
|
REAL lca = distance(pc, pa); |
|
REAL lv = (lab + lbc + lca) / 3.0; |
|
REAL l3 = lv * lv * lv; |
|
if (fabs(ori) / l3 < 1e-8) ori = 0.0; |
|
} |
|
if (ori <= 0) { |
|
break; // An invalid tet. |
|
} |
|
if (smallvol == -1) { |
|
smallvol = ori; |
|
} else { |
|
if (ori < smallvol) smallvol = ori; |
|
} |
|
} // k |
|
if (k == cavetetlist->objects) { |
|
// Found a valid point. Remember it. |
|
if (minvol == -1.0) { |
|
candpt[0] = samplept[0]; |
|
candpt[1] = samplept[1]; |
|
candpt[2] = samplept[2]; |
|
minvol = smallvol; |
|
} else { |
|
if (minvol < smallvol) { |
|
// It is a better location. Remember it. |
|
candpt[0] = samplept[0]; |
|
candpt[1] = samplept[1]; |
|
candpt[2] = samplept[2]; |
|
minvol = smallvol; |
|
} else { |
|
// No improvement of smallest volume. |
|
// Since we are searching along the line [startpt, steinerpy], |
|
// The smallest volume can only be decreased later. |
|
break; |
|
} |
|
} |
|
} |
|
} // j |
|
if (minvol > 0) break; |
|
samplesize *= 10; |
|
it++; |
|
} // while (it < 3) |
|
if (minvol == -1.0) { |
|
// Failed to find a valid point. |
|
cavetetlist->restart(); |
|
caveshlist->restart(); |
|
break; |
|
} |
|
// Create a new Steiner point inside this section. |
|
makepoint(&(newsteiners[i]), FREEVOLVERTEX); |
|
newsteiners[i][0] = candpt[0]; |
|
newsteiners[i][1] = candpt[1]; |
|
newsteiners[i][2] = candpt[2]; |
|
cavetetlist->restart(); |
|
caveshlist->restart(); |
|
} // i |
|
|
|
if (i < cavesegshlist->objects) { |
|
// Failed to suppress the vertex. |
|
for (; i > 0; i--) { |
|
if (newsteiners[i - 1] != NULL) { |
|
pointdealloc(newsteiners[i - 1]); |
|
} |
|
} |
|
delete[] newsteiners; |
|
cavesegshlist->restart(); |
|
return 0; |
|
} |
|
|
|
// Remove p from the segment or the facet. |
|
triface newtet, newface, spintet; |
|
face newsh, neighsh; |
|
face *splitseg, checkseg; |
|
int slawson = 0; // Do not do flip afterword. |
|
int t1ver; |
|
|
|
if (vt == FREESEGVERTEX) { |
|
// Detach 'leftseg' and 'rightseg' from their adjacent tets. |
|
// These two subsegments will be deleted. |
|
sstpivot1(leftseg, neightet); |
|
spintet = neightet; |
|
while (1) { |
|
tssdissolve1(spintet); |
|
fnextself(spintet); |
|
if (spintet.tet == neightet.tet) break; |
|
} |
|
sstpivot1(rightseg, neightet); |
|
spintet = neightet; |
|
while (1) { |
|
tssdissolve1(spintet); |
|
fnextself(spintet); |
|
if (spintet.tet == neightet.tet) break; |
|
} |
|
} |
|
|
|
// Loop through all sectors bounded by facets at this segment. |
|
// Within each sector, create a new Steiner point 'np', and replace 'p' |
|
// by 'np' for all tets in this sector. |
|
for (i = 0; i < cavesegshlist->objects; i++) { |
|
parysh = (face*)fastlookup(cavesegshlist, i); |
|
// 'parysh' is the face [lpt, steinerpt, #]. |
|
stpivot(*parysh, neightet); |
|
// Get all tets in this sector. |
|
setpoint2tet(steinerpt, encode(neightet)); |
|
getvertexstar(0, steinerpt, cavetetlist, NULL, caveshlist); |
|
if (!ishulltet(neightet)) { |
|
// Within each tet in the ball, replace 'p' by 'np'. |
|
for (j = 0; j < cavetetlist->objects; j++) { |
|
parytet = (triface*)fastlookup(cavetetlist, j); |
|
setoppo(*parytet, newsteiners[i]); |
|
} // j |
|
// Point to a parent tet. |
|
parytet = (triface*)fastlookup(cavetetlist, 0); |
|
setpoint2tet(newsteiners[i], (tetrahedron)(parytet->tet)); |
|
st_volref_count++; |
|
if (steinerleft > 0) steinerleft--; |
|
} |
|
// Disconnect the set of boundary faces. They're temporarily open faces. |
|
// They will be connected to the new tets after 'p' is removed. |
|
for (j = 0; j < caveshlist->objects; j++) { |
|
// Get a boundary face. |
|
parysh = (face*)fastlookup(caveshlist, j); |
|
stpivot(*parysh, neightet); |
|
// assert(apex(neightet) == newpt); |
|
// Clear the connection at this face. |
|
dissolve(neightet); |
|
tsdissolve(neightet); |
|
} |
|
// Clear the working lists. |
|
cavetetlist->restart(); |
|
caveshlist->restart(); |
|
} // i |
|
cavesegshlist->restart(); |
|
|
|
if (vt == FREESEGVERTEX) { |
|
spivot(rightseg, parentsh); // 'rightseg' has p as its origin. |
|
splitseg = &rightseg; |
|
} else { |
|
if (sdest(parentsh) == steinerpt) { |
|
senextself(parentsh); |
|
} else if (sapex(parentsh) == steinerpt) { |
|
senext2self(parentsh); |
|
} |
|
splitseg = NULL; |
|
} |
|
sremovevertex(steinerpt, &parentsh, splitseg, slawson); |
|
|
|
if (vt == FREESEGVERTEX) { |
|
// The original segment is returned in 'rightseg'. |
|
rightseg.shver = 0; |
|
} |
|
|
|
// For each new subface, create two new tets at each side of it. |
|
// Both of the two new tets have its opposite be dummypoint. |
|
for (i = 0; i < caveshbdlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshbdlist, i); |
|
sinfect(*parysh); // Mark it for connecting new tets. |
|
newsh = *parysh; |
|
pa = sorg(newsh); |
|
pb = sdest(newsh); |
|
pc = sapex(newsh); |
|
maketetrahedron(&newtet); |
|
maketetrahedron(&neightet); |
|
setvertices(newtet, pa, pb, pc, dummypoint); |
|
setvertices(neightet, pb, pa, pc, dummypoint); |
|
bond(newtet, neightet); |
|
tsbond(newtet, newsh); |
|
sesymself(newsh); |
|
tsbond(neightet, newsh); |
|
} |
|
// Temporarily increase the hullsize. |
|
hullsize += (caveshbdlist->objects * 2l); |
|
|
|
if (vt == FREESEGVERTEX) { |
|
// Connecting new tets at the recovered segment. |
|
spivot(rightseg, parentsh); |
|
spinsh = parentsh; |
|
while (1) { |
|
if (sorg(spinsh) != lpt) sesymself(spinsh); |
|
// Get the new tet at this subface. |
|
stpivot(spinsh, newtet); |
|
tssbond1(newtet, rightseg); |
|
// Go to the other face at this segment. |
|
spivot(spinsh, neighsh); |
|
if (sorg(neighsh) != lpt) sesymself(neighsh); |
|
sesymself(neighsh); |
|
stpivot(neighsh, neightet); |
|
tssbond1(neightet, rightseg); |
|
sstbond1(rightseg, neightet); |
|
// Connecting two adjacent tets at this segment. |
|
esymself(newtet); |
|
esymself(neightet); |
|
// Connect the two tets (at rightseg) together. |
|
bond(newtet, neightet); |
|
// Go to the next subface. |
|
spivotself(spinsh); |
|
if (spinsh.sh == parentsh.sh) break; |
|
} |
|
} |
|
|
|
// Connecting new tets at new subfaces together. |
|
for (i = 0; i < caveshbdlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshbdlist, i); |
|
newsh = *parysh; |
|
// assert(sinfected(newsh)); |
|
// Each new subface contains two new tets. |
|
for (k = 0; k < 2; k++) { |
|
stpivot(newsh, newtet); |
|
for (j = 0; j < 3; j++) { |
|
// Check if this side is open. |
|
esym(newtet, newface); |
|
if (newface.tet[newface.ver & 3] == NULL) { |
|
// An open face. Connect it to its adjacent tet. |
|
sspivot(newsh, checkseg); |
|
if (checkseg.sh != NULL) { |
|
// A segment. It must not be the recovered segment. |
|
tssbond1(newtet, checkseg); |
|
sstbond1(checkseg, newtet); |
|
} |
|
spivot(newsh, neighsh); |
|
if (neighsh.sh != NULL) { |
|
// The adjacent subface exists. It's not a dangling segment. |
|
if (sorg(neighsh) != sdest(newsh)) sesymself(neighsh); |
|
stpivot(neighsh, neightet); |
|
if (sinfected(neighsh)) { |
|
esymself(neightet); |
|
} else { |
|
// Search for an open face at this edge. |
|
spintet = neightet; |
|
while (1) { |
|
esym(spintet, searchtet); |
|
fsym(searchtet, spintet); |
|
if (spintet.tet == NULL) break; |
|
} |
|
// Found an open face at 'searchtet'. |
|
neightet = searchtet; |
|
} |
|
} else { |
|
// The edge (at 'newsh') is a dangling segment. |
|
// Get an adjacent tet at this segment. |
|
sstpivot1(checkseg, neightet); |
|
if (org(neightet) != sdest(newsh)) esymself(neightet); |
|
// Search for an open face at this edge. |
|
spintet = neightet; |
|
while (1) { |
|
esym(spintet, searchtet); |
|
fsym(searchtet, spintet); |
|
if (spintet.tet == NULL) break; |
|
} |
|
// Found an open face at 'searchtet'. |
|
neightet = searchtet; |
|
} |
|
pc = apex(newface); |
|
if (apex(neightet) == steinerpt) { |
|
// Exterior case. The 'neightet' is a hull tet which contain |
|
// 'steinerpt'. It will be deleted after 'steinerpt' is removed. |
|
caveoldtetlist->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
// Connect newface to the adjacent hull tet of 'neightet', which |
|
// has the same edge as 'newface', and does not has 'steinerpt'. |
|
fnextself(neightet); |
|
} else { |
|
if (pc == dummypoint) { |
|
if (apex(neightet) != dummypoint) { |
|
setapex(newface, apex(neightet)); |
|
// A hull tet has turned into an interior tet. |
|
hullsize--; // Must update the hullsize. |
|
} |
|
} |
|
} |
|
bond(newface, neightet); |
|
} // if (newface.tet[newface.ver & 3] == NULL) |
|
enextself(newtet); |
|
senextself(newsh); |
|
} // j |
|
sesymself(newsh); |
|
} // k |
|
} // i |
|
|
|
// Unmark all new subfaces. |
|
for (i = 0; i < caveshbdlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshbdlist, i); |
|
suninfect(*parysh); |
|
} |
|
caveshbdlist->restart(); |
|
|
|
if (caveoldtetlist->objects > 0l) { |
|
// Delete hull tets which contain 'steinerpt'. |
|
for (i = 0; i < caveoldtetlist->objects; i++) { |
|
parytet = (triface*)fastlookup(caveoldtetlist, i); |
|
tetrahedrondealloc(parytet->tet); |
|
} |
|
// Must update the hullsize. |
|
hullsize -= caveoldtetlist->objects; |
|
caveoldtetlist->restart(); |
|
} |
|
|
|
setpointtype(steinerpt, UNUSEDVERTEX); |
|
unuverts++; |
|
if (vt == FREESEGVERTEX) { |
|
st_segref_count--; |
|
} else { // vt == FREEFACETVERTEX |
|
st_facref_count--; |
|
} |
|
if (steinerleft > 0) steinerleft++; // We've removed a Steiner points. |
|
|
|
point* parypt; |
|
int steinercount = 0; |
|
|
|
int bak_fliplinklevel = b->fliplinklevel; |
|
b->fliplinklevel = 100000; // Unlimited flip level. |
|
|
|
// Try to remove newly added Steiner points. |
|
for (i = 0; i < n; i++) { |
|
if (newsteiners[i] != NULL) { |
|
if (!removevertexbyflips(newsteiners[i])) { |
|
if (b->supsteiner_level > 0) { // Not -Y/0 |
|
// Save it in subvertstack for removal. |
|
subvertstack->newindex((void**)&parypt); |
|
*parypt = newsteiners[i]; |
|
} |
|
steinercount++; |
|
} |
|
} |
|
} |
|
|
|
b->fliplinklevel = bak_fliplinklevel; |
|
|
|
if (steinercount > 0) { |
|
if (b->verbose > 2) { |
|
printf(" Added %d interior Steiner points.\n", steinercount); |
|
} |
|
} |
|
|
|
delete[] newsteiners; |
|
|
|
return 1; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// suppresssteinerpoints() Suppress Steiner points. // |
|
// // |
|
// All Steiner points have been saved in 'subvertstack' in the routines // |
|
// carveholes() and suppresssteinerpoint(). // |
|
// Each Steiner point is either removed or shifted into the interior. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::suppresssteinerpoints() { |
|
|
|
if (!b->quiet) { |
|
printf("Suppressing Steiner points ...\n"); |
|
} |
|
|
|
point rempt, *parypt; |
|
|
|
int bak_fliplinklevel = b->fliplinklevel; |
|
b->fliplinklevel = 100000; // Unlimited flip level. |
|
int suppcount = 0, remcount = 0; |
|
int i; |
|
|
|
// Try to suppress boundary Steiner points. |
|
for (i = 0; i < subvertstack->objects; i++) { |
|
parypt = (point*)fastlookup(subvertstack, i); |
|
rempt = *parypt; |
|
if (pointtype(rempt) != UNUSEDVERTEX) { |
|
if ((pointtype(rempt) == FREESEGVERTEX) || (pointtype(rempt) == FREEFACETVERTEX)) { |
|
if (suppressbdrysteinerpoint(rempt)) { |
|
suppcount++; |
|
} |
|
} |
|
} |
|
} // i |
|
|
|
if (suppcount > 0) { |
|
if (b->verbose) { |
|
printf(" Suppressed %d boundary Steiner points.\n", suppcount); |
|
} |
|
} |
|
|
|
if (b->supsteiner_level > 0) { // -Y/1 |
|
for (i = 0; i < subvertstack->objects; i++) { |
|
parypt = (point*)fastlookup(subvertstack, i); |
|
rempt = *parypt; |
|
if (pointtype(rempt) != UNUSEDVERTEX) { |
|
if (pointtype(rempt) == FREEVOLVERTEX) { |
|
if (removevertexbyflips(rempt)) { |
|
remcount++; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (remcount > 0) { |
|
if (b->verbose) { |
|
printf(" Removed %d interior Steiner points.\n", remcount); |
|
} |
|
} |
|
|
|
b->fliplinklevel = bak_fliplinklevel; |
|
|
|
if (b->supsteiner_level > 1) { // -Y/2 |
|
// Smooth interior Steiner points. |
|
optparameters opm; |
|
triface* parytet; |
|
point* ppt; |
|
REAL ori; |
|
int smtcount, count, ivcount; |
|
int nt, j; |
|
|
|
// Point smooth options. |
|
opm.max_min_volume = 1; |
|
opm.numofsearchdirs = 20; |
|
opm.searchstep = 0.001; |
|
opm.maxiter = 30; // Limit the maximum iterations. |
|
|
|
smtcount = 0; |
|
|
|
do { |
|
|
|
nt = 0; |
|
|
|
while (1) { |
|
count = 0; |
|
ivcount = 0; // Clear the inverted count. |
|
|
|
for (i = 0; i < subvertstack->objects; i++) { |
|
parypt = (point*)fastlookup(subvertstack, i); |
|
rempt = *parypt; |
|
if (pointtype(rempt) == FREEVOLVERTEX) { |
|
getvertexstar(1, rempt, cavetetlist, NULL, NULL); |
|
// Calculate the initial smallest volume (maybe zero or negative). |
|
for (j = 0; j < cavetetlist->objects; j++) { |
|
parytet = (triface*)fastlookup(cavetetlist, j); |
|
ppt = (point*)&(parytet->tet[4]); |
|
ori = orient3dfast(ppt[1], ppt[0], ppt[2], ppt[3]); |
|
if (j == 0) { |
|
opm.initval = ori; |
|
} else { |
|
if (opm.initval > ori) opm.initval = ori; |
|
} |
|
} |
|
if (smoothpoint(rempt, cavetetlist, 1, &opm)) { |
|
count++; |
|
} |
|
if (opm.imprval <= 0.0) { |
|
ivcount++; // The mesh contains inverted elements. |
|
} |
|
cavetetlist->restart(); |
|
} |
|
} // i |
|
|
|
smtcount += count; |
|
|
|
if (count == 0) { |
|
// No point has been smoothed. |
|
break; |
|
} |
|
|
|
nt++; |
|
if (nt > 2) { |
|
break; // Already three iterations. |
|
} |
|
} // while |
|
|
|
if (ivcount > 0) { |
|
// There are inverted elements! |
|
if (opm.maxiter > 0) { |
|
// Set unlimited smoothing steps. Try again. |
|
opm.numofsearchdirs = 30; |
|
opm.searchstep = 0.0001; |
|
opm.maxiter = -1; |
|
continue; |
|
} |
|
} |
|
|
|
break; |
|
} while (1); // Additional loop for (ivcount > 0) |
|
|
|
if (ivcount > 0) { |
|
printf("BUG Report! The mesh contain inverted elements.\n"); |
|
} |
|
|
|
if (b->verbose) { |
|
if (smtcount > 0) { |
|
printf(" Smoothed %d Steiner points.\n", smtcount); |
|
} |
|
} |
|
} // -Y2 |
|
|
|
subvertstack->restart(); |
|
|
|
return 1; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// recoverboundary() Recover segments and facets. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::recoverboundary(clock_t& tv) { |
|
arraypool *misseglist, *misshlist; |
|
arraypool* bdrysteinerptlist; |
|
face searchsh, *parysh; |
|
face searchseg, *paryseg; |
|
point rempt, *parypt; |
|
long ms; // The number of missing segments/subfaces. |
|
int nit; // The number of iterations. |
|
int s, i; |
|
|
|
// Counters. |
|
long bak_segref_count, bak_facref_count, bak_volref_count; |
|
|
|
if (!b->quiet) { |
|
printf("Recovering boundaries...\n"); |
|
} |
|
|
|
if (b->verbose) { |
|
printf(" Recovering segments.\n"); |
|
} |
|
|
|
// Segments will be introduced. |
|
checksubsegflag = 1; |
|
|
|
misseglist = new arraypool(sizeof(face), 8); |
|
bdrysteinerptlist = new arraypool(sizeof(point), 8); |
|
|
|
// In random order. |
|
subsegs->traversalinit(); |
|
for (i = 0; i < subsegs->items; i++) { |
|
s = randomnation(i + 1); |
|
// Move the s-th seg to the i-th. |
|
subsegstack->newindex((void**)&paryseg); |
|
*paryseg = *(face*)fastlookup(subsegstack, s); |
|
// Put i-th seg to be the s-th. |
|
searchseg.sh = shellfacetraverse(subsegs); |
|
paryseg = (face*)fastlookup(subsegstack, s); |
|
*paryseg = searchseg; |
|
} |
|
|
|
// The init number of missing segments. |
|
ms = subsegs->items; |
|
nit = 0; |
|
if (b->fliplinklevel < 0) { |
|
autofliplinklevel = 1; // Init value. |
|
} |
|
|
|
// First, trying to recover segments by only doing flips. |
|
while (1) { |
|
recoversegments(misseglist, 0, 0); |
|
|
|
if (misseglist->objects > 0) { |
|
if (b->fliplinklevel >= 0) { |
|
break; |
|
} else { |
|
if (misseglist->objects >= ms) { |
|
nit++; |
|
if (nit >= 3) { |
|
// break; |
|
// Do the last round with unbounded flip link level. |
|
b->fliplinklevel = 100000; |
|
} |
|
} else { |
|
ms = misseglist->objects; |
|
if (nit > 0) { |
|
nit--; |
|
} |
|
} |
|
for (i = 0; i < misseglist->objects; i++) { |
|
subsegstack->newindex((void**)&paryseg); |
|
*paryseg = *(face*)fastlookup(misseglist, i); |
|
} |
|
misseglist->restart(); |
|
autofliplinklevel += b->fliplinklevelinc; |
|
} |
|
} else { |
|
// All segments are recovered. |
|
break; |
|
} |
|
} // while (1) |
|
|
|
if (b->verbose) { |
|
printf(" %ld (%ld) segments are recovered (missing).\n", |
|
subsegs->items - misseglist->objects, misseglist->objects); |
|
} |
|
|
|
if (misseglist->objects > 0) { |
|
// Second, trying to recover segments by doing more flips (fullsearch). |
|
while (misseglist->objects > 0) { |
|
ms = misseglist->objects; |
|
for (i = 0; i < misseglist->objects; i++) { |
|
subsegstack->newindex((void**)&paryseg); |
|
*paryseg = *(face*)fastlookup(misseglist, i); |
|
} |
|
misseglist->restart(); |
|
|
|
recoversegments(misseglist, 1, 0); |
|
|
|
if (misseglist->objects < ms) { |
|
// The number of missing segments is reduced. |
|
continue; |
|
} else { |
|
break; |
|
} |
|
} |
|
if (b->verbose) { |
|
printf(" %ld (%ld) segments are recovered (missing).\n", |
|
subsegs->items - misseglist->objects, misseglist->objects); |
|
} |
|
} |
|
|
|
if (misseglist->objects > 0) { |
|
// Third, trying to recover segments by doing more flips (fullsearch) |
|
// and adding Steiner points in the volume. |
|
while (misseglist->objects > 0) { |
|
ms = misseglist->objects; |
|
for (i = 0; i < misseglist->objects; i++) { |
|
subsegstack->newindex((void**)&paryseg); |
|
*paryseg = *(face*)fastlookup(misseglist, i); |
|
} |
|
misseglist->restart(); |
|
|
|
recoversegments(misseglist, 1, 1); |
|
|
|
if (misseglist->objects < ms) { |
|
// The number of missing segments is reduced. |
|
continue; |
|
} else { |
|
break; |
|
} |
|
} |
|
if (b->verbose) { |
|
printf(" Added %ld Steiner points in volume.\n", st_volref_count); |
|
} |
|
} |
|
|
|
if (misseglist->objects > 0) { |
|
// Last, trying to recover segments by doing more flips (fullsearch), |
|
// and adding Steiner points in the volume, and splitting segments. |
|
long bak_inpoly_count = st_volref_count; // st_inpoly_count; |
|
for (i = 0; i < misseglist->objects; i++) { |
|
subsegstack->newindex((void**)&paryseg); |
|
*paryseg = *(face*)fastlookup(misseglist, i); |
|
} |
|
misseglist->restart(); |
|
|
|
recoversegments(misseglist, 1, 2); |
|
|
|
if (b->verbose) { |
|
printf(" Added %ld Steiner points in segments.\n", st_segref_count); |
|
if (st_volref_count > bak_inpoly_count) { |
|
printf(" Added another %ld Steiner points in volume.\n", |
|
st_volref_count - bak_inpoly_count); |
|
} |
|
} |
|
} |
|
|
|
if (st_segref_count > 0) { |
|
// Try to remove the Steiner points added in segments. |
|
bak_segref_count = st_segref_count; |
|
bak_volref_count = st_volref_count; |
|
for (i = 0; i < subvertstack->objects; i++) { |
|
// Get the Steiner point. |
|
parypt = (point*)fastlookup(subvertstack, i); |
|
rempt = *parypt; |
|
if (!removevertexbyflips(rempt)) { |
|
// Save it in list. |
|
bdrysteinerptlist->newindex((void**)&parypt); |
|
*parypt = rempt; |
|
} |
|
} |
|
if (b->verbose) { |
|
if (st_segref_count < bak_segref_count) { |
|
if (bak_volref_count < st_volref_count) { |
|
printf(" Suppressed %ld Steiner points in segments.\n", |
|
st_volref_count - bak_volref_count); |
|
} |
|
if ((st_segref_count + (st_volref_count - bak_volref_count)) < bak_segref_count) { |
|
printf(" Removed %ld Steiner points in segments.\n", |
|
bak_segref_count - |
|
(st_segref_count + (st_volref_count - bak_volref_count))); |
|
} |
|
} |
|
} |
|
subvertstack->restart(); |
|
} |
|
|
|
tv = clock(); |
|
|
|
if (b->verbose) { |
|
printf(" Recovering facets.\n"); |
|
} |
|
|
|
// Subfaces will be introduced. |
|
checksubfaceflag = 1; |
|
|
|
misshlist = new arraypool(sizeof(face), 8); |
|
|
|
// Randomly order the subfaces. |
|
subfaces->traversalinit(); |
|
for (i = 0; i < subfaces->items; i++) { |
|
s = randomnation(i + 1); |
|
// Move the s-th subface to the i-th. |
|
subfacstack->newindex((void**)&parysh); |
|
*parysh = *(face*)fastlookup(subfacstack, s); |
|
// Put i-th subface to be the s-th. |
|
searchsh.sh = shellfacetraverse(subfaces); |
|
parysh = (face*)fastlookup(subfacstack, s); |
|
*parysh = searchsh; |
|
} |
|
|
|
ms = subfaces->items; |
|
nit = 0; |
|
b->fliplinklevel = -1; // Init. |
|
if (b->fliplinklevel < 0) { |
|
autofliplinklevel = 1; // Init value. |
|
} |
|
|
|
while (1) { |
|
recoversubfaces(misshlist, 0); |
|
|
|
if (misshlist->objects > 0) { |
|
if (b->fliplinklevel >= 0) { |
|
break; |
|
} else { |
|
if (misshlist->objects >= ms) { |
|
nit++; |
|
if (nit >= 3) { |
|
// break; |
|
// Do the last round with unbounded flip link level. |
|
b->fliplinklevel = 100000; |
|
} |
|
} else { |
|
ms = misshlist->objects; |
|
if (nit > 0) { |
|
nit--; |
|
} |
|
} |
|
for (i = 0; i < misshlist->objects; i++) { |
|
subfacstack->newindex((void**)&parysh); |
|
*parysh = *(face*)fastlookup(misshlist, i); |
|
} |
|
misshlist->restart(); |
|
autofliplinklevel += b->fliplinklevelinc; |
|
} |
|
} else { |
|
// All subfaces are recovered. |
|
break; |
|
} |
|
} // while (1) |
|
|
|
if (b->verbose) { |
|
printf(" %ld (%ld) subfaces are recovered (missing).\n", |
|
subfaces->items - misshlist->objects, misshlist->objects); |
|
} |
|
|
|
if (misshlist->objects > 0) { |
|
// There are missing subfaces. Add Steiner points. |
|
for (i = 0; i < misshlist->objects; i++) { |
|
subfacstack->newindex((void**)&parysh); |
|
*parysh = *(face*)fastlookup(misshlist, i); |
|
} |
|
misshlist->restart(); |
|
|
|
recoversubfaces(NULL, 1); |
|
|
|
if (b->verbose) { |
|
printf(" Added %ld Steiner points in facets.\n", st_facref_count); |
|
} |
|
} |
|
|
|
if (st_facref_count > 0) { |
|
// Try to remove the Steiner points added in facets. |
|
bak_facref_count = st_facref_count; |
|
for (i = 0; i < subvertstack->objects; i++) { |
|
// Get the Steiner point. |
|
parypt = (point*)fastlookup(subvertstack, i); |
|
rempt = *parypt; |
|
if (!removevertexbyflips(*parypt)) { |
|
// Save it in list. |
|
bdrysteinerptlist->newindex((void**)&parypt); |
|
*parypt = rempt; |
|
} |
|
} |
|
if (b->verbose) { |
|
if (st_facref_count < bak_facref_count) { |
|
printf(" Removed %ld Steiner points in facets.\n", |
|
bak_facref_count - st_facref_count); |
|
} |
|
} |
|
subvertstack->restart(); |
|
} |
|
|
|
if (bdrysteinerptlist->objects > 0) { |
|
if (b->verbose) { |
|
printf(" %ld Steiner points remained in boundary.\n", bdrysteinerptlist->objects); |
|
} |
|
} // if |
|
|
|
// Accumulate the dynamic memory. |
|
totalworkmemory += |
|
(misseglist->totalmemory + misshlist->totalmemory + bdrysteinerptlist->totalmemory); |
|
|
|
delete bdrysteinerptlist; |
|
delete misseglist; |
|
delete misshlist; |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// steiner_cxx ////////////////////////////////////////////////////////////// |
|
|
|
//// reconstruct_cxx ////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// carveholes() Remove tetrahedra not in the mesh domain. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::carveholes() { |
|
arraypool *tetarray, *hullarray; |
|
triface tetloop, neightet, *parytet, *parytet1; |
|
triface* regiontets = NULL; |
|
face checksh, *parysh; |
|
face checkseg; |
|
point ptloop, *parypt; |
|
int t1ver; |
|
int i, j, k; |
|
|
|
if (!b->quiet) { |
|
if (b->convex) { |
|
printf("Marking exterior tetrahedra ...\n"); |
|
} else { |
|
printf("Removing exterior tetrahedra ...\n"); |
|
} |
|
} |
|
|
|
// Initialize the pool of exterior tets. |
|
tetarray = new arraypool(sizeof(triface), 10); |
|
hullarray = new arraypool(sizeof(triface), 10); |
|
|
|
// Collect unprotected tets and hull tets. |
|
tetrahedrons->traversalinit(); |
|
tetloop.ver = 11; // The face opposite to dummypoint. |
|
tetloop.tet = alltetrahedrontraverse(); |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
if (ishulltet(tetloop)) { |
|
// Is this side protected by a subface? |
|
if (!issubface(tetloop)) { |
|
// Collect an unprotected hull tet and tet. |
|
infect(tetloop); |
|
hullarray->newindex((void**)&parytet); |
|
*parytet = tetloop; |
|
// tetloop's face number is 11 & 3 = 3. |
|
decode(tetloop.tet[3], neightet); |
|
if (!infected(neightet)) { |
|
infect(neightet); |
|
tetarray->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
} |
|
} |
|
tetloop.tet = alltetrahedrontraverse(); |
|
} |
|
|
|
if (in->numberofholes > 0) { |
|
// Mark as infected any tets inside volume holes. |
|
for (i = 0; i < 3 * in->numberofholes; i += 3) { |
|
// Search a tet containing the i-th hole point. |
|
neightet.tet = NULL; |
|
randomsample(&(in->holelist[i]), &neightet); |
|
if (locate(&(in->holelist[i]), &neightet) != OUTSIDE) { |
|
// The tet 'neightet' contain this point. |
|
if (!infected(neightet)) { |
|
infect(neightet); |
|
tetarray->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
// Add its adjacent tet if it is not protected. |
|
if (!issubface(neightet)) { |
|
decode(neightet.tet[neightet.ver & 3], tetloop); |
|
if (!infected(tetloop)) { |
|
infect(tetloop); |
|
if (ishulltet(tetloop)) { |
|
hullarray->newindex((void**)&parytet); |
|
} else { |
|
tetarray->newindex((void**)&parytet); |
|
} |
|
*parytet = tetloop; |
|
} |
|
} else { |
|
// It is protected. Check if its adjacent tet is a hull tet. |
|
decode(neightet.tet[neightet.ver & 3], tetloop); |
|
if (ishulltet(tetloop)) { |
|
// It is hull tet, add it into the list. Moreover, the subface |
|
// is dead, i.e., both sides are in exterior. |
|
if (!infected(tetloop)) { |
|
infect(tetloop); |
|
hullarray->newindex((void**)&parytet); |
|
*parytet = tetloop; |
|
} |
|
} |
|
if (infected(tetloop)) { |
|
// Both sides of this subface are in exterior. |
|
tspivot(neightet, checksh); |
|
sinfect(checksh); // Only queue it once. |
|
subfacstack->newindex((void**)&parysh); |
|
*parysh = checksh; |
|
} |
|
} |
|
} // if (!infected(neightet)) |
|
} else { |
|
// A hole point locates outside of the convex hull. |
|
if (!b->quiet) { |
|
printf("Warning: The %d-th hole point ", i / 3 + 1); |
|
printf("lies outside the convex hull.\n"); |
|
} |
|
} |
|
} // i |
|
} // if (in->numberofholes > 0) |
|
|
|
if (b->hole_mesh && (b->hole_mesh_filename[0] != 0)) { |
|
// A hole mesh (***.ele) is given. |
|
// enum tetgenbehavior::objecttype object; |
|
char filebasename[256]; |
|
strcpy(filebasename, b->hole_mesh_filename); |
|
// object = tetgenbehavior::MESH; |
|
if (!strcmp(&filebasename[strlen(filebasename) - 4], ".ele")) { |
|
filebasename[strlen(filebasename) - 4] = '\0'; |
|
// object = tetgenbehavior::MESH; |
|
} |
|
bool hole_mesh_loaded = false; |
|
tetgenio io; |
|
if (io.load_node(filebasename)) { |
|
if (io.load_tet(filebasename)) { |
|
hole_mesh_loaded = true; |
|
} |
|
} |
|
if (hole_mesh_loaded) { |
|
if (b->verbose) { |
|
printf(" Adding hole tets from the mesh %s\n", b->hole_mesh_filename); |
|
} |
|
int count = 0, hcount = 0, scount = 0; |
|
int shift = io.firstnumber > 0 ? -1 : 0; |
|
double *p1, *p2, *p3, *p4; |
|
double searchpt[3]; |
|
for (i = 0; i < io.numberoftetrahedra; i++) { |
|
int* idx = &(io.tetrahedronlist[i * 4]); |
|
p1 = &(io.pointlist[(idx[0] + shift) * 3]); |
|
p2 = &(io.pointlist[(idx[1] + shift) * 3]); |
|
p3 = &(io.pointlist[(idx[2] + shift) * 3]); |
|
p4 = &(io.pointlist[(idx[3] + shift) * 3]); |
|
for (j = 0; j < 3; j++) { |
|
searchpt[j] = (p1[j] + p2[j] + p3[j] + p4[j]) / 4.; |
|
} |
|
// Search the point. |
|
neightet.tet = NULL; |
|
if (locate(searchpt, &neightet) != OUTSIDE) { |
|
// The tet 'neightet' contain this point. |
|
if (!infected(neightet)) { |
|
infect(neightet); |
|
tetarray->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
count++; |
|
// Add its adjacent tet if it is not protected. |
|
if (!issubface(neightet)) { |
|
decode(neightet.tet[neightet.ver & 3], tetloop); |
|
if (!infected(tetloop)) { |
|
infect(tetloop); |
|
if (ishulltet(tetloop)) { |
|
hullarray->newindex((void**)&parytet); |
|
hcount++; |
|
} else { |
|
tetarray->newindex((void**)&parytet); |
|
count++; |
|
} |
|
*parytet = tetloop; |
|
} |
|
} else { |
|
// It is protected. Check if its adjacent tet is a hull tet. |
|
decode(neightet.tet[neightet.ver & 3], tetloop); |
|
if (ishulltet(tetloop)) { |
|
// It is hull tet, add it into the list. Moreover, the subface |
|
// is dead, i.e., both sides are in exterior. |
|
if (!infected(tetloop)) { |
|
infect(tetloop); |
|
hullarray->newindex((void**)&parytet); |
|
*parytet = tetloop; |
|
hcount++; |
|
} |
|
} |
|
if (infected(tetloop)) { |
|
// Both sides of this subface are in exterior. |
|
tspivot(neightet, checksh); |
|
sinfect(checksh); // Only queue it once. |
|
subfacstack->newindex((void**)&parysh); |
|
*parysh = checksh; |
|
scount++; |
|
} |
|
} |
|
} |
|
} |
|
} // i |
|
if (b->verbose) { |
|
printf(" Added %d hole tets, %d hull tet, %d hole subfaces\n", count, hcount, |
|
scount); |
|
} |
|
} // if (hole_mesh_loaded) |
|
} |
|
|
|
if (b->regionattrib && (in->numberofregions > 0)) { // -A option. |
|
// Record the tetrahedra that contains the region points for assigning |
|
// region attributes after the holes have been carved. |
|
regiontets = new triface[in->numberofregions]; |
|
// Mark as marktested any tetrahedra inside volume regions. |
|
for (i = 0; i < 5 * in->numberofregions; i += 5) { |
|
// Search a tet containing the i-th region point. |
|
neightet.tet = NULL; |
|
randomsample(&(in->regionlist[i]), &neightet); |
|
if (locate(&(in->regionlist[i]), &neightet) != OUTSIDE) { |
|
regiontets[i / 5] = neightet; |
|
} else { |
|
if (!b->quiet) { |
|
printf("Warning: The %d-th region point ", i / 5 + 1); |
|
printf("lies outside the convex hull.\n"); |
|
} |
|
regiontets[i / 5].tet = NULL; |
|
} |
|
} |
|
} |
|
|
|
// Collect all exterior tets (in concave place and in holes). |
|
for (i = 0; i < tetarray->objects; i++) { |
|
parytet = (triface*)fastlookup(tetarray, i); |
|
j = (parytet->ver & 3); // j is the current face number. |
|
// Check the other three adjacent tets. |
|
for (k = 1; k < 4; k++) { |
|
decode(parytet->tet[(j + k) % 4], neightet); |
|
// neightet may be a hull tet. |
|
if (!infected(neightet)) { |
|
// Is neightet protected by a subface. |
|
if (!issubface(neightet)) { |
|
// Not proected. Collect it. (It must not be a hull tet). |
|
infect(neightet); |
|
tetarray->newindex((void**)&parytet1); |
|
*parytet1 = neightet; |
|
} else { |
|
// Protected. Check if it is a hull tet. |
|
if (ishulltet(neightet)) { |
|
// A hull tet. Collect it. |
|
infect(neightet); |
|
hullarray->newindex((void**)&parytet1); |
|
*parytet1 = neightet; |
|
// Both sides of this subface are exterior. |
|
tspivot(neightet, checksh); |
|
// Queue this subface (to be deleted later). |
|
sinfect(checksh); // Only queue it once. |
|
subfacstack->newindex((void**)&parysh); |
|
*parysh = checksh; |
|
} |
|
} |
|
} else { |
|
// Both sides of this face are in exterior. |
|
// If there is a subface. It should be collected. |
|
if (issubface(neightet)) { |
|
tspivot(neightet, checksh); |
|
if (!sinfected(checksh)) { |
|
sinfect(checksh); |
|
subfacstack->newindex((void**)&parysh); |
|
*parysh = checksh; |
|
} |
|
} |
|
} |
|
} // j, k |
|
} // i |
|
|
|
if (b->regionattrib && (in->numberofregions > 0)) { |
|
// Re-check saved region tets to see if they lie outside. |
|
for (i = 0; i < in->numberofregions; i++) { |
|
if (infected(regiontets[i])) { |
|
if (b->verbose) { |
|
printf("Warning: The %d-th region point ", i + 1); |
|
printf("lies in the exterior of the domain.\n"); |
|
} |
|
regiontets[i].tet = NULL; |
|
} |
|
} |
|
} |
|
|
|
// Collect vertices which point to infected tets. These vertices |
|
// may get deleted after the removal of exterior tets. |
|
// If -Y1 option is used, collect all Steiner points for removal. |
|
// The lists 'cavetetvertlist' and 'subvertstack' are re-used. |
|
points->traversalinit(); |
|
ptloop = pointtraverse(); |
|
while (ptloop != NULL) { |
|
if ((pointtype(ptloop) != UNUSEDVERTEX) && (pointtype(ptloop) != DUPLICATEDVERTEX)) { |
|
decode(point2tet(ptloop), neightet); |
|
if (infected(neightet)) { |
|
cavetetvertlist->newindex((void**)&parypt); |
|
*parypt = ptloop; |
|
} |
|
if (b->nobisect && (b->supsteiner_level > 0)) { // -Y/1 |
|
// Queue it if it is a Steiner point. |
|
if (pointmark(ptloop) > (in->numberofpoints - (in->firstnumber ? 0 : 1))) { |
|
subvertstack->newindex((void**)&parypt); |
|
*parypt = ptloop; |
|
} |
|
} |
|
} |
|
ptloop = pointtraverse(); |
|
} |
|
|
|
if (!b->convex && (tetarray->objects > 0l)) { // No -c option. |
|
// Remove exterior tets. Hull tets are updated. |
|
arraypool* newhullfacearray; |
|
triface hulltet, casface; |
|
face segloop, *paryseg; |
|
point pa, pb, pc; |
|
long delsegcount = 0l; |
|
|
|
// Collect segments which point to infected tets. Some segments |
|
// may get deleted after the removal of exterior tets. |
|
subsegs->traversalinit(); |
|
segloop.sh = shellfacetraverse(subsegs); |
|
while (segloop.sh != NULL) { |
|
sstpivot1(segloop, neightet); |
|
if (infected(neightet)) { |
|
subsegstack->newindex((void**)&paryseg); |
|
*paryseg = segloop; |
|
} |
|
segloop.sh = shellfacetraverse(subsegs); |
|
} |
|
|
|
newhullfacearray = new arraypool(sizeof(triface), 10); |
|
|
|
// Create and save new hull tets. |
|
for (i = 0; i < tetarray->objects; i++) { |
|
parytet = (triface*)fastlookup(tetarray, i); |
|
for (j = 0; j < 4; j++) { |
|
decode(parytet->tet[j], tetloop); |
|
if (!infected(tetloop)) { |
|
// Found a new hull face (must be a subface). |
|
tspivot(tetloop, checksh); |
|
maketetrahedron(&hulltet); |
|
pa = org(tetloop); |
|
pb = dest(tetloop); |
|
pc = apex(tetloop); |
|
setvertices(hulltet, pb, pa, pc, dummypoint); |
|
bond(tetloop, hulltet); |
|
// Update the subface-to-tet map. |
|
sesymself(checksh); |
|
tsbond(hulltet, checksh); |
|
// Update the segment-to-tet map. |
|
for (k = 0; k < 3; k++) { |
|
if (issubseg(tetloop)) { |
|
tsspivot1(tetloop, checkseg); |
|
tssbond1(hulltet, checkseg); |
|
sstbond1(checkseg, hulltet); |
|
} |
|
enextself(tetloop); |
|
eprevself(hulltet); |
|
} |
|
// Update the point-to-tet map. |
|
setpoint2tet(pa, (tetrahedron)tetloop.tet); |
|
setpoint2tet(pb, (tetrahedron)tetloop.tet); |
|
setpoint2tet(pc, (tetrahedron)tetloop.tet); |
|
// Save the exterior tet at this hull face. It still holds pointer |
|
// to the adjacent interior tet. Use it to connect new hull tets. |
|
newhullfacearray->newindex((void**)&parytet1); |
|
parytet1->tet = parytet->tet; |
|
parytet1->ver = j; |
|
} // if (!infected(tetloop)) |
|
} // j |
|
} // i |
|
|
|
// Connect new hull tets. |
|
for (i = 0; i < newhullfacearray->objects; i++) { |
|
parytet = (triface*)fastlookup(newhullfacearray, i); |
|
fsym(*parytet, neightet); |
|
// Get the new hull tet. |
|
fsym(neightet, hulltet); |
|
for (j = 0; j < 3; j++) { |
|
esym(hulltet, casface); |
|
if (casface.tet[casface.ver & 3] == NULL) { |
|
// Since the boundary of the domain may not be a manifold, we |
|
// find the adjacent hull face by traversing the tets in the |
|
// exterior (which are all infected tets). |
|
neightet = *parytet; |
|
while (1) { |
|
fnextself(neightet); |
|
if (!infected(neightet)) break; |
|
} |
|
if (!ishulltet(neightet)) { |
|
// An interior tet. Get the new hull tet. |
|
fsymself(neightet); |
|
esymself(neightet); |
|
} |
|
// Bond them together. |
|
bond(casface, neightet); |
|
} |
|
enextself(hulltet); |
|
enextself(*parytet); |
|
} // j |
|
} // i |
|
|
|
if (subfacstack->objects > 0l) { |
|
// Remove all subfaces which do not attach to any tetrahedron. |
|
// Segments which are not attached to any subfaces and tets |
|
// are deleted too. |
|
face casingout, casingin; |
|
|
|
for (i = 0; i < subfacstack->objects; i++) { |
|
parysh = (face*)fastlookup(subfacstack, i); |
|
if (i == 0) { |
|
if (b->verbose) { |
|
printf("Warning: Removed an exterior face (%d, %d, %d) #%d\n", |
|
pointmark(sorg(*parysh)), pointmark(sdest(*parysh)), |
|
pointmark(sapex(*parysh)), shellmark(*parysh)); |
|
} |
|
} |
|
// Dissolve this subface from face links. |
|
for (j = 0; j < 3; j++) { |
|
spivot(*parysh, casingout); |
|
sspivot(*parysh, checkseg); |
|
if (casingout.sh != NULL) { |
|
casingin = casingout; |
|
while (1) { |
|
spivot(casingin, checksh); |
|
if (checksh.sh == parysh->sh) break; |
|
casingin = checksh; |
|
} |
|
if (casingin.sh != casingout.sh) { |
|
// Update the link: ... -> casingin -> casingout ->... |
|
sbond1(casingin, casingout); |
|
} else { |
|
// Only one subface at this edge is left. |
|
sdissolve(casingout); |
|
} |
|
if (checkseg.sh != NULL) { |
|
// Make sure the segment does not connect to a dead one. |
|
ssbond(casingout, checkseg); |
|
} |
|
} else { |
|
if (checkseg.sh != NULL) { |
|
// if (checkseg.sh[3] != NULL) { |
|
if (delsegcount == 0) { |
|
if (b->verbose) { |
|
printf("Warning: Removed an exterior segment (%d, %d) #%d\n", |
|
pointmark(sorg(checkseg)), pointmark(sdest(checkseg)), |
|
shellmark(checkseg)); |
|
} |
|
} |
|
shellfacedealloc(subsegs, checkseg.sh); |
|
delsegcount++; |
|
} |
|
} |
|
senextself(*parysh); |
|
} // j |
|
// Delete this subface. |
|
shellfacedealloc(subfaces, parysh->sh); |
|
} // i |
|
if (b->verbose) { |
|
printf(" Deleted %ld subfaces.\n", subfacstack->objects); |
|
} |
|
subfacstack->restart(); |
|
} // if (subfacstack->objects > 0l) |
|
|
|
if (subsegstack->objects > 0l) { |
|
for (i = 0; i < subsegstack->objects; i++) { |
|
paryseg = (face*)fastlookup(subsegstack, i); |
|
if (paryseg->sh && (paryseg->sh[3] != NULL)) { |
|
sstpivot1(*paryseg, neightet); |
|
if (infected(neightet)) { |
|
if (b->verbose) { |
|
printf("Warning: Removed an exterior segment (%d, %d) #%d\n", |
|
pointmark(sorg(*paryseg)), pointmark(sdest(*paryseg)), |
|
shellmark(*paryseg)); |
|
} |
|
shellfacedealloc(subsegs, paryseg->sh); |
|
delsegcount++; |
|
} |
|
} |
|
} |
|
subsegstack->restart(); |
|
} // if (subsegstack->objects > 0l) |
|
|
|
if (delsegcount > 0) { |
|
if (b->verbose) { |
|
printf(" Deleted %ld segments.\n", delsegcount); |
|
} |
|
} |
|
|
|
if (cavetetvertlist->objects > 0l) { |
|
// Some vertices may lie in exterior. Marke them as UNUSEDVERTEX. |
|
long delvertcount = unuverts; |
|
long delsteinercount = 0l; |
|
|
|
for (i = 0; i < cavetetvertlist->objects; i++) { |
|
parypt = (point*)fastlookup(cavetetvertlist, i); |
|
decode(point2tet(*parypt), neightet); |
|
if (infected(neightet)) { |
|
// Found an exterior vertex. |
|
if (pointmark(*parypt) > (in->numberofpoints - (in->firstnumber ? 0 : 1))) { |
|
// A Steiner point. |
|
if (pointtype(*parypt) == FREESEGVERTEX) { |
|
st_segref_count--; |
|
} else if (pointtype(*parypt) == FREEFACETVERTEX) { |
|
st_facref_count--; |
|
} else { |
|
st_volref_count--; |
|
} |
|
delsteinercount++; |
|
if (steinerleft > 0) steinerleft++; |
|
} |
|
setpointtype(*parypt, UNUSEDVERTEX); |
|
unuverts++; |
|
} |
|
} |
|
|
|
if (b->verbose) { |
|
if (unuverts > delvertcount) { |
|
if (delsteinercount > 0l) { |
|
if (unuverts > (delvertcount + delsteinercount)) { |
|
printf(" Removed %ld exterior input vertices.\n", |
|
unuverts - delvertcount - delsteinercount); |
|
} |
|
printf(" Removed %ld exterior Steiner vertices.\n", delsteinercount); |
|
} else { |
|
printf(" Removed %ld exterior input vertices.\n", unuverts - delvertcount); |
|
} |
|
} |
|
} |
|
cavetetvertlist->restart(); |
|
// Comment: 'subvertstack' will be cleaned in routine |
|
// suppresssteinerpoints(). |
|
} // if (cavetetvertlist->objects > 0l) |
|
|
|
// Update the hull size. |
|
hullsize += (newhullfacearray->objects - hullarray->objects); |
|
|
|
// Delete all exterior tets and old hull tets. |
|
for (i = 0; i < tetarray->objects; i++) { |
|
parytet = (triface*)fastlookup(tetarray, i); |
|
tetrahedrondealloc(parytet->tet); |
|
} |
|
tetarray->restart(); |
|
|
|
for (i = 0; i < hullarray->objects; i++) { |
|
parytet = (triface*)fastlookup(hullarray, i); |
|
tetrahedrondealloc(parytet->tet); |
|
} |
|
hullarray->restart(); |
|
|
|
delete newhullfacearray; |
|
} // if (!b->convex && (tetarray->objects > 0l)) |
|
|
|
if (b->convex && (tetarray->objects > 0l)) { // With -c option |
|
// In this case, all exterior tets get a region marker '-1'. |
|
int attrnum = numelemattrib - 1; |
|
|
|
for (i = 0; i < tetarray->objects; i++) { |
|
parytet = (triface*)fastlookup(tetarray, i); |
|
setelemattribute(parytet->tet, attrnum, -1); |
|
} |
|
tetarray->restart(); |
|
|
|
for (i = 0; i < hullarray->objects; i++) { |
|
parytet = (triface*)fastlookup(hullarray, i); |
|
uninfect(*parytet); |
|
} |
|
hullarray->restart(); |
|
|
|
if (subfacstack->objects > 0l) { |
|
for (i = 0; i < subfacstack->objects; i++) { |
|
parysh = (face*)fastlookup(subfacstack, i); |
|
suninfect(*parysh); |
|
} |
|
subfacstack->restart(); |
|
} |
|
|
|
if (cavetetvertlist->objects > 0l) { |
|
cavetetvertlist->restart(); |
|
} |
|
} // if (b->convex && (tetarray->objects > 0l)) |
|
|
|
if (b->regionattrib) { // With -A option. |
|
if (!b->quiet) { |
|
printf("Spreading region attributes.\n"); |
|
} |
|
REAL volume; |
|
int attr, maxattr = 0; // Choose a small number here. |
|
int attrnum = numelemattrib - 1; |
|
// Comment: The element region marker is at the end of the list of |
|
// the element attributes. |
|
int regioncount = 0; |
|
|
|
// If has user-defined region attributes. |
|
if (in->numberofregions > 0) { |
|
// Spread region attributes. |
|
for (i = 0; i < 5 * in->numberofregions; i += 5) { |
|
if (regiontets[i / 5].tet != NULL) { |
|
attr = (int)in->regionlist[i + 3]; |
|
if (attr > maxattr) { |
|
maxattr = attr; |
|
} |
|
volume = in->regionlist[i + 4]; |
|
tetarray->restart(); // Re-use this array. |
|
infect(regiontets[i / 5]); |
|
tetarray->newindex((void**)&parytet); |
|
*parytet = regiontets[i / 5]; |
|
// Collect and set attrs for all tets of this region. |
|
for (j = 0; j < tetarray->objects; j++) { |
|
parytet = (triface*)fastlookup(tetarray, j); |
|
tetloop = *parytet; |
|
setelemattribute(tetloop.tet, attrnum, attr); |
|
if (b->varvolume) { // If has -a option. |
|
setvolumebound(tetloop.tet, volume); |
|
} |
|
for (k = 0; k < 4; k++) { |
|
decode(tetloop.tet[k], neightet); |
|
// Is the adjacent already checked? |
|
if (!infected(neightet)) { |
|
// Is this side protected by a subface? |
|
if (!issubface(neightet)) { |
|
infect(neightet); |
|
tetarray->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
} |
|
} // k |
|
} // j |
|
regioncount++; |
|
} // if (regiontets[i/5].tet != NULL) |
|
} // i |
|
} |
|
|
|
// Set attributes for all tetrahedra. |
|
attr = maxattr + 1; |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
if (!infected(tetloop)) { |
|
// An unmarked region. |
|
tetarray->restart(); // Re-use this array. |
|
infect(tetloop); |
|
tetarray->newindex((void**)&parytet); |
|
*parytet = tetloop; |
|
// Find and mark all tets. |
|
for (j = 0; j < tetarray->objects; j++) { |
|
parytet = (triface*)fastlookup(tetarray, j); |
|
tetloop = *parytet; |
|
setelemattribute(tetloop.tet, attrnum, attr); |
|
for (k = 0; k < 4; k++) { |
|
decode(tetloop.tet[k], neightet); |
|
// Is the adjacent tet already checked? |
|
if (!infected(neightet)) { |
|
// Is this side protected by a subface? |
|
if (!issubface(neightet)) { |
|
infect(neightet); |
|
tetarray->newindex((void**)&parytet); |
|
*parytet = neightet; |
|
} |
|
} |
|
} // k |
|
} // j |
|
attr++; // Increase the attribute. |
|
regioncount++; |
|
} |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
// Until here, every tet has a region attribute. |
|
|
|
// Uninfect processed tets. |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
uninfect(tetloop); |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
|
|
if (b->verbose) { |
|
// assert(regioncount > 0); |
|
if (regioncount > 1) { |
|
printf(" Found %d subdomains.\n", regioncount); |
|
} else { |
|
printf(" Found %d domain.\n", regioncount); |
|
} |
|
} |
|
} // if (b->regionattrib) |
|
|
|
if (regiontets != NULL) { |
|
delete[] regiontets; |
|
} |
|
delete tetarray; |
|
delete hullarray; |
|
|
|
if (!b->convex) { // No -c option |
|
// The mesh is non-convex now. |
|
nonconvex = 1; |
|
|
|
// Push all hull tets into 'flipstack'. |
|
tetrahedrons->traversalinit(); |
|
tetloop.ver = 11; // The face opposite to dummypoint. |
|
tetloop.tet = alltetrahedrontraverse(); |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
if ((point)tetloop.tet[7] == dummypoint) { |
|
fsym(tetloop, neightet); |
|
flippush(flipstack, &neightet); |
|
} |
|
tetloop.tet = alltetrahedrontraverse(); |
|
} |
|
|
|
flipconstraints fc; |
|
fc.enqflag = 2; |
|
long sliver_peel_count = lawsonflip3d(&fc); |
|
|
|
if (sliver_peel_count > 0l) { |
|
if (b->verbose) { |
|
printf(" Removed %ld hull slivers.\n", sliver_peel_count); |
|
} |
|
} |
|
unflipqueue->restart(); |
|
} // if (!b->convex) |
|
} |
|
|
|
// [2018-07-30] |
|
// Search a face with given indices (i,j,k). |
|
// This function is only called when the default fast search fails. |
|
// It is possible when there are non-manifold edges on the hull. |
|
// On finish, tetloop return this face if it exists, otherwise, return 0. |
|
int tetgenmesh::search_face(point pi, point pj, point pk, triface& tetloop) { |
|
pinfect(pi); |
|
pinfect(pj); |
|
pinfect(pk); |
|
|
|
int t1ver; |
|
triface t, t1; |
|
point *pts, toppo; |
|
int pcount = 0; |
|
|
|
t.ver = t1.ver = 0; |
|
tetrahedrons->traversalinit(); |
|
t.tet = tetrahedrontraverse(); |
|
while (t.tet != NULL) { |
|
pts = (point*)t.tet; |
|
pcount = 0; |
|
if (pinfected(pts[4])) pcount++; |
|
if (pinfected(pts[5])) pcount++; |
|
if (pinfected(pts[6])) pcount++; |
|
if (pinfected(pts[7])) pcount++; |
|
|
|
if (pcount == 3) { |
|
// Found a tet containing this face. |
|
for (t.ver = 0; t.ver < 4; t.ver++) { |
|
toppo = oppo(t); |
|
if (!pinfected(toppo)) break; |
|
} |
|
int ii; |
|
for (ii = 0; ii < 3; ii++) { |
|
if (org(t) == pi) break; |
|
enextself(t); |
|
} |
|
if (dest(t) == pj) { |
|
} else { |
|
eprevself(t); |
|
fsymself(t); |
|
} |
|
break; |
|
} |
|
t.tet = tetrahedrontraverse(); |
|
} |
|
|
|
puninfect(pi); |
|
puninfect(pj); |
|
puninfect(pk); |
|
|
|
if (t.tet != NULL) { |
|
tetloop = t; |
|
return 1; |
|
} else { |
|
return 0; |
|
} |
|
} |
|
|
|
int tetgenmesh::search_edge(point p0, point p1, triface& tetloop) { |
|
triface t; |
|
int ii; |
|
|
|
tetrahedrons->traversalinit(); |
|
t.tet = tetrahedrontraverse(); |
|
while (t.tet != NULL) { |
|
for (ii = 0; ii < 6; ii++) { |
|
t.ver = edge2ver[ii]; |
|
if (((org(t) == p0) && (dest(t) == p1)) || ((org(t) == p1) && (dest(t) == p0))) { |
|
// Found the tet. |
|
tetloop = t; |
|
return 1; |
|
} |
|
} |
|
t.tet = tetrahedrontraverse(); |
|
} |
|
|
|
tetloop.tet = NULL; |
|
return 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// reconstructmesh() Reconstruct a tetrahedral mesh. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::reconstructmesh() { |
|
tetrahedron* ver2tetarray; |
|
point* idx2verlist; |
|
triface tetloop, checktet, prevchktet; |
|
triface hulltet, face1, face2; |
|
tetrahedron tptr; |
|
face subloop, neighsh, nextsh; |
|
face segloop; |
|
shellface sptr; |
|
point p[4], q[3]; |
|
REAL ori, attrib, volume; |
|
REAL cosang_tol, cosang; |
|
REAL n1[3], n2[3]; |
|
int eextras, marker = 0; |
|
int bondflag; |
|
int t1ver; |
|
int idx, i, j, k; |
|
|
|
if (!b->quiet) { |
|
printf("Reconstructing mesh ...\n"); |
|
} |
|
|
|
if (b->convex) { // -c option. |
|
// Assume the mesh is convex. Exterior tets have region attribute -1. |
|
if (!(in->numberoftetrahedronattributes > 0)) { |
|
terminatetetgen(this, 2); |
|
} |
|
} else { |
|
// Assume the mesh is non-convex. |
|
nonconvex = 1; |
|
} |
|
|
|
// Create a map from indices to vertices. |
|
makeindex2pointmap(idx2verlist); |
|
// 'idx2verlist' has length 'in->numberofpoints + 1'. |
|
if (in->firstnumber == 1) { |
|
idx2verlist[0] = dummypoint; // Let 0th-entry be dummypoint. |
|
} |
|
|
|
// Allocate an array that maps each vertex to its adjacent tets. |
|
ver2tetarray = new tetrahedron[in->numberofpoints + 1]; |
|
unuverts = in->numberofpoints; // All vertices are unused yet. |
|
// for (i = 0; i < in->numberofpoints + 1; i++) { |
|
for (i = in->firstnumber; i < in->numberofpoints + in->firstnumber; i++) { |
|
ver2tetarray[i] = NULL; |
|
} |
|
|
|
// Create the tetrahedra and connect those that share a common face. |
|
for (i = 0; i < in->numberoftetrahedra; i++) { |
|
// Get the four vertices. |
|
idx = i * in->numberofcorners; |
|
for (j = 0; j < 4; j++) { |
|
p[j] = idx2verlist[in->tetrahedronlist[idx++]]; |
|
if (pointtype(p[j]) == UNUSEDVERTEX) { |
|
setpointtype(p[j], VOLVERTEX); // initial type. |
|
unuverts--; |
|
} |
|
} |
|
// Check the orientation. |
|
ori = orient3d(p[0], p[1], p[2], p[3]); |
|
if (ori > 0.0) { |
|
// Swap the first two vertices. |
|
q[0] = p[0]; |
|
p[0] = p[1]; |
|
p[1] = q[0]; |
|
} else if (ori == 0.0) { |
|
if (!b->quiet) { |
|
printf("Warning: Tet #%d is degenerate.\n", i + in->firstnumber); |
|
} |
|
} |
|
// Create a new tetrahedron. |
|
maketetrahedron(&tetloop); // tetloop.ver = 11. |
|
setvertices(tetloop, p[0], p[1], p[2], p[3]); |
|
// Set element attributes if they exist. |
|
for (j = 0; j < in->numberoftetrahedronattributes; j++) { |
|
idx = i * in->numberoftetrahedronattributes; |
|
attrib = in->tetrahedronattributelist[idx + j]; |
|
setelemattribute(tetloop.tet, j, attrib); |
|
} |
|
// If -a switch is used (with no number follows) Set a volume |
|
// constraint if it exists. |
|
if (b->varvolume) { |
|
if (in->tetrahedronvolumelist != (REAL*)NULL) { |
|
volume = in->tetrahedronvolumelist[i]; |
|
} else { |
|
volume = -1.0; |
|
} |
|
setvolumebound(tetloop.tet, volume); |
|
} |
|
// Try connecting this tet to others that share the common faces. |
|
for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
|
p[3] = oppo(tetloop); |
|
// Look for other tets having this vertex. |
|
idx = pointmark(p[3]); |
|
tptr = ver2tetarray[idx]; |
|
// Link the current tet to the next one in the stack. |
|
tetloop.tet[8 + tetloop.ver] = tptr; |
|
// Push the current tet onto the stack. |
|
ver2tetarray[idx] = encode(tetloop); |
|
decode(tptr, checktet); |
|
if (checktet.tet != NULL) { |
|
p[0] = org(tetloop); // a |
|
p[1] = dest(tetloop); // b |
|
p[2] = apex(tetloop); // c |
|
prevchktet = tetloop; |
|
do { |
|
q[0] = org(checktet); // a' |
|
q[1] = dest(checktet); // b' |
|
q[2] = apex(checktet); // c' |
|
// Check the three faces at 'd' in 'checktet'. |
|
bondflag = 0; |
|
for (j = 0; j < 3; j++) { |
|
// Go to the face [b',a',d], or [c',b',d], or [a',c',d]. |
|
esym(checktet, face2); |
|
if (face2.tet[face2.ver & 3] == NULL) { |
|
k = ((j + 1) % 3); |
|
if (q[k] == p[0]) { // b', c', a' = a |
|
if (q[j] == p[1]) { // a', b', c' = b |
|
// [#,#,d] is matched to [b,a,d]. |
|
esym(tetloop, face1); |
|
bond(face1, face2); |
|
bondflag++; |
|
} |
|
} |
|
if (q[k] == p[1]) { // b',c',a' = b |
|
if (q[j] == p[2]) { // a',b',c' = c |
|
// [#,#,d] is matched to [c,b,d]. |
|
enext(tetloop, face1); |
|
esymself(face1); |
|
bond(face1, face2); |
|
bondflag++; |
|
} |
|
} |
|
if (q[k] == p[2]) { // b',c',a' = c |
|
if (q[j] == p[0]) { // a',b',c' = a |
|
// [#,#,d] is matched to [a,c,d]. |
|
eprev(tetloop, face1); |
|
esymself(face1); |
|
bond(face1, face2); |
|
bondflag++; |
|
} |
|
} |
|
} else { |
|
bondflag++; |
|
} |
|
enextself(checktet); |
|
} // j |
|
// Go to the next tet in the link. |
|
tptr = checktet.tet[8 + checktet.ver]; |
|
if (bondflag == 3) { |
|
// All three faces at d in 'checktet' have been connected. |
|
// It can be removed from the link. |
|
prevchktet.tet[8 + prevchktet.ver] = tptr; |
|
} else { |
|
// Bakup the previous tet in the link. |
|
prevchktet = checktet; |
|
} |
|
decode(tptr, checktet); |
|
} while (checktet.tet != NULL); |
|
} // if (checktet.tet != NULL) |
|
} // for (tetloop.ver = 0; ... |
|
} // i |
|
|
|
// Remember a tet of the mesh. |
|
recenttet = tetloop; |
|
|
|
// Create hull tets, create the point-to-tet map, and clean up the |
|
// temporary spaces used in each tet. |
|
hullsize = tetrahedrons->items; |
|
|
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
tptr = encode(tetloop); |
|
for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
|
if (tetloop.tet[tetloop.ver] == NULL) { |
|
// Create a hull tet. |
|
maketetrahedron(&hulltet); |
|
p[0] = org(tetloop); |
|
p[1] = dest(tetloop); |
|
p[2] = apex(tetloop); |
|
setvertices(hulltet, p[1], p[0], p[2], dummypoint); |
|
bond(tetloop, hulltet); |
|
// Try connecting this to others that share common hull edges. |
|
for (j = 0; j < 3; j++) { |
|
fsym(hulltet, face2); |
|
while (1) { |
|
if (face2.tet == NULL) break; |
|
esymself(face2); |
|
if (apex(face2) == dummypoint) break; |
|
fsymself(face2); |
|
} |
|
if (face2.tet != NULL) { |
|
// Found an adjacent hull tet. |
|
esym(hulltet, face1); |
|
bond(face1, face2); |
|
} |
|
enextself(hulltet); |
|
} |
|
} |
|
// Create the point-to-tet map. |
|
setpoint2tet((point)(tetloop.tet[4 + tetloop.ver]), tptr); |
|
// Clean the temporary used space. |
|
tetloop.tet[8 + tetloop.ver] = NULL; |
|
} |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
|
|
hullsize = tetrahedrons->items - hullsize; |
|
|
|
// Subfaces will be inserted into the mesh. |
|
if (in->trifacelist != NULL) { |
|
// A .face file is given. It may contain boundary faces. Insert them. |
|
for (i = 0; i < in->numberoftrifaces; i++) { |
|
// Is it a subface? |
|
if (in->trifacemarkerlist != NULL) { |
|
marker = in->trifacemarkerlist[i]; |
|
} else { |
|
// Face markers are not available. Assume all of them are subfaces. |
|
marker = -1; // The default marker. |
|
} |
|
if (marker != 0) { |
|
idx = i * 3; |
|
for (j = 0; j < 3; j++) { |
|
p[j] = idx2verlist[in->trifacelist[idx++]]; |
|
} |
|
// Search the subface. |
|
bondflag = 0; |
|
neighsh.sh = NULL; |
|
// Make sure all vertices are in the mesh. Avoid crash. |
|
for (j = 0; j < 3; j++) { |
|
decode(point2tet(p[j]), checktet); |
|
if (checktet.tet == NULL) break; |
|
} |
|
if ((j == 3) && getedge(p[0], p[1], &checktet)) { |
|
tetloop = checktet; |
|
q[2] = apex(checktet); |
|
while (1) { |
|
if (apex(tetloop) == p[2]) { |
|
// Found the face. |
|
// Check if there exist a subface already? |
|
tspivot(tetloop, neighsh); |
|
if (neighsh.sh != NULL) { |
|
// Found a duplicated subface. |
|
// This happens when the mesh was generated by other mesher. |
|
bondflag = 0; |
|
} else { |
|
bondflag = 1; |
|
} |
|
break; |
|
} |
|
fnextself(tetloop); |
|
if (apex(tetloop) == q[2]) break; |
|
} |
|
} |
|
if (!bondflag) { |
|
if (neighsh.sh == NULL) { |
|
if (b->verbose > 1) { |
|
printf("Warning: Searching subface #%d [%d,%d,%d] mark=%d.\n", |
|
i + in->firstnumber, pointmark(p[0]), pointmark(p[1]), |
|
pointmark(p[2]), marker); |
|
} |
|
// Search it globally. |
|
if (search_face(p[0], p[1], p[2], tetloop)) { |
|
bondflag = 1; |
|
} |
|
} |
|
} |
|
if (bondflag) { |
|
// Create a new subface. |
|
makeshellface(subfaces, &subloop); |
|
setshvertices(subloop, p[0], p[1], p[2]); |
|
// Create the point-to-subface map. |
|
sptr = sencode(subloop); |
|
for (j = 0; j < 3; j++) { |
|
setpointtype(p[j], FACETVERTEX); // initial type. |
|
setpoint2sh(p[j], sptr); |
|
} |
|
setshellmark(subloop, marker); |
|
// Insert the subface into the mesh. |
|
tsbond(tetloop, subloop); |
|
fsymself(tetloop); |
|
sesymself(subloop); |
|
tsbond(tetloop, subloop); |
|
} else { |
|
if (neighsh.sh != NULL) { |
|
// The subface already exists. Only set its mark. |
|
setshellmark(neighsh, marker); |
|
} else { |
|
if (!b->quiet) { |
|
printf("Warning: Subface #%d [%d,%d,%d] mark=%d is not found.\n", |
|
i + in->firstnumber, pointmark(p[0]), pointmark(p[1]), |
|
pointmark(p[2]), marker); |
|
} |
|
} |
|
} // if (bondflag) |
|
} // if (marker != 0) |
|
} // i |
|
} // if (in->trifacelist) |
|
|
|
// Indentify subfaces from the mesh. |
|
// Create subfaces for hull faces (if they're not subface yet) and |
|
// interior faces which separate two different materials. |
|
eextras = in->numberoftetrahedronattributes; |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
|
tspivot(tetloop, neighsh); |
|
if (neighsh.sh == NULL) { |
|
bondflag = 0; |
|
fsym(tetloop, checktet); |
|
if (ishulltet(checktet)) { |
|
// A hull face. |
|
if (!b->convex) { |
|
bondflag = 1; // Insert a hull subface. |
|
} |
|
} else { |
|
if (eextras > 0) { |
|
if (elemattribute(tetloop.tet, eextras - 1) != |
|
elemattribute(checktet.tet, eextras - 1)) { |
|
bondflag = 1; // Insert an interior interface. |
|
} |
|
} |
|
} |
|
if (bondflag) { |
|
// Create a new subface. |
|
makeshellface(subfaces, &subloop); |
|
p[0] = org(tetloop); |
|
p[1] = dest(tetloop); |
|
p[2] = apex(tetloop); |
|
setshvertices(subloop, p[0], p[1], p[2]); |
|
// Create the point-to-subface map. |
|
sptr = sencode(subloop); |
|
for (j = 0; j < 3; j++) { |
|
setpointtype(p[j], FACETVERTEX); // initial type. |
|
setpoint2sh(p[j], sptr); |
|
} |
|
setshellmark(subloop, -1); // Default marker. |
|
// Insert the subface into the mesh. |
|
tsbond(tetloop, subloop); |
|
sesymself(subloop); |
|
tsbond(checktet, subloop); |
|
} // if (bondflag) |
|
} // if (neighsh.sh == NULL) |
|
} |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
|
|
// Connect subfaces together. |
|
subfaces->traversalinit(); |
|
subloop.shver = 0; |
|
subloop.sh = shellfacetraverse(subfaces); |
|
while (subloop.sh != (shellface*)NULL) { |
|
for (i = 0; i < 3; i++) { |
|
spivot(subloop, neighsh); |
|
if (neighsh.sh == NULL) { |
|
// Form a subface ring by linking all subfaces at this edge. |
|
// Traversing all faces of the tets at this edge. |
|
stpivot(subloop, tetloop); |
|
q[2] = apex(tetloop); |
|
neighsh = subloop; |
|
while (1) { |
|
fnextself(tetloop); |
|
tspivot(tetloop, nextsh); |
|
if (nextsh.sh != NULL) { |
|
// Do not connect itself. |
|
if (nextsh.sh != neighsh.sh) { |
|
// Link neighsh <= nextsh. |
|
sbond1(neighsh, nextsh); |
|
neighsh = nextsh; |
|
} |
|
} |
|
if (apex(tetloop) == q[2]) { |
|
break; |
|
} |
|
} // while (1) |
|
} // if (neighsh.sh == NULL) |
|
senextself(subloop); |
|
} |
|
subloop.sh = shellfacetraverse(subfaces); |
|
} |
|
|
|
// Segments will be introduced. |
|
if (in->edgelist != NULL) { |
|
// A .edge file is given. It may contain boundary edges. Insert them. |
|
for (i = 0; i < in->numberofedges; i++) { |
|
// Is it a segment? |
|
if (in->edgemarkerlist != NULL) { |
|
marker = in->edgemarkerlist[i]; |
|
} else { |
|
// Edge markers are not available. Assume all of them are segments. |
|
marker = -1; // Default marker. |
|
} |
|
if (marker != 0) { |
|
// Insert a segment. |
|
idx = i * 2; |
|
for (j = 0; j < 2; j++) { |
|
p[j] = idx2verlist[in->edgelist[idx++]]; |
|
} |
|
// Make sure all vertices are in the mesh. Avoid crash. |
|
for (j = 0; j < 2; j++) { |
|
decode(point2tet(p[j]), checktet); |
|
if (checktet.tet == NULL) break; |
|
} |
|
// Search the segment. |
|
bondflag = 0; |
|
if (j == 2) { |
|
if (getedge(p[0], p[1], &checktet)) { |
|
bondflag = 1; |
|
} else { |
|
if (b->verbose > 1) { |
|
printf("Warning: Searching segment #%d [%d,%d] mark=%d.\n", |
|
i + in->firstnumber, pointmark(p[0]), pointmark(p[1]), marker); |
|
} |
|
// Search it globally. |
|
if (search_edge(p[0], p[1], checktet)) { |
|
bondflag = 1; |
|
} |
|
} |
|
} |
|
if (bondflag > 0) { |
|
// Create a new segment. |
|
makeshellface(subsegs, &segloop); |
|
setshvertices(segloop, p[0], p[1], NULL); |
|
// Create the point-to-segment map. |
|
sptr = sencode(segloop); |
|
for (j = 0; j < 2; j++) { |
|
setpointtype(p[j], RIDGEVERTEX); // initial type. |
|
setpoint2sh(p[j], sptr); |
|
} |
|
setshellmark(segloop, marker); |
|
// Insert the segment into the mesh. |
|
tetloop = checktet; |
|
q[2] = apex(checktet); |
|
subloop.sh = NULL; |
|
while (1) { |
|
tssbond1(tetloop, segloop); |
|
tspivot(tetloop, subloop); |
|
if (subloop.sh != NULL) { |
|
ssbond1(subloop, segloop); |
|
sbond1(segloop, subloop); |
|
} |
|
fnextself(tetloop); |
|
if (apex(tetloop) == q[2]) break; |
|
} // while (1) |
|
// Remember an adjacent tet for this segment. |
|
sstbond1(segloop, tetloop); |
|
} else { |
|
if (!b->quiet) { |
|
printf("Warning: Segment #%d [%d,%d] is missing.\n", i + in->firstnumber, |
|
pointmark(p[0]), pointmark(p[1])); |
|
} |
|
} |
|
} // if (marker != 0) |
|
} // i |
|
} // if (in->edgelist) |
|
|
|
// Identify segments from the mesh. |
|
// Create segments for non-manifold edges (which are shared by more |
|
// than two subfaces), and for non-coplanar edges, i.e., two subfaces |
|
// form an dihedral angle > 'b->facet_separate_ang_tol' (degree). |
|
cosang_tol = cos(b->facet_separate_ang_tol / 180.0 * PI); |
|
subfaces->traversalinit(); |
|
subloop.shver = 0; |
|
subloop.sh = shellfacetraverse(subfaces); |
|
while (subloop.sh != (shellface*)NULL) { |
|
for (i = 0; i < 3; i++) { |
|
sspivot(subloop, segloop); |
|
if (segloop.sh == NULL) { |
|
// Check if this edge is a segment. |
|
bondflag = 0; |
|
// Counter the number of subfaces at this edge. |
|
idx = 0; |
|
nextsh = subloop; |
|
while (1) { |
|
idx++; |
|
spivotself(nextsh); |
|
if (nextsh.sh == subloop.sh) break; |
|
} |
|
if (idx != 2) { |
|
// It's a non-manifold edge. Insert a segment. |
|
p[0] = sorg(subloop); |
|
p[1] = sdest(subloop); |
|
bondflag = 1; |
|
} else { |
|
spivot(subloop, neighsh); |
|
if (shellmark(subloop) != shellmark(neighsh)) { |
|
// It's an interior interface. Insert a segment. |
|
p[0] = sorg(subloop); |
|
p[1] = sdest(subloop); |
|
bondflag = 1; |
|
} else { |
|
if (!b->convex) { |
|
// Check the dihedral angle formed by the two subfaces. |
|
p[0] = sorg(subloop); |
|
p[1] = sdest(subloop); |
|
p[2] = sapex(subloop); |
|
p[3] = sapex(neighsh); |
|
facenormal(p[0], p[1], p[2], n1, 1, NULL); |
|
facenormal(p[0], p[1], p[3], n2, 1, NULL); |
|
cosang = dot(n1, n2) / (sqrt(dot(n1, n1)) * sqrt(dot(n2, n2))); |
|
// Rounding. |
|
if (cosang > 1.0) |
|
cosang = 1.0; |
|
else if (cosang < -1.0) |
|
cosang = -1.0; |
|
if (cosang > cosang_tol) { |
|
bondflag = 1; |
|
} |
|
} |
|
} |
|
} |
|
if (bondflag) { |
|
// Create a new segment. |
|
makeshellface(subsegs, &segloop); |
|
setshvertices(segloop, p[0], p[1], NULL); |
|
// Create the point-to-segment map. |
|
sptr = sencode(segloop); |
|
for (j = 0; j < 2; j++) { |
|
setpointtype(p[j], RIDGEVERTEX); // initial type. |
|
setpoint2sh(p[j], sptr); |
|
} |
|
setshellmark(segloop, -1); // Default marker. |
|
// Insert the subface into the mesh. |
|
stpivot(subloop, tetloop); |
|
q[2] = apex(tetloop); |
|
while (1) { |
|
tssbond1(tetloop, segloop); |
|
tspivot(tetloop, neighsh); |
|
if (neighsh.sh != NULL) { |
|
ssbond1(neighsh, segloop); |
|
} |
|
fnextself(tetloop); |
|
if (apex(tetloop) == q[2]) break; |
|
} // while (1) |
|
// Remember an adjacent tet for this segment. |
|
sstbond1(segloop, tetloop); |
|
sbond1(segloop, subloop); |
|
} // if (bondflag) |
|
} // if (neighsh.sh == NULL) |
|
senextself(subloop); |
|
} // i |
|
subloop.sh = shellfacetraverse(subfaces); |
|
} |
|
|
|
// Remember the number of input segments. |
|
insegments = subsegs->items; |
|
|
|
if (!b->nobisect || checkconstraints) { |
|
// Mark Steiner points on segments and facets. |
|
// - all vertices which remaining type FEACTVERTEX become |
|
// Steiner points in facets (= FREEFACERVERTEX). |
|
// - vertices on segment need to be checked. |
|
face* segperverlist; |
|
int* idx2seglist; |
|
face parentseg, nextseg; |
|
verttype vt; |
|
REAL area, len, l1, l2; |
|
int fmarker; |
|
|
|
makepoint2submap(subsegs, idx2seglist, segperverlist); |
|
|
|
points->traversalinit(); |
|
point ptloop = pointtraverse(); |
|
while (ptloop != NULL) { |
|
vt = pointtype(ptloop); |
|
if (vt == VOLVERTEX) { |
|
setpointtype(ptloop, FREEVOLVERTEX); |
|
st_volref_count++; |
|
} else if (vt == FACETVERTEX) { |
|
setpointtype(ptloop, FREEFACETVERTEX); |
|
st_facref_count++; |
|
} else if (vt == RIDGEVERTEX) { |
|
idx = pointmark(ptloop) - in->firstnumber; |
|
if ((idx2seglist[idx + 1] - idx2seglist[idx]) == 2) { |
|
i = idx2seglist[idx]; |
|
parentseg = segperverlist[i]; |
|
nextseg = segperverlist[i + 1]; |
|
sesymself(nextseg); |
|
p[0] = sorg(nextseg); |
|
p[1] = sdest(parentseg); |
|
// Check if three points p[0], ptloop, p[2] are (nearly) collinear. |
|
len = distance(p[0], p[1]); |
|
l1 = distance(p[0], ptloop); |
|
l2 = distance(ptloop, p[1]); |
|
if (((l1 + l2 - len) / len) < b->epsilon) { |
|
// They are (nearly) collinear. |
|
setpointtype(ptloop, FREESEGVERTEX); |
|
// Connect nextseg and parentseg together at ptloop. |
|
senextself(nextseg); |
|
senext2self(parentseg); |
|
sbond(nextseg, parentseg); |
|
st_segref_count++; |
|
} |
|
} |
|
} |
|
ptloop = pointtraverse(); |
|
} |
|
|
|
// Are there area constraints? |
|
if (b->quality && (in->facetconstraintlist != (REAL*)NULL)) { |
|
// Set maximum area constraints on facets. |
|
for (i = 0; i < in->numberoffacetconstraints; i++) { |
|
fmarker = (int)in->facetconstraintlist[i * 2]; |
|
area = in->facetconstraintlist[i * 2 + 1]; |
|
subfaces->traversalinit(); |
|
subloop.sh = shellfacetraverse(subfaces); |
|
while (subloop.sh != NULL) { |
|
if (shellmark(subloop) == fmarker) { |
|
setareabound(subloop, area); |
|
} |
|
subloop.sh = shellfacetraverse(subfaces); |
|
} |
|
} |
|
} |
|
|
|
// Are there length constraints? |
|
if (b->quality && (in->segmentconstraintlist != (REAL*)NULL)) { |
|
// Set maximum length constraints on segments. |
|
int e1, e2; |
|
for (i = 0; i < in->numberofsegmentconstraints; i++) { |
|
e1 = (int)in->segmentconstraintlist[i * 3]; |
|
e2 = (int)in->segmentconstraintlist[i * 3 + 1]; |
|
len = in->segmentconstraintlist[i * 3 + 2]; |
|
// Search for edge [e1, e2]. |
|
idx = e1 - in->firstnumber; |
|
for (j = idx2seglist[idx]; j < idx2seglist[idx + 1]; j++) { |
|
parentseg = segperverlist[j]; |
|
if (pointmark(sdest(parentseg)) == e2) { |
|
setareabound(parentseg, len); |
|
break; |
|
} |
|
} |
|
} |
|
} |
|
|
|
delete[] idx2seglist; |
|
delete[] segperverlist; |
|
} |
|
|
|
// Set global flags. |
|
checksubsegflag = 1; |
|
checksubfaceflag = 1; |
|
|
|
delete[] idx2verlist; |
|
delete[] ver2tetarray; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// scoutpoint() Search a point in mesh. // |
|
// // |
|
// This function searches the point in a mesh whose domain may be not convex.// |
|
// In case of a convex domain, the locate() function is sufficient. // |
|
// // |
|
// If 'randflag' is used, randomly select a start searching tet. Otherwise, // |
|
// start searching directly from 'searchtet'. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::scoutpoint(point searchpt, triface* searchtet, int randflag) { |
|
point pa, pb, pc, pd; |
|
enum locateresult loc = OUTSIDE; |
|
REAL vol, ori1, ori2 = 0, ori3 = 0, ori4 = 0; |
|
int t1ver; |
|
|
|
// Randomly select a good starting tet. |
|
if (randflag) { |
|
randomsample(searchpt, searchtet); |
|
} else { |
|
if (searchtet->tet == NULL) { |
|
*searchtet = recenttet; |
|
} |
|
} |
|
loc = locate(searchpt, searchtet); |
|
|
|
if (loc == OUTSIDE) { |
|
if (b->convex) { // -c option |
|
// The point lies outside of the convex hull. |
|
return (int)loc; |
|
} |
|
// Test if it lies nearly on the hull face. |
|
// Reuse vol, ori1. |
|
pa = org(*searchtet); |
|
pb = dest(*searchtet); |
|
pc = apex(*searchtet); |
|
vol = triarea(pa, pb, pc); |
|
ori1 = orient3dfast(pa, pb, pc, searchpt); |
|
if (fabs(ori1 / vol) < b->epsilon) { |
|
loc = ONFACE; // On face (or on edge, or on vertex). |
|
fsymself(*searchtet); |
|
} |
|
} |
|
|
|
if (loc != OUTSIDE) { |
|
// Round the result of location. |
|
pa = org(*searchtet); |
|
pb = dest(*searchtet); |
|
pc = apex(*searchtet); |
|
pd = oppo(*searchtet); |
|
vol = orient3dfast(pa, pb, pc, pd); |
|
ori1 = orient3dfast(pa, pb, pc, searchpt); |
|
ori2 = orient3dfast(pb, pa, pd, searchpt); |
|
ori3 = orient3dfast(pc, pb, pd, searchpt); |
|
ori4 = orient3dfast(pa, pc, pd, searchpt); |
|
if (fabs(ori1 / vol) < b->epsilon) ori1 = 0; |
|
if (fabs(ori2 / vol) < b->epsilon) ori2 = 0; |
|
if (fabs(ori3 / vol) < b->epsilon) ori3 = 0; |
|
if (fabs(ori4 / vol) < b->epsilon) ori4 = 0; |
|
} else { // if (loc == OUTSIDE) { |
|
// Do a brute force search for the point (with rounding). |
|
tetrahedrons->traversalinit(); |
|
searchtet->tet = tetrahedrontraverse(); |
|
while (searchtet->tet != NULL) { |
|
pa = org(*searchtet); |
|
pb = dest(*searchtet); |
|
pc = apex(*searchtet); |
|
pd = oppo(*searchtet); |
|
|
|
vol = orient3dfast(pa, pb, pc, pd); |
|
if (vol < 0) { |
|
ori1 = orient3dfast(pa, pb, pc, searchpt); |
|
if (fabs(ori1 / vol) < b->epsilon) ori1 = 0; // Rounding. |
|
if (ori1 <= 0) { |
|
ori2 = orient3dfast(pb, pa, pd, searchpt); |
|
if (fabs(ori2 / vol) < b->epsilon) ori2 = 0; |
|
if (ori2 <= 0) { |
|
ori3 = orient3dfast(pc, pb, pd, searchpt); |
|
if (fabs(ori3 / vol) < b->epsilon) ori3 = 0; |
|
if (ori3 <= 0) { |
|
ori4 = orient3dfast(pa, pc, pd, searchpt); |
|
if (fabs(ori4 / vol) < b->epsilon) ori4 = 0; |
|
if (ori4 <= 0) { |
|
// Found the tet. Return its location. |
|
break; |
|
} // ori4 |
|
} // ori3 |
|
} // ori2 |
|
} // ori1 |
|
} |
|
|
|
searchtet->tet = tetrahedrontraverse(); |
|
} // while (searchtet->tet != NULL) |
|
nonregularcount++; // Re-use this counter. |
|
} |
|
|
|
if (searchtet->tet != NULL) { |
|
// Return the point location. |
|
if (ori1 == 0) { // on face [a,b,c] |
|
if (ori2 == 0) { // on edge [a,b]. |
|
if (ori3 == 0) { // on vertex [b]. |
|
enextself(*searchtet); // [b,c,a,d] |
|
loc = ONVERTEX; |
|
} else { |
|
if (ori4 == 0) { // on vertex [a] |
|
loc = ONVERTEX; // [a,b,c,d] |
|
} else { |
|
loc = ONEDGE; // [a,b,c,d] |
|
} |
|
} |
|
} else { // ori2 != 0 |
|
if (ori3 == 0) { // on edge [b,c] |
|
if (ori4 == 0) { // on vertex [c] |
|
eprevself(*searchtet); // [c,a,b,d] |
|
loc = ONVERTEX; |
|
} else { |
|
enextself(*searchtet); // [b,c,a,d] |
|
loc = ONEDGE; |
|
} |
|
} else { // ori3 != 0 |
|
if (ori4 == 0) { // on edge [c,a] |
|
eprevself(*searchtet); // [c,a,b,d] |
|
loc = ONEDGE; |
|
} else { |
|
loc = ONFACE; |
|
} |
|
} |
|
} |
|
} else { // ori1 != 0 |
|
if (ori2 == 0) { // on face [b,a,d] |
|
esymself(*searchtet); // [b,a,d,c] |
|
if (ori3 == 0) { // on edge [b,d] |
|
eprevself(*searchtet); // [d,b,a,c] |
|
if (ori4 == 0) { // on vertex [d] |
|
loc = ONVERTEX; |
|
} else { |
|
loc = ONEDGE; |
|
} |
|
} else { // ori3 != 0 |
|
if (ori4 == 0) { // on edge [a,d] |
|
enextself(*searchtet); // [a,d,b,c] |
|
loc = ONEDGE; |
|
} else { |
|
loc = ONFACE; |
|
} |
|
} |
|
} else { // ori2 != 0 |
|
if (ori3 == 0) { // on face [c,b,d] |
|
enextself(*searchtet); |
|
esymself(*searchtet); |
|
if (ori4 == 0) { // on edge [c,d] |
|
eprevself(*searchtet); |
|
loc = ONEDGE; |
|
} else { |
|
loc = ONFACE; |
|
} |
|
} else { |
|
if (ori4 == 0) { // on face [a,c,d] |
|
eprevself(*searchtet); |
|
esymself(*searchtet); |
|
loc = ONFACE; |
|
} else { // inside tet [a,b,c,d] |
|
loc = INTETRAHEDRON; |
|
} // ori4 |
|
} // ori3 |
|
} // ori2 |
|
} // ori1 |
|
} else { |
|
loc = OUTSIDE; |
|
} |
|
|
|
return (int)loc; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// getpointmeshsize() Interpolate the mesh size at given point. // |
|
// // |
|
// 'iloc' indicates the location of the point w.r.t. 'searchtet'. The size // |
|
// is obtained by linear interpolation on the vertices of the tet. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
REAL tetgenmesh::getpointmeshsize(point searchpt, triface* searchtet, int iloc) { |
|
point *pts, pa, pb, pc; |
|
REAL volume, vol[4], wei[4]; |
|
REAL size; |
|
int i; |
|
|
|
size = 0; |
|
|
|
if (iloc == (int)INTETRAHEDRON) { |
|
pts = (point*)&(searchtet->tet[4]); |
|
// Only do interpolation if all vertices have non-zero sizes. |
|
if ((pts[0][pointmtrindex] > 0) && (pts[1][pointmtrindex] > 0) && |
|
(pts[2][pointmtrindex] > 0) && (pts[3][pointmtrindex] > 0)) { |
|
// P1 interpolation. |
|
volume = orient3dfast(pts[0], pts[1], pts[2], pts[3]); |
|
vol[0] = orient3dfast(searchpt, pts[1], pts[2], pts[3]); |
|
vol[1] = orient3dfast(pts[0], searchpt, pts[2], pts[3]); |
|
vol[2] = orient3dfast(pts[0], pts[1], searchpt, pts[3]); |
|
vol[3] = orient3dfast(pts[0], pts[1], pts[2], searchpt); |
|
for (i = 0; i < 4; i++) { |
|
wei[i] = fabs(vol[i] / volume); |
|
size += (wei[i] * pts[i][pointmtrindex]); |
|
} |
|
} |
|
} else if (iloc == (int)ONFACE) { |
|
pa = org(*searchtet); |
|
pb = dest(*searchtet); |
|
pc = apex(*searchtet); |
|
if ((pa[pointmtrindex] > 0) && (pb[pointmtrindex] > 0) && (pc[pointmtrindex] > 0)) { |
|
volume = triarea(pa, pb, pc); |
|
vol[0] = triarea(searchpt, pb, pc); |
|
vol[1] = triarea(pa, searchpt, pc); |
|
vol[2] = triarea(pa, pb, searchpt); |
|
size = (vol[0] / volume) * pa[pointmtrindex] + (vol[1] / volume) * pb[pointmtrindex] + |
|
(vol[2] / volume) * pc[pointmtrindex]; |
|
} |
|
} else if (iloc == (int)ONEDGE) { |
|
pa = org(*searchtet); |
|
pb = dest(*searchtet); |
|
if ((pa[pointmtrindex] > 0) && (pb[pointmtrindex] > 0)) { |
|
volume = distance(pa, pb); |
|
vol[0] = distance(searchpt, pb); |
|
vol[1] = distance(pa, searchpt); |
|
size = (vol[0] / volume) * pa[pointmtrindex] + (vol[1] / volume) * pb[pointmtrindex]; |
|
} |
|
} else if (iloc == (int)ONVERTEX) { |
|
pa = org(*searchtet); |
|
if (pa[pointmtrindex] > 0) { |
|
size = pa[pointmtrindex]; |
|
} |
|
} |
|
|
|
return size; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// interpolatemeshsize() Interpolate the mesh size from a background mesh // |
|
// (source) to the current mesh (destination). // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::interpolatemeshsize() { |
|
triface searchtet; |
|
point ploop; |
|
REAL minval = 0.0, maxval = 0.0; |
|
int iloc; |
|
int count; |
|
|
|
if (!b->quiet) { |
|
printf("Interpolating mesh size ...\n"); |
|
} |
|
|
|
long bak_nonregularcount = nonregularcount; |
|
nonregularcount = 0l; // Count the number of (slow) global searches. |
|
long baksmaples = bgm->samples; |
|
bgm->samples = 3l; |
|
count = 0; // Count the number of interpolated points. |
|
|
|
// Interpolate sizes for all points in the current mesh. |
|
points->traversalinit(); |
|
ploop = pointtraverse(); |
|
while (ploop != NULL) { |
|
// Search a tet in bgm which containing this point. |
|
searchtet.tet = NULL; |
|
iloc = bgm->scoutpoint(ploop, &searchtet, 1); // randflag = 1 |
|
if (iloc != (int)OUTSIDE) { |
|
// Interpolate the mesh size. |
|
ploop[pointmtrindex] = bgm->getpointmeshsize(ploop, &searchtet, iloc); |
|
setpoint2bgmtet(ploop, bgm->encode(searchtet)); |
|
if (count == 0) { |
|
// This is the first interpolated point. |
|
minval = maxval = ploop[pointmtrindex]; |
|
} else { |
|
if (ploop[pointmtrindex] < minval) { |
|
minval = ploop[pointmtrindex]; |
|
} |
|
if (ploop[pointmtrindex] > maxval) { |
|
maxval = ploop[pointmtrindex]; |
|
} |
|
} |
|
count++; |
|
} else { |
|
if (!b->quiet) { |
|
printf("Warnning: Failed to locate point %d in source mesh.\n", pointmark(ploop)); |
|
} |
|
} |
|
ploop = pointtraverse(); |
|
} |
|
|
|
if (b->verbose) { |
|
printf(" Interoplated %d points.\n", count); |
|
if (nonregularcount > 0l) { |
|
printf(" Performed %ld brute-force searches.\n", nonregularcount); |
|
} |
|
printf(" Size rangle [%.17g, %.17g].\n", minval, maxval); |
|
} |
|
|
|
bgm->samples = baksmaples; |
|
nonregularcount = bak_nonregularcount; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// insertconstrainedpoints() Insert a list of points into the mesh. // |
|
// // |
|
// Assumption: The bounding box of the insert point set should be no larger // |
|
// than the bounding box of the mesh. (Required by point sorting). // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::insertconstrainedpoints(point* insertarray, int arylen, int rejflag) { |
|
triface searchtet, spintet; |
|
face splitsh; |
|
face splitseg; |
|
insertvertexflags ivf; |
|
flipconstraints fc; |
|
int randflag = 0; |
|
int t1ver; |
|
int i; |
|
|
|
if (b->verbose) { |
|
printf(" Inserting %d constrained points\n", arylen); |
|
} |
|
|
|
if (b->no_sort) { // -b/1 option. |
|
if (b->verbose) { |
|
printf(" Using the input order.\n"); |
|
} |
|
} else { |
|
if (b->verbose) { |
|
printf(" Permuting vertices.\n"); |
|
} |
|
point swappoint; |
|
int randindex; |
|
srand(arylen); |
|
for (i = 0; i < arylen; i++) { |
|
randindex = rand() % (i + 1); |
|
swappoint = insertarray[i]; |
|
insertarray[i] = insertarray[randindex]; |
|
insertarray[randindex] = swappoint; |
|
} |
|
if (b->brio_hilbert) { // -b1 option |
|
if (b->verbose) { |
|
printf(" Sorting vertices.\n"); |
|
} |
|
hilbert_init(in->mesh_dim); |
|
int ngroup = 0; |
|
brio_multiscale_sort(insertarray, arylen, b->brio_threshold, b->brio_ratio, &ngroup); |
|
} else { // -b0 option. |
|
randflag = 1; |
|
} // if (!b->brio_hilbert) |
|
} // if (!b->no_sort) |
|
|
|
long bak_nonregularcount = nonregularcount; |
|
nonregularcount = 0l; |
|
long baksmaples = samples; |
|
samples = 3l; // Use at least 3 samples. Updated in randomsample(). |
|
|
|
long bak_seg_count = st_segref_count; |
|
long bak_fac_count = st_facref_count; |
|
long bak_vol_count = st_volref_count; |
|
|
|
// Initialize the insertion parameters. |
|
if (b->incrflip) { // -l option |
|
// Use incremental flip algorithm. |
|
ivf.bowywat = 0; |
|
ivf.lawson = 1; |
|
ivf.validflag = 0; // No need to validate the cavity. |
|
fc.enqflag = 2; |
|
} else { |
|
// Use Bowyer-Watson algorithm. |
|
ivf.bowywat = 1; |
|
ivf.lawson = 0; |
|
ivf.validflag = 1; // Validate the B-W cavity. |
|
} |
|
ivf.rejflag = rejflag; |
|
ivf.chkencflag = 0; |
|
ivf.sloc = (int)INSTAR; |
|
ivf.sbowywat = 3; |
|
ivf.splitbdflag = 1; |
|
ivf.respectbdflag = 1; |
|
ivf.assignmeshsize = b->metric; |
|
|
|
encseglist = new arraypool(sizeof(face), 8); |
|
encshlist = new arraypool(sizeof(badface), 8); |
|
|
|
// Insert the points. |
|
for (i = 0; i < arylen; i++) { |
|
// Find the location of the inserted point. |
|
// Do not use 'recenttet', since the mesh may be non-convex. |
|
searchtet.tet = NULL; |
|
ivf.iloc = scoutpoint(insertarray[i], &searchtet, randflag); |
|
|
|
// Decide the right type for this point. |
|
setpointtype(insertarray[i], FREEVOLVERTEX); // Default. |
|
splitsh.sh = NULL; |
|
splitseg.sh = NULL; |
|
if (ivf.iloc == (int)ONEDGE) { |
|
if (issubseg(searchtet)) { |
|
tsspivot1(searchtet, splitseg); |
|
setpointtype(insertarray[i], FREESEGVERTEX); |
|
// ivf.rejflag = 0; |
|
} else { |
|
// Check if it is a subface edge. |
|
spintet = searchtet; |
|
while (1) { |
|
if (issubface(spintet)) { |
|
tspivot(spintet, splitsh); |
|
setpointtype(insertarray[i], FREEFACETVERTEX); |
|
// ivf.rejflag |= 1; |
|
break; |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) break; |
|
} |
|
} |
|
} else if (ivf.iloc == (int)ONFACE) { |
|
if (issubface(searchtet)) { |
|
tspivot(searchtet, splitsh); |
|
setpointtype(insertarray[i], FREEFACETVERTEX); |
|
// ivf.rejflag |= 1; |
|
} |
|
} |
|
|
|
// Now insert the point. |
|
if (insertpoint(insertarray[i], &searchtet, &splitsh, &splitseg, &ivf)) { |
|
if (flipstack != NULL) { |
|
// There are queued faces. Use flips to recover Delaunayness. |
|
lawsonflip3d(&fc); |
|
// There may be unflippable edges. Ignore them. |
|
unflipqueue->restart(); |
|
} |
|
// Update the Steiner counters. |
|
if (pointtype(insertarray[i]) == FREESEGVERTEX) { |
|
st_segref_count++; |
|
} else if (pointtype(insertarray[i]) == FREEFACETVERTEX) { |
|
st_facref_count++; |
|
} else { |
|
st_volref_count++; |
|
} |
|
} else { |
|
// Point is not inserted. |
|
// pointdealloc(insertarray[i]); |
|
setpointtype(insertarray[i], UNUSEDVERTEX); |
|
unuverts++; |
|
encseglist->restart(); |
|
encshlist->restart(); |
|
} |
|
} // i |
|
|
|
delete encseglist; |
|
delete encshlist; |
|
|
|
if (b->verbose) { |
|
printf(" Inserted %ld (%ld, %ld, %ld) vertices.\n", |
|
st_segref_count + st_facref_count + st_volref_count - |
|
(bak_seg_count + bak_fac_count + bak_vol_count), |
|
st_segref_count - bak_seg_count, st_facref_count - bak_fac_count, |
|
st_volref_count - bak_vol_count); |
|
if (nonregularcount > 0l) { |
|
printf(" Performed %ld brute-force searches.\n", nonregularcount); |
|
} |
|
} |
|
|
|
nonregularcount = bak_nonregularcount; |
|
samples = baksmaples; |
|
} |
|
|
|
void tetgenmesh::insertconstrainedpoints(tetgenio* addio) { |
|
point *insertarray, newpt; |
|
REAL x, y, z, w; |
|
int index, attribindex, mtrindex; |
|
int arylen, i, j; |
|
|
|
if (!b->quiet) { |
|
printf("Inserting constrained points ...\n"); |
|
} |
|
|
|
insertarray = new point[addio->numberofpoints]; |
|
arylen = 0; |
|
index = 0; |
|
attribindex = 0; |
|
mtrindex = 0; |
|
|
|
for (i = 0; i < addio->numberofpoints; i++) { |
|
x = addio->pointlist[index++]; |
|
y = addio->pointlist[index++]; |
|
z = addio->pointlist[index++]; |
|
// Test if this point lies inside the bounding box. |
|
if ((x < xmin) || (x > xmax) || (y < ymin) || (y > ymax) || (z < zmin) || (z > zmax)) { |
|
if (b->verbose) { |
|
printf("Warning: Point #%d lies outside the bounding box. Ignored\n", |
|
i + in->firstnumber); |
|
} |
|
continue; |
|
} |
|
makepoint(&newpt, UNUSEDVERTEX); |
|
newpt[0] = x; |
|
newpt[1] = y; |
|
newpt[2] = z; |
|
// Read the point attributes. (Including point weights.) |
|
for (j = 0; j < addio->numberofpointattributes; j++) { |
|
newpt[3 + j] = addio->pointattributelist[attribindex++]; |
|
} |
|
// Read the point metric tensor. |
|
for (j = 0; j < addio->numberofpointmtrs; j++) { |
|
newpt[pointmtrindex + j] = addio->pointmtrlist[mtrindex++]; |
|
} |
|
if (b->weighted) { // -w option |
|
if (addio->numberofpointattributes > 0) { |
|
// The first point attribute is its weight. |
|
w = newpt[3]; |
|
} else { |
|
// No given weight available. Default choose the maximum |
|
// absolute value among its coordinates. |
|
w = fabs(x); |
|
if (w < fabs(y)) w = fabs(y); |
|
if (w < fabs(z)) w = fabs(z); |
|
} |
|
if (b->weighted_param == 0) { |
|
newpt[3] = x * x + y * y + z * z - w; // Weighted DT. |
|
} else { // -w1 option |
|
newpt[3] = w; // Regular tetrahedralization. |
|
} |
|
} |
|
insertarray[arylen] = newpt; |
|
arylen++; |
|
} // i |
|
|
|
// Insert the points. |
|
int rejflag = 0; // Do not check encroachment. |
|
if (b->metric) { // -m option. |
|
rejflag |= 4; // Reject it if it lies in some protecting balls. |
|
} |
|
|
|
insertconstrainedpoints(insertarray, arylen, rejflag); |
|
|
|
delete[] insertarray; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// meshcoarsening() Deleting (selected) vertices. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::collectremovepoints(arraypool* remptlist) { |
|
point ptloop, *parypt; |
|
verttype vt; |
|
|
|
// If a mesh sizing function is given. Collect vertices whose mesh size |
|
// is greater than its smallest edge length. |
|
if (b->metric) { // -m option |
|
REAL len, smlen; |
|
int i; |
|
points->traversalinit(); |
|
ptloop = pointtraverse(); |
|
while (ptloop != NULL) { |
|
// Do not remove a boundary vertex |
|
vt = pointtype(ptloop); |
|
if ((vt == RIDGEVERTEX) || (vt == ACUTEVERTEX) || (vt == FACETVERTEX) || |
|
(vt == FREEFACETVERTEX) || (vt == FREESEGVERTEX) || (vt == UNUSEDVERTEX)) { |
|
ptloop = pointtraverse(); |
|
continue; |
|
} |
|
if (ptloop[pointmtrindex] > 0) { |
|
// Get the smallest edge length at this vertex. |
|
getvertexstar(1, ptloop, cavetetlist, cavetetvertlist, NULL); |
|
parypt = (point*)fastlookup(cavetetvertlist, 0); |
|
smlen = distance(ptloop, *parypt); |
|
for (i = 1; i < cavetetvertlist->objects; i++) { |
|
parypt = (point*)fastlookup(cavetetvertlist, i); |
|
len = distance(ptloop, *parypt); |
|
if (len < smlen) { |
|
smlen = len; |
|
} |
|
} |
|
cavetetvertlist->restart(); |
|
cavetetlist->restart(); |
|
if (smlen < ptloop[pointmtrindex]) { |
|
pinfect(ptloop); |
|
remptlist->newindex((void**)&parypt); |
|
*parypt = ptloop; |
|
} |
|
} |
|
ptloop = pointtraverse(); |
|
} |
|
if (b->verbose > 1) { |
|
printf(" Coarsen %ld oversized points.\n", remptlist->objects); |
|
} |
|
} |
|
|
|
// If 'in->pointmarkerlist' exists, Collect vertices with markers '-1'. |
|
if (in->pointmarkerlist != NULL) { |
|
long bak_count = remptlist->objects; |
|
points->traversalinit(); |
|
ptloop = pointtraverse(); |
|
int index = 0; |
|
while (ptloop != NULL) { |
|
if (index < in->numberofpoints) { |
|
if (in->pointmarkerlist[index] == -1) { |
|
pinfect(ptloop); |
|
remptlist->newindex((void**)&parypt); |
|
*parypt = ptloop; |
|
} |
|
} else { |
|
// Remaining are not input points. Stop here. |
|
break; |
|
} |
|
index++; |
|
ptloop = pointtraverse(); |
|
} |
|
if (b->verbose > 1) { |
|
printf(" Coarsen %ld marked points.\n", remptlist->objects - bak_count); |
|
} |
|
} // if (in->pointmarkerlist != NULL) |
|
|
|
if (b->coarsen_param > 0) { // -R1/# |
|
// Remove a coarsen_percent number of interior points. |
|
if (b->verbose > 1) { |
|
printf(" Coarsen %g percent of interior points.\n", b->coarsen_percent * 100.0); |
|
} |
|
arraypool* intptlist = new arraypool(sizeof(point*), 10); |
|
// Count the total number of interior points. |
|
points->traversalinit(); |
|
ptloop = pointtraverse(); |
|
while (ptloop != NULL) { |
|
vt = pointtype(ptloop); |
|
if ((vt == VOLVERTEX) || (vt == FREEVOLVERTEX) || (vt == FREEFACETVERTEX) || |
|
(vt == FREESEGVERTEX)) { |
|
intptlist->newindex((void**)&parypt); |
|
*parypt = ptloop; |
|
} |
|
ptloop = pointtraverse(); |
|
} |
|
if (intptlist->objects > 0l) { |
|
// Sort the list of points randomly. |
|
point *parypt_i, swappt; |
|
int randindex, i; |
|
srand(intptlist->objects); |
|
for (i = 0; i < intptlist->objects; i++) { |
|
randindex = rand() % (i + 1); // randomnation(i + 1); |
|
parypt_i = (point*)fastlookup(intptlist, i); |
|
parypt = (point*)fastlookup(intptlist, randindex); |
|
// Swap this two points. |
|
swappt = *parypt_i; |
|
*parypt_i = *parypt; |
|
*parypt = swappt; |
|
} |
|
int remcount = (int)((REAL)intptlist->objects * b->coarsen_percent); |
|
// Return the first remcount points. |
|
for (i = 0; i < remcount; i++) { |
|
parypt_i = (point*)fastlookup(intptlist, i); |
|
if (!pinfected(*parypt_i)) { |
|
pinfected(*parypt_i); |
|
remptlist->newindex((void**)&parypt); |
|
*parypt = *parypt_i; |
|
} |
|
} |
|
} |
|
delete intptlist; |
|
} |
|
|
|
// Unmark all collected vertices. |
|
for (int i = 0; i < remptlist->objects; i++) { |
|
parypt = (point*)fastlookup(remptlist, i); |
|
puninfect(*parypt); |
|
} |
|
} |
|
|
|
void tetgenmesh::meshcoarsening() { |
|
arraypool* remptlist; |
|
|
|
if (!b->quiet) { |
|
printf("Mesh coarsening ...\n"); |
|
} |
|
|
|
// Collect the set of points to be removed |
|
remptlist = new arraypool(sizeof(point*), 10); |
|
collectremovepoints(remptlist); |
|
|
|
if (remptlist->objects == 0l) { |
|
delete remptlist; |
|
return; |
|
} |
|
|
|
if (b->verbose) { |
|
if (remptlist->objects > 0l) { |
|
printf(" Removing %ld points...\n", remptlist->objects); |
|
} |
|
} |
|
|
|
point *parypt, *plastpt; |
|
long ms = remptlist->objects; |
|
int nit = 0; |
|
int bak_fliplinklevel = b->fliplinklevel; |
|
b->fliplinklevel = -1; |
|
autofliplinklevel = 1; // Init value. |
|
int i; |
|
|
|
while (1) { |
|
|
|
if (b->verbose > 1) { |
|
printf(" Removing points [%s level = %2d] #: %ld.\n", |
|
(b->fliplinklevel > 0) ? "fixed" : "auto", |
|
(b->fliplinklevel > 0) ? b->fliplinklevel : autofliplinklevel, |
|
remptlist->objects); |
|
} |
|
|
|
// Remove the list of points. |
|
for (i = 0; i < remptlist->objects; i++) { |
|
parypt = (point*)fastlookup(remptlist, i); |
|
if (removevertexbyflips(*parypt)) { |
|
// Move the last entry to the current place. |
|
plastpt = (point*)fastlookup(remptlist, remptlist->objects - 1); |
|
*parypt = *plastpt; |
|
remptlist->objects--; |
|
i--; |
|
} |
|
} |
|
|
|
if (remptlist->objects > 0l) { |
|
if (b->fliplinklevel >= 0) { |
|
break; // We have tried all levels. |
|
} |
|
if (remptlist->objects == ms) { |
|
nit++; |
|
if (nit >= 3) { |
|
// Do the last round with unbounded flip link level. |
|
b->fliplinklevel = 100000; |
|
} |
|
} else { |
|
ms = remptlist->objects; |
|
if (nit > 0) { |
|
nit--; |
|
} |
|
} |
|
autofliplinklevel += b->fliplinklevelinc; |
|
} else { |
|
// All points are removed. |
|
break; |
|
} |
|
} // while (1) |
|
|
|
if (remptlist->objects > 0l) { |
|
if (b->verbose) { |
|
printf(" %ld points are not removed !\n", remptlist->objects); |
|
} |
|
} |
|
|
|
b->fliplinklevel = bak_fliplinklevel; |
|
delete remptlist; |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// reconstruct_cxx ////////////////////////////////////////////////////////// |
|
|
|
//// refine_cxx /////////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// makefacetverticesmap() Create a map from facet to its vertices. // |
|
// // |
|
// All facets will be indexed (starting from 0). The map is saved in two // |
|
// global arrays: 'idx2facetlist' and 'facetverticeslist'. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::makefacetverticesmap() { |
|
arraypool *facetvertexlist, *vertlist, **paryvertlist; |
|
face subloop, neighsh, *parysh, *parysh1; |
|
point pa, *ppt, *parypt; |
|
verttype vt; |
|
int facetindex, totalvertices; |
|
int i, j, k; |
|
|
|
if (b->verbose) { |
|
printf(" Creating the facet vertices map.\n"); |
|
} |
|
|
|
facetvertexlist = new arraypool(sizeof(arraypool*), 10); |
|
facetindex = totalvertices = 0; |
|
|
|
subfaces->traversalinit(); |
|
subloop.sh = shellfacetraverse(subfaces); |
|
while (subloop.sh != NULL) { |
|
if (!sinfected(subloop)) { |
|
// A new facet. Create its vertices list. |
|
vertlist = new arraypool(sizeof(point*), 8); |
|
ppt = (point*)&(subloop.sh[3]); |
|
for (k = 0; k < 3; k++) { |
|
vt = pointtype(ppt[k]); |
|
if ((vt != FREESEGVERTEX) && (vt != FREEFACETVERTEX)) { |
|
pinfect(ppt[k]); |
|
vertlist->newindex((void**)&parypt); |
|
*parypt = ppt[k]; |
|
} |
|
} |
|
sinfect(subloop); |
|
caveshlist->newindex((void**)&parysh); |
|
*parysh = subloop; |
|
for (i = 0; i < caveshlist->objects; i++) { |
|
parysh = (face*)fastlookup(caveshlist, i); |
|
setfacetindex(*parysh, facetindex); |
|
for (j = 0; j < 3; j++) { |
|
if (!isshsubseg(*parysh)) { |
|
spivot(*parysh, neighsh); |
|
if (!sinfected(neighsh)) { |
|
pa = sapex(neighsh); |
|
if (!pinfected(pa)) { |
|
vt = pointtype(pa); |
|
if ((vt != FREESEGVERTEX) && (vt != FREEFACETVERTEX)) { |
|
pinfect(pa); |
|
vertlist->newindex((void**)&parypt); |
|
*parypt = pa; |
|
} |
|
} |
|
sinfect(neighsh); |
|
caveshlist->newindex((void**)&parysh1); |
|
*parysh1 = neighsh; |
|
} |
|
} |
|
senextself(*parysh); |
|
} |
|
} // i |
|
totalvertices += (int)vertlist->objects; |
|
// Uninfect facet vertices. |
|
for (k = 0; k < vertlist->objects; k++) { |
|
parypt = (point*)fastlookup(vertlist, k); |
|
puninfect(*parypt); |
|
} |
|
caveshlist->restart(); |
|
// Save this vertex list. |
|
facetvertexlist->newindex((void**)&paryvertlist); |
|
*paryvertlist = vertlist; |
|
facetindex++; |
|
} |
|
subloop.sh = shellfacetraverse(subfaces); |
|
} |
|
|
|
// All subfaces are infected. Uninfect them. |
|
subfaces->traversalinit(); |
|
subloop.sh = shellfacetraverse(subfaces); |
|
while (subloop.sh != NULL) { |
|
suninfect(subloop); |
|
subloop.sh = shellfacetraverse(subfaces); |
|
} |
|
|
|
if (b->verbose) { |
|
printf(" Found %ld facets.\n", facetvertexlist->objects); |
|
} |
|
|
|
idx2facetlist = new int[facetindex + 1]; |
|
facetverticeslist = new point[totalvertices]; |
|
|
|
totalworkmemory += ((facetindex + 1) * sizeof(int) + totalvertices * sizeof(point*)); |
|
|
|
idx2facetlist[0] = 0; |
|
for (i = 0, k = 0; i < facetindex; i++) { |
|
paryvertlist = (arraypool**)fastlookup(facetvertexlist, i); |
|
vertlist = *paryvertlist; |
|
idx2facetlist[i + 1] = (idx2facetlist[i] + (int)vertlist->objects); |
|
for (j = 0; j < vertlist->objects; j++) { |
|
parypt = (point*)fastlookup(vertlist, j); |
|
facetverticeslist[k] = *parypt; |
|
k++; |
|
} |
|
} |
|
|
|
// Free the lists. |
|
for (i = 0; i < facetvertexlist->objects; i++) { |
|
paryvertlist = (arraypool**)fastlookup(facetvertexlist, i); |
|
vertlist = *paryvertlist; |
|
delete vertlist; |
|
} |
|
delete facetvertexlist; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// Check whether two segments, or a segment and a facet, or two facets are // |
|
// adjacent to each other. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::segsegadjacent(face* seg1, face* seg2) { |
|
int segidx1 = getfacetindex(*seg1); |
|
int segidx2 = getfacetindex(*seg2); |
|
|
|
if (segidx1 == segidx2) return 0; |
|
|
|
point pa1 = segmentendpointslist[segidx1 * 2]; |
|
point pb1 = segmentendpointslist[segidx1 * 2 + 1]; |
|
point pa2 = segmentendpointslist[segidx2 * 2]; |
|
point pb2 = segmentendpointslist[segidx2 * 2 + 1]; |
|
|
|
if ((pa1 == pa2) || (pa1 == pb2) || (pb1 == pa2) || (pb1 == pb2)) { |
|
return 1; |
|
} |
|
return 0; |
|
} |
|
|
|
int tetgenmesh::segfacetadjacent(face* subseg, face* subsh) { |
|
int segidx = getfacetindex(*subseg); |
|
point pa = segmentendpointslist[segidx * 2]; |
|
point pb = segmentendpointslist[segidx * 2 + 1]; |
|
|
|
pinfect(pa); |
|
pinfect(pb); |
|
|
|
int fidx = getfacetindex(*subsh); |
|
int count = 0, i; |
|
|
|
for (i = idx2facetlist[fidx]; i < idx2facetlist[fidx + 1]; i++) { |
|
if (pinfected(facetverticeslist[i])) count++; |
|
} |
|
|
|
puninfect(pa); |
|
puninfect(pb); |
|
|
|
return count == 1; |
|
} |
|
|
|
int tetgenmesh::facetfacetadjacent(face* subsh1, face* subsh2) { |
|
int count = 0, i; |
|
|
|
int fidx1 = getfacetindex(*subsh1); |
|
int fidx2 = getfacetindex(*subsh2); |
|
|
|
if (fidx1 == fidx2) return 0; |
|
|
|
for (i = idx2facetlist[fidx1]; i < idx2facetlist[fidx1 + 1]; i++) { |
|
pinfect(facetverticeslist[i]); |
|
} |
|
|
|
for (i = idx2facetlist[fidx2]; i < idx2facetlist[fidx2 + 1]; i++) { |
|
if (pinfected(facetverticeslist[i])) count++; |
|
} |
|
|
|
// Uninfect the vertices. |
|
for (i = idx2facetlist[fidx1]; i < idx2facetlist[fidx1 + 1]; i++) { |
|
puninfect(facetverticeslist[i]); |
|
} |
|
|
|
return count > 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// save_segmentpoint_insradius(), save_facetpoint_insradius() // |
|
// // |
|
// Determine and save the relaxed insertion radius of a Steiner point on a // |
|
// segment or a facet. By default, it is the closet distance to the parent // |
|
// point of this Steiner point. But may be larger than it. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::save_segmentpoint_insradius(point segpt, point parentpt, REAL r) { |
|
REAL rv = r, rp; |
|
if (pointtype(parentpt) == FREESEGVERTEX) { |
|
face parentseg1, parentseg2; |
|
sdecode(point2sh(segpt), parentseg1); |
|
sdecode(point2sh(parentpt), parentseg2); |
|
if (segsegadjacent(&parentseg1, &parentseg2)) { |
|
rp = getpointinsradius(parentpt); |
|
if (rv < rp) { |
|
// The relaxed insertion radius of 'newpt'. |
|
rv = rp; |
|
} |
|
} |
|
} else if (pointtype(parentpt) == FREEFACETVERTEX) { |
|
face parentseg, parentsh; |
|
sdecode(point2sh(segpt), parentseg); |
|
sdecode(point2sh(parentpt), parentsh); |
|
if (segfacetadjacent(&parentseg, &parentsh)) { |
|
rp = getpointinsradius(parentpt); |
|
if ((sqrt(2.0) * rv) < rp) { // if (rv < rp) { |
|
// The relaxed insertion radius of 'newpt'. |
|
rv = rp / sqrt(2.0); // rv = rp; |
|
} |
|
} |
|
} |
|
setpointinsradius(segpt, rv); |
|
} |
|
|
|
void tetgenmesh::save_facetpoint_insradius(point facpt, point parentpt, REAL r) { |
|
REAL rv = r, rp; |
|
if (pointtype(parentpt) == FREESEGVERTEX) { |
|
face parentseg, parentsh; |
|
sdecode(point2sh(parentpt), parentseg); |
|
sdecode(point2sh(facpt), parentsh); |
|
if (segfacetadjacent(&parentseg, &parentsh)) { |
|
rp = getpointinsradius(parentpt); |
|
if (rv < (sqrt(2.0) * rp)) { |
|
rv = sqrt(2.0) * rp; // The relaxed insertion radius of 'newpt'. |
|
} |
|
} |
|
} else if (pointtype(parentpt) == FREEFACETVERTEX) { |
|
face parentsh1, parentsh2; |
|
sdecode(point2sh(parentpt), parentsh1); |
|
sdecode(point2sh(facpt), parentsh2); |
|
if (facetfacetadjacent(&parentsh1, &parentsh2)) { |
|
rp = getpointinsradius(parentpt); |
|
if (rv < rp) { |
|
rv = rp; // The relaxed insertion radius of 'newpt'. |
|
} |
|
} |
|
} |
|
setpointinsradius(facpt, rv); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// enqueuesubface() Queue a subface or a subsegment for encroachment chk. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::enqueuesubface(memorypool* pool, face* chkface) { |
|
if (!smarktest2ed(*chkface)) { |
|
smarktest2(*chkface); // Only queue it once. |
|
face* queface = (face*)pool->alloc(); |
|
*queface = *chkface; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// enqueuetetrahedron() Queue a tetrahedron for quality check. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::enqueuetetrahedron(triface* chktet) { |
|
if (!marktest2ed(*chktet)) { |
|
marktest2(*chktet); // Only queue it once. |
|
triface* quetet = (triface*)badtetrahedrons->alloc(); |
|
*quetet = *chktet; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// checkseg4encroach() Check if an edge is encroached upon by a point. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::checkseg4encroach(point pa, point pb, point checkpt) { |
|
// Check if the point lies inside the diametrical sphere of this seg. |
|
REAL v1[3], v2[3]; |
|
|
|
v1[0] = pa[0] - checkpt[0]; |
|
v1[1] = pa[1] - checkpt[1]; |
|
v1[2] = pa[2] - checkpt[2]; |
|
v2[0] = pb[0] - checkpt[0]; |
|
v2[1] = pb[1] - checkpt[1]; |
|
v2[2] = pb[2] - checkpt[2]; |
|
|
|
if (dot(v1, v2) < 0) { |
|
// Inside. |
|
if (b->metric) { // -m option. |
|
if ((pa[pointmtrindex] > 0) && (pb[pointmtrindex] > 0)) { |
|
// The projection of 'checkpt' lies inside the segment [a,b]. |
|
REAL prjpt[3], u, v, t; |
|
projpt2edge(checkpt, pa, pb, prjpt); |
|
// Interoplate the mesh size at the location 'prjpt'. |
|
u = distance(pa, pb); |
|
v = distance(pa, prjpt); |
|
t = v / u; |
|
// 'u' is the mesh size at 'prjpt' |
|
u = pa[pointmtrindex] + t * (pb[pointmtrindex] - pa[pointmtrindex]); |
|
v = distance(checkpt, prjpt); |
|
if (v < u) { |
|
return 1; // Encroached prot-ball! |
|
} |
|
} else { |
|
return 1; // NO protecting ball. Encroached. |
|
} |
|
} else { |
|
return 1; // Inside! Encroached. |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// checkseg4split() Check if we need to split a segment. // |
|
// // |
|
// A segment needs to be split if it is in the following case: // |
|
// (1) It is encroached by an existing vertex. // |
|
// (2) It has bad quality (too long). // |
|
// (3) Its length is larger than the mesh sizes at its endpoints. // |
|
// // |
|
// Return 1 if it needs to be split, otherwise, return 0. 'pencpt' returns // |
|
// an encroaching point if there exists. 'qflag' returns '1' if the segment // |
|
// has a length larger than the desired edge length. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::checkseg4split(face* chkseg, point& encpt, int& qflag) { |
|
REAL ccent[3], len, r; |
|
int i; |
|
|
|
point forg = sorg(*chkseg); |
|
point fdest = sdest(*chkseg); |
|
|
|
// Initialize the return values. |
|
encpt = NULL; |
|
qflag = 0; |
|
|
|
len = distance(forg, fdest); |
|
r = 0.5 * len; |
|
for (i = 0; i < 3; i++) { |
|
ccent[i] = 0.5 * (forg[i] + fdest[i]); |
|
} |
|
|
|
// First check its quality. |
|
if (checkconstraints && (areabound(*chkseg) > 0.0)) { |
|
if (len > areabound(*chkseg)) { |
|
qflag = 1; |
|
return 1; |
|
} |
|
} |
|
|
|
if (b->fixedvolume) { |
|
if ((len * len * len) > b->maxvolume) { |
|
qflag = 1; |
|
return 1; |
|
} |
|
} |
|
|
|
if (b->metric) { // -m option. Check mesh size. |
|
// Check if the ccent lies outside one of the prot.balls at vertices. |
|
if (((forg[pointmtrindex] > 0) && (r > forg[pointmtrindex])) || |
|
((fdest[pointmtrindex]) > 0 && (r > fdest[pointmtrindex]))) { |
|
qflag = 1; // Enforce mesh size. |
|
return 1; |
|
} |
|
} |
|
|
|
// Second check if it is encroached. |
|
// Comment: There may exist more than one encroaching points of this segment. |
|
// The 'encpt' returns the one which is closet to it. |
|
triface searchtet, spintet; |
|
point eapex; |
|
REAL d, diff, smdist = 0; |
|
int t1ver; |
|
|
|
sstpivot1(*chkseg, searchtet); |
|
spintet = searchtet; |
|
while (1) { |
|
eapex = apex(spintet); |
|
if (eapex != dummypoint) { |
|
d = distance(ccent, eapex); |
|
diff = d - r; |
|
if (fabs(diff) / r < b->epsilon) diff = 0.0; // Rounding. |
|
if (diff < 0) { |
|
// This segment is encroached by eapex. |
|
if (useinsertradius) { |
|
if (encpt == NULL) { |
|
encpt = eapex; |
|
smdist = d; |
|
} else { |
|
// Choose the closet encroaching point. |
|
if (d < smdist) { |
|
encpt = eapex; |
|
smdist = d; |
|
} |
|
} |
|
} else { |
|
encpt = eapex; |
|
break; |
|
} |
|
} |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) break; |
|
} // while (1) |
|
|
|
if (encpt != NULL) { |
|
return 1; |
|
} |
|
|
|
return 0; // No need to split it. |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// splitsegment() Split a segment. // |
|
// // |
|
// The segment 'splitseg' is intended to be split. It will be split if it // |
|
// is in one of the following cases: // |
|
// (1) It is encroached by an existing vertex 'encpt != NULL'; or // |
|
// (2) It is in bad quality 'qflag == 1'; or // |
|
// (3) Its length is larger than the mesh sizes at its endpoints. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::splitsegment(face* splitseg, point encpt, REAL rrp, point encpt1, point encpt2, |
|
int qflag, int chkencflag) { |
|
|
|
if (!qflag && smarktest3ed(*splitseg)) { |
|
// Do not try to re-split a marked segment. |
|
return 0; |
|
} |
|
|
|
if (b->nobisect) { // With -Y option. |
|
// Only split this segment if it is allowed to be split. |
|
if (checkconstraints) { |
|
// Check if it has a non-zero length bound. |
|
if (areabound(*splitseg) == 0) { |
|
// It is not allowed. However, if all of facets containing this seg |
|
// is allowed to be split, we still split it. |
|
face parentsh, spinsh; |
|
// splitseg.shver = 0; |
|
spivot(*splitseg, parentsh); |
|
if (parentsh.sh == NULL) { |
|
return 0; // A dangling segment. Do not split it. |
|
} |
|
spinsh = parentsh; |
|
while (1) { |
|
if (areabound(spinsh) == 0) break; |
|
spivotself(spinsh); |
|
if (spinsh.sh == parentsh.sh) break; |
|
if (spinsh.sh == NULL) break; // It belongs to only one facet. |
|
} |
|
if ((!spinsh.sh) || (areabound(spinsh) == 0)) { |
|
// All facets at this seg are not allowed to be split. |
|
return 0; // Do not split it. |
|
} |
|
} |
|
} else { |
|
return 0; // Do not split this segment. |
|
} |
|
} // if (b->nobisect) |
|
|
|
triface searchtet; |
|
face searchsh; |
|
point newpt; |
|
insertvertexflags ivf; |
|
|
|
makepoint(&newpt, FREESEGVERTEX); |
|
getsteinerptonsegment(splitseg, encpt, newpt); |
|
|
|
if (!qflag && !b->cdtrefine) { |
|
// Do not insert the point if it encroaches upon an adjacent segment. |
|
face parentsh; |
|
spivot(*splitseg, parentsh); |
|
if (parentsh.sh != NULL) { |
|
face spinsh, neighsh; |
|
face neighseg; |
|
spinsh = parentsh; |
|
while (1) { |
|
for (int i = 0; i < 2; i++) { |
|
if (i == 0) { |
|
senext(spinsh, neighsh); |
|
} else { |
|
senext2(spinsh, neighsh); |
|
} |
|
if (isshsubseg(neighsh)) { |
|
sspivot(neighsh, neighseg); |
|
if (checkseg4encroach(sorg(neighseg), sdest(neighseg), newpt)) { |
|
pointdealloc(newpt); |
|
return 0; // Do not split this segment. |
|
} |
|
} |
|
} // i |
|
spivotself(spinsh); |
|
if (spinsh.sh == NULL) break; |
|
if (spinsh.sh == parentsh.sh) break; |
|
} // while (1) |
|
} |
|
} |
|
|
|
// Split the segment by the Bowyer-Watson algorithm. |
|
sstpivot1(*splitseg, searchtet); |
|
ivf.iloc = (int)ONEDGE; |
|
ivf.bowywat = 3; // Use Bowyer-Watson, preserve subsegments and subfaces; |
|
ivf.validflag = 1; // Validate the B-W cavity. |
|
ivf.lawson = 2; // Do flips to recover Delaunayness. |
|
ivf.rejflag = 0; // Do not check encroachment of new segments/facets. |
|
if (b->metric) { |
|
ivf.rejflag |= 4; // Do check encroachment of protecting balls. |
|
} |
|
ivf.chkencflag = chkencflag; |
|
ivf.sloc = (int)INSTAR; // ivf.iloc; |
|
ivf.sbowywat = 3; // ivf.bowywat; // Surface mesh options. |
|
ivf.splitbdflag = 1; |
|
ivf.respectbdflag = 1; |
|
ivf.assignmeshsize = b->metric; |
|
ivf.smlenflag = useinsertradius; // Return the closet mesh vertex. |
|
|
|
if (insertpoint(newpt, &searchtet, &searchsh, splitseg, &ivf)) { |
|
st_segref_count++; |
|
if (steinerleft > 0) steinerleft--; |
|
if (useinsertradius) { |
|
save_segmentpoint_insradius(newpt, ivf.parentpt, ivf.smlen); |
|
} |
|
if (flipstack != NULL) { |
|
flipconstraints fc; |
|
fc.chkencflag = chkencflag; |
|
fc.enqflag = 2; |
|
lawsonflip3d(&fc); |
|
unflipqueue->restart(); |
|
} |
|
return 1; |
|
} else { |
|
// Point is not inserted. |
|
if (ivf.iloc == (int)NEARVERTEX) { |
|
terminatetetgen(this, 2); |
|
} |
|
pointdealloc(newpt); |
|
// Mark this segment to avoid splitting in the future. |
|
smarktest3(*splitseg); |
|
return 0; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// repairencsegs() Repair encroached (sub) segments. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::repairencsegs(int chkencflag) { |
|
face* bface; |
|
point encpt = NULL; |
|
int qflag = 0; |
|
|
|
// Loop until the pool 'badsubsegs' is empty. Note that steinerleft == -1 |
|
// if an unlimited number of Steiner points is allowed. |
|
while ((badsubsegs->items > 0) && (steinerleft != 0)) { |
|
badsubsegs->traversalinit(); |
|
bface = (face*)badsubsegs->traverse(); |
|
while ((bface != NULL) && (steinerleft != 0)) { |
|
// Skip a deleleted element. |
|
if (bface->shver >= 0) { |
|
// A queued segment may have been deleted (split). |
|
if ((bface->sh != NULL) && (bface->sh[3] != NULL)) { |
|
// A queued segment may have been processed. |
|
if (smarktest2ed(*bface)) { |
|
sunmarktest2(*bface); |
|
if (checkseg4split(bface, encpt, qflag)) { |
|
splitsegment(bface, encpt, 0, NULL, NULL, qflag, chkencflag); |
|
} |
|
} |
|
} |
|
// Remove this entry from list. |
|
bface->shver = -1; // Signal it as a deleted element. |
|
badsubsegs->dealloc((void*)bface); |
|
} |
|
bface = (face*)badsubsegs->traverse(); |
|
} |
|
} |
|
|
|
if (badsubsegs->items > 0) { |
|
if (b->verbose) { |
|
printf("The desired number of Steiner points is reached.\n"); |
|
} |
|
badsubsegs->traversalinit(); |
|
bface = (face*)badsubsegs->traverse(); |
|
while (bface != NULL) { |
|
// Skip a deleleted element. |
|
if (bface->shver >= 0) { |
|
if ((bface->sh != NULL) && (bface->sh[3] != NULL)) { |
|
if (smarktest2ed(*bface)) { |
|
sunmarktest2(*bface); |
|
} |
|
} |
|
} |
|
bface = (face*)badsubsegs->traverse(); |
|
} |
|
badsubsegs->restart(); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// checkfac4encroach() Check if a subface is encroached by a point. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::checkfac4encroach(point pa, point pb, point pc, point checkpt, REAL* cent, |
|
REAL* r) { |
|
REAL rd, len; |
|
int encroached = 0; |
|
|
|
circumsphere(pa, pb, pc, NULL, cent, &rd); |
|
if (rd == 0) { |
|
terminatetetgen(this, 2); |
|
} |
|
|
|
if (b->use_equatorial_lens) { |
|
REAL normal[3], fcenter[3]; |
|
REAL xta, yta, zta; |
|
REAL multiplier; |
|
|
|
fcenter[0] = cent[0] - pc[0]; |
|
fcenter[1] = cent[1] - pc[1]; |
|
fcenter[2] = cent[2] - pc[2]; |
|
|
|
// Get the normal of the oriented face [a->b->c], without normalized. |
|
facenormal(pa, pb, pc, normal, 1, NULL); |
|
multiplier = |
|
0.985 * |
|
sqrt((fcenter[0] * fcenter[0] + fcenter[1] * fcenter[1] + fcenter[2] * fcenter[2]) / |
|
(3.0 * (normal[0] * normal[0] + normal[1] * normal[1] + normal[2] * normal[2]))); |
|
xta = checkpt[0] - pc[0]; |
|
yta = checkpt[1] - pc[1]; |
|
zta = checkpt[2] - pc[2]; |
|
// Make sure that the normal is pointing to "checkpt". |
|
if ((xta * normal[0] + yta * normal[1] + zta * normal[2]) < 0) { |
|
// Reverse the normal direction. |
|
normal[0] = -normal[0]; |
|
normal[1] = -normal[1]; |
|
normal[2] = -normal[2]; |
|
} |
|
|
|
if (xta * xta + yta * yta + zta * zta <= |
|
2.0 * (xta * (fcenter[0] - multiplier * normal[0]) + |
|
yta * (fcenter[1] - multiplier * normal[1]) + |
|
zta * (fcenter[2] - multiplier * normal[2]))) { |
|
encroached = 1; |
|
} |
|
} else { |
|
len = distance(cent, checkpt); |
|
if ((fabs(len - rd) / rd) < b->epsilon) len = rd; // Rounding. |
|
if (len < rd) { |
|
encroached = 1; |
|
} |
|
} |
|
|
|
if (encroached) { |
|
// The point lies inside the circumsphere of this face. |
|
if (b->metric) { // -m option. |
|
if ((pa[pointmtrindex] > 0) && (pb[pointmtrindex] > 0) && (pc[pointmtrindex] > 0)) { |
|
// Get the projection of 'checkpt' in the plane of pa, pb, and pc. |
|
REAL prjpt[3], n[3]; |
|
REAL a, a1, a2, a3; |
|
projpt2face(checkpt, pa, pb, pc, prjpt); |
|
// Get the face area of [a,b,c]. |
|
facenormal(pa, pb, pc, n, 1, NULL); |
|
a = sqrt(dot(n, n)); |
|
// Get the face areas of [a,b,p], [b,c,p], and [c,a,p]. |
|
facenormal(pa, pb, prjpt, n, 1, NULL); |
|
a1 = sqrt(dot(n, n)); |
|
facenormal(pb, pc, prjpt, n, 1, NULL); |
|
a2 = sqrt(dot(n, n)); |
|
facenormal(pc, pa, prjpt, n, 1, NULL); |
|
a3 = sqrt(dot(n, n)); |
|
if ((fabs(a1 + a2 + a3 - a) / a) < b->epsilon) { |
|
// This face contains the projection. |
|
// Get the mesh size at the location of the projection point. |
|
rd = a1 / a * pc[pointmtrindex] + a2 / a * pa[pointmtrindex] + |
|
a3 / a * pb[pointmtrindex]; |
|
len = distance(prjpt, checkpt); |
|
if (len < rd) { |
|
return 1; // Encroached. |
|
} |
|
} |
|
} else { |
|
return 1; // No protecting ball. Encroached. |
|
} |
|
} else { |
|
*r = rd; |
|
return 1; // Encroached. |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// checkfac4split() Check if a subface needs to be split. // |
|
// // |
|
// A subface needs to be split if it is in the following case: // |
|
// (1) It is encroached by an existing vertex. // |
|
// (2) It has bad quality (has a small angle, -q). // |
|
// (3) It's area is larger than a prescribed value (.var). // |
|
// // |
|
// Return 1 if it needs to be split, otherwise, return 0. // |
|
// 'chkfac' represents its longest edge. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::checkfac4split(face* chkfac, point& encpt, int& qflag, REAL* cent) { |
|
point pa, pb, pc; |
|
REAL area, rd, len; |
|
REAL A[4][4], rhs[4], D; |
|
int indx[4]; |
|
int i; |
|
|
|
encpt = NULL; |
|
qflag = 0; |
|
|
|
pa = sorg(*chkfac); |
|
pb = sdest(*chkfac); |
|
pc = sapex(*chkfac); |
|
|
|
// Compute the coefficient matrix A (3x3). |
|
A[0][0] = pb[0] - pa[0]; |
|
A[0][1] = pb[1] - pa[1]; |
|
A[0][2] = pb[2] - pa[2]; // vector V1 (pa->pb) |
|
A[1][0] = pc[0] - pa[0]; |
|
A[1][1] = pc[1] - pa[1]; |
|
A[1][2] = pc[2] - pa[2]; // vector V2 (pa->pc) |
|
cross(A[0], A[1], A[2]); // vector V3 (V1 X V2) |
|
|
|
area = 0.5 * sqrt(dot(A[2], A[2])); // The area of [a,b,c]. |
|
|
|
// Compute the right hand side vector b (3x1). |
|
rhs[0] = 0.5 * dot(A[0], A[0]); // edge [a,b] |
|
rhs[1] = 0.5 * dot(A[1], A[1]); // edge [a,c] |
|
rhs[2] = 0.0; |
|
|
|
// Solve the 3 by 3 equations use LU decomposition with partial |
|
// pivoting and backward and forward substitute. |
|
if (!lu_decmp(A, 3, indx, &D, 0)) { |
|
// A degenerate triangle. |
|
terminatetetgen(this, 2); |
|
} |
|
|
|
lu_solve(A, 3, indx, rhs, 0); |
|
cent[0] = pa[0] + rhs[0]; |
|
cent[1] = pa[1] + rhs[1]; |
|
cent[2] = pa[2] + rhs[2]; |
|
rd = sqrt(rhs[0] * rhs[0] + rhs[1] * rhs[1] + rhs[2] * rhs[2]); |
|
|
|
if (checkconstraints && (areabound(*chkfac) > 0.0)) { |
|
// Check if the subface has too big area. |
|
if (area > areabound(*chkfac)) { |
|
qflag = 1; |
|
return 1; |
|
} |
|
} |
|
|
|
if (b->fixedvolume) { |
|
if ((area * sqrt(area)) > b->maxvolume) { |
|
qflag = 1; |
|
return 1; |
|
} |
|
} |
|
|
|
if (b->varvolume) { |
|
triface adjtet; |
|
REAL volbnd; |
|
int t1ver; |
|
|
|
stpivot(*chkfac, adjtet); |
|
if (!ishulltet(adjtet)) { |
|
volbnd = volumebound(adjtet.tet); |
|
if ((volbnd > 0) && (area * sqrt(area)) > volbnd) { |
|
qflag = 1; |
|
return 1; |
|
} |
|
} |
|
fsymself(adjtet); |
|
if (!ishulltet(adjtet)) { |
|
volbnd = volumebound(adjtet.tet); |
|
if ((volbnd > 0) && (area * sqrt(area)) > volbnd) { |
|
qflag = 1; |
|
return 1; |
|
} |
|
} |
|
} |
|
|
|
if (b->metric) { // -m option. Check mesh size. |
|
// Check if the ccent lies outside one of the prot.balls at vertices. |
|
if (((pa[pointmtrindex] > 0) && (rd > pa[pointmtrindex])) || |
|
((pb[pointmtrindex] > 0) && (rd > pb[pointmtrindex])) || |
|
((pc[pointmtrindex] > 0) && (rd > pc[pointmtrindex]))) { |
|
qflag = 1; // Enforce mesh size. |
|
return 1; |
|
} |
|
} |
|
|
|
triface searchtet; |
|
REAL smlen = 0; |
|
|
|
// Check if this subface is locally encroached. |
|
for (i = 0; i < 2; i++) { |
|
stpivot(*chkfac, searchtet); |
|
if (!ishulltet(searchtet)) { |
|
int encroached = 0; |
|
|
|
len = distance(oppo(searchtet), cent); |
|
if ((fabs(len - rd) / rd) < b->epsilon) len = rd; // Rounding. |
|
|
|
if (b->use_equatorial_lens) { |
|
point tettapex = oppo(searchtet); |
|
REAL normal[3], fcenter[3]; |
|
REAL xta, yta, zta; |
|
REAL multiplier; |
|
// Get the normal of the oriented face [a->b->c], without normalized. |
|
point fa = org(searchtet); |
|
point fb = dest(searchtet); |
|
point fc = apex(searchtet); |
|
|
|
fcenter[0] = cent[0] - fc[0]; |
|
fcenter[1] = cent[1] - fc[1]; |
|
fcenter[2] = cent[2] - fc[2]; |
|
|
|
facenormal(fa, fb, fc, normal, 1, NULL); |
|
multiplier = 0.985 * sqrt((fcenter[0] * fcenter[0] + fcenter[1] * fcenter[1] + |
|
fcenter[2] * fcenter[2]) / |
|
(3.0 * (normal[0] * normal[0] + normal[1] * normal[1] + |
|
normal[2] * normal[2]))); |
|
xta = tettapex[0] - fc[0]; |
|
yta = tettapex[1] - fc[1]; |
|
zta = tettapex[2] - fc[2]; |
|
if (xta * xta + yta * yta + zta * zta <= |
|
2.0 * (xta * (fcenter[0] - multiplier * normal[0]) + |
|
yta * (fcenter[1] - multiplier * normal[1]) + |
|
zta * (fcenter[2] - multiplier * normal[2]))) { |
|
encroached = 1; |
|
} |
|
} else { |
|
if (len < rd) { |
|
encroached = 1; |
|
} |
|
} |
|
|
|
if (encroached) { |
|
if (smlen == 0) { |
|
smlen = len; |
|
encpt = oppo(searchtet); |
|
} else { |
|
if (len < smlen) { |
|
smlen = len; |
|
encpt = oppo(searchtet); |
|
} |
|
} |
|
// return 1; |
|
} |
|
} |
|
sesymself(*chkfac); |
|
} |
|
|
|
return encpt != NULL; // return 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// splitsubface() Split a subface. // |
|
// // |
|
// The subface may be encroached, or in bad-quality. It is split at its cir- // |
|
// cumcenter ('ccent'). Do not split it if 'ccent' encroaches upon any seg- // |
|
// ment. Instead, one of the encroached segments is split. It is possible // |
|
// that none of the encroached segments can be split. // |
|
// // |
|
// The return value indicates whether a new point is inserted (> 0) or not // |
|
// (= 0). Furthermore, it is inserted on an encroached segment (= 1) or // |
|
// in-side the facet (= 2). // |
|
// // |
|
// 'encpt' is a vertex encroaching upon this subface, i.e., it causes the // |
|
// split of this subface. If 'encpt' is NULL, then the cause of the split // |
|
// this subface is a rejected tet circumcenter 'p', and 'encpt1' is the // |
|
// parent of 'p'. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::splitsubface(face* splitfac, point encpt, point encpt1, int qflag, REAL* ccent, |
|
int chkencflag) { |
|
|
|
if (!qflag && smarktest3ed(*splitfac)) { |
|
// Do not try to re-split a marked subface. |
|
return 0; |
|
} |
|
|
|
if (b->nobisect) { // With -Y option. |
|
if (checkconstraints) { |
|
// Only split if it is allowed to be split. |
|
// Check if this facet has a non-zero constraint. |
|
if (areabound(*splitfac) == 0) { |
|
return 0; // Do not split it. |
|
} |
|
} else { |
|
return 0; |
|
} |
|
} // if (b->nobisect) |
|
|
|
if (useinsertradius) { |
|
if (encpt != NULL) { |
|
REAL rp; // Insertion radius of newpt. |
|
REAL rv = distance(encpt, ccent); |
|
if (pointtype(encpt) == FREESEGVERTEX) { |
|
face parentseg; |
|
sdecode(point2sh(encpt), parentseg); |
|
if (segfacetadjacent(&parentseg, splitfac)) { |
|
rp = getpointinsradius(encpt); |
|
if (rv < (sqrt(2.0) * rp)) { |
|
// This insertion may cause no termination. |
|
return 0; // Reject the insertion of newpt. |
|
} |
|
} |
|
} else if (pointtype(encpt) == FREEFACETVERTEX) { |
|
face parentsh; |
|
sdecode(point2sh(encpt), parentsh); |
|
if (facetfacetadjacent(&parentsh, splitfac)) { |
|
rp = getpointinsradius(encpt); |
|
if (rv < rp) { |
|
return 0; // Reject the insertion of newpt. |
|
} |
|
} |
|
} |
|
} |
|
} // if (useinsertradius) |
|
|
|
face searchsh; |
|
insertvertexflags ivf; |
|
point newpt; |
|
int i; |
|
|
|
// Initialize the inserting point. |
|
makepoint(&newpt, FREEFACETVERTEX); |
|
// Split the subface at its circumcenter. |
|
for (i = 0; i < 3; i++) |
|
newpt[i] = ccent[i]; |
|
|
|
// Search a subface which contains 'newpt'. |
|
searchsh = *splitfac; |
|
// Calculate an above point. It lies above the plane containing |
|
// the subface [a,b,c], and save it in dummypoint. Moreover, |
|
// the vector cent->dummypoint is the normal of the plane. |
|
calculateabovepoint4(newpt, sorg(*splitfac), sdest(*splitfac), sapex(*splitfac)); |
|
// Parameters: 'aflag' = 1, - above point exists. |
|
// 'cflag' = 0, - non-convex, check co-planarity of the result. |
|
// 'rflag' = 0, - no need to round the locating result. |
|
ivf.iloc = (int)slocate(newpt, &searchsh, 1, 0, 0); |
|
|
|
if (!((ivf.iloc == (int)ONFACE) || (ivf.iloc == (int)ONEDGE))) { |
|
// Point location failed. |
|
pointdealloc(newpt); |
|
// Mark this subface to avoid splitting in the future. |
|
smarktest3(*splitfac); |
|
return 0; |
|
} |
|
|
|
triface searchtet; |
|
|
|
// Insert the point. |
|
stpivot(searchsh, searchtet); |
|
ivf.bowywat = 3; // Use Bowyer-Watson. Preserve subsegments and subfaces; |
|
ivf.lawson = 2; |
|
ivf.rejflag = 1; // Do check the encroachment of segments. |
|
if (b->metric) { |
|
ivf.rejflag |= 4; // Do check encroachment of protecting balls. |
|
} |
|
ivf.chkencflag = chkencflag; |
|
ivf.sloc = (int)INSTAR; // ivf.iloc; |
|
ivf.sbowywat = 3; // ivf.bowywat; |
|
ivf.splitbdflag = 1; |
|
ivf.validflag = 1; |
|
ivf.respectbdflag = 1; |
|
ivf.assignmeshsize = b->metric; |
|
ivf.refineflag = 2; |
|
ivf.refinesh = *splitfac; |
|
ivf.smlenflag = useinsertradius; // Update the insertion radius. |
|
|
|
if (insertpoint(newpt, &searchtet, &searchsh, NULL, &ivf)) { |
|
st_facref_count++; |
|
if (steinerleft > 0) steinerleft--; |
|
if (useinsertradius) { |
|
save_facetpoint_insradius(newpt, ivf.parentpt, ivf.smlen); |
|
} // if (useinsertradius) |
|
if (flipstack != NULL) { |
|
flipconstraints fc; |
|
fc.chkencflag = chkencflag; |
|
fc.enqflag = 2; |
|
lawsonflip3d(&fc); |
|
unflipqueue->restart(); |
|
} |
|
return 1; |
|
} else { |
|
// Point was not inserted. |
|
pointdealloc(newpt); |
|
if (ivf.iloc == (int)ENCSEGMENT) { |
|
// Select an encroached segment and split it. |
|
face* paryseg; |
|
int splitflag = 0; |
|
for (i = 0; i < encseglist->objects; i++) { |
|
paryseg = (face*)fastlookup(encseglist, i); |
|
if (splitsegment(paryseg, NULL, 0.0, encpt, encpt1, qflag, chkencflag | 1)) { |
|
splitflag = 1; // A point is inserted on a segment. |
|
break; |
|
} |
|
} // i |
|
encseglist->restart(); |
|
if (splitflag) { |
|
// Some segments may need to be repaired. |
|
if (badsubsegs->items > 0) { |
|
repairencsegs(chkencflag | 1); |
|
} |
|
return 1; |
|
} |
|
} else { |
|
if (ivf.iloc == (int)NEARVERTEX) { |
|
terminatetetgen(this, 2); |
|
} |
|
} |
|
// Mark this subface to avoid splitting in the future. |
|
smarktest3(*splitfac); |
|
return 0; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// repairencfacs() Repair encroached subfaces. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::repairencfacs(int chkencflag) { |
|
face* bface; |
|
point encpt = NULL; |
|
int qflag = 0; |
|
REAL ccent[3]; |
|
|
|
// Loop until the pool 'badsubfacs' is empty. Note that steinerleft == -1 |
|
// if an unlimited number of Steiner points is allowed. |
|
while ((badsubfacs->items > 0) && (steinerleft != 0)) { |
|
badsubfacs->traversalinit(); |
|
bface = (face*)badsubfacs->traverse(); |
|
while ((bface != NULL) && (steinerleft != 0)) { |
|
// Skip a deleted element. |
|
if (bface->shver >= 0) { |
|
// A queued subface may have been deleted (split). |
|
if ((bface->sh != NULL) && (bface->sh[3] != NULL)) { |
|
// A queued subface may have been processed. |
|
if (smarktest2ed(*bface)) { |
|
sunmarktest2(*bface); |
|
if (checkfac4split(bface, encpt, qflag, ccent)) { |
|
splitsubface(bface, encpt, NULL, qflag, ccent, chkencflag); |
|
} |
|
} |
|
} |
|
bface->shver = -1; // Signal it as a deleted element. |
|
badsubfacs->dealloc((void*)bface); // Remove this entry from list. |
|
} |
|
bface = (face*)badsubfacs->traverse(); |
|
} |
|
} |
|
|
|
if (badsubfacs->items > 0) { |
|
if (steinerleft == 0) { |
|
if (b->verbose) { |
|
printf("The desired number of Steiner points is reached.\n"); |
|
} |
|
} else { |
|
terminatetetgen(this, 2); |
|
} |
|
badsubfacs->traversalinit(); |
|
bface = (face*)badsubfacs->traverse(); |
|
while (bface != NULL) { |
|
// Skip a deleted element. |
|
if (bface->shver >= 0) { |
|
if ((bface->sh != NULL) && (bface->sh[3] != NULL)) { |
|
if (smarktest2ed(*bface)) { |
|
sunmarktest2(*bface); |
|
} |
|
} |
|
} |
|
bface = (face*)badsubfacs->traverse(); |
|
} |
|
badsubfacs->restart(); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// checktet4split() Check if the tet needs to be split. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::checktet4split(triface* chktet, int& qflag, REAL* ccent) { |
|
point pa, pb, pc, pd, *ppt; |
|
REAL vda[3], vdb[3], vdc[3]; |
|
REAL vab[3], vbc[3], vca[3]; |
|
REAL N[4][3], L[4], cosd[6], elen[6]; |
|
REAL maxcosd, vol, volbnd, smlen = 0, rd; |
|
REAL A[4][4], rhs[4], D; |
|
int indx[4]; |
|
int i, j; |
|
|
|
if (b->convex) { // -c |
|
// Skip this tet if it lies in the exterior. |
|
if (elemattribute(chktet->tet, numelemattrib - 1) == -1.0) { |
|
return 0; |
|
} |
|
} |
|
|
|
qflag = 0; |
|
|
|
pd = (point)chktet->tet[7]; |
|
if (pd == dummypoint) { |
|
return 0; // Do not split a hull tet. |
|
} |
|
|
|
pa = (point)chktet->tet[4]; |
|
pb = (point)chktet->tet[5]; |
|
pc = (point)chktet->tet[6]; |
|
|
|
// Get the edge vectors vda: d->a, vdb: d->b, vdc: d->c. |
|
// Set the matrix A = [vda, vdb, vdc]^T. |
|
for (i = 0; i < 3; i++) |
|
A[0][i] = vda[i] = pa[i] - pd[i]; |
|
for (i = 0; i < 3; i++) |
|
A[1][i] = vdb[i] = pb[i] - pd[i]; |
|
for (i = 0; i < 3; i++) |
|
A[2][i] = vdc[i] = pc[i] - pd[i]; |
|
|
|
// Get the other edge vectors. |
|
for (i = 0; i < 3; i++) |
|
vab[i] = pb[i] - pa[i]; |
|
for (i = 0; i < 3; i++) |
|
vbc[i] = pc[i] - pb[i]; |
|
for (i = 0; i < 3; i++) |
|
vca[i] = pa[i] - pc[i]; |
|
|
|
if (!lu_decmp(A, 3, indx, &D, 0)) { |
|
// A degenerated tet (vol = 0). |
|
// This is possible due to the use of exact arithmetic. We temporarily |
|
// leave this tet. It should be fixed by mesh optimization. |
|
return 0; |
|
} |
|
|
|
// Check volume if '-a#' and '-a' options are used. |
|
if (b->varvolume || b->fixedvolume) { |
|
vol = fabs(A[indx[0]][0] * A[indx[1]][1] * A[indx[2]][2]) / 6.0; |
|
if (b->fixedvolume) { |
|
if (vol > b->maxvolume) { |
|
qflag = 1; |
|
} |
|
} |
|
if (!qflag && b->varvolume) { |
|
volbnd = volumebound(chktet->tet); |
|
if ((volbnd > 0.0) && (vol > volbnd)) { |
|
qflag = 1; |
|
} |
|
} |
|
if (qflag == 1) { |
|
// Calculate the circumcenter of this tet. |
|
rhs[0] = 0.5 * dot(vda, vda); |
|
rhs[1] = 0.5 * dot(vdb, vdb); |
|
rhs[2] = 0.5 * dot(vdc, vdc); |
|
lu_solve(A, 3, indx, rhs, 0); |
|
for (i = 0; i < 3; i++) |
|
ccent[i] = pd[i] + rhs[i]; |
|
return 1; |
|
} |
|
} |
|
|
|
if (b->metric) { // -m option. Check mesh size. |
|
// Calculate the circumradius of this tet. |
|
rhs[0] = 0.5 * dot(vda, vda); |
|
rhs[1] = 0.5 * dot(vdb, vdb); |
|
rhs[2] = 0.5 * dot(vdc, vdc); |
|
lu_solve(A, 3, indx, rhs, 0); |
|
for (i = 0; i < 3; i++) |
|
ccent[i] = pd[i] + rhs[i]; |
|
rd = sqrt(dot(rhs, rhs)); |
|
// Check if the ccent lies outside one of the prot.balls at vertices. |
|
ppt = (point*)&(chktet->tet[4]); |
|
for (i = 0; i < 4; i++) { |
|
if (ppt[i][pointmtrindex] > 0) { |
|
if (rd > ppt[i][pointmtrindex]) { |
|
qflag = 1; // Enforce mesh size. |
|
return 1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (in->tetunsuitable != NULL) { |
|
// Execute the user-defined meshing sizing evaluation. |
|
if ((*(in->tetunsuitable))(pa, pb, pc, pd, NULL, 0)) { |
|
// Calculate the circumcenter of this tet. |
|
rhs[0] = 0.5 * dot(vda, vda); |
|
rhs[1] = 0.5 * dot(vdb, vdb); |
|
rhs[2] = 0.5 * dot(vdc, vdc); |
|
lu_solve(A, 3, indx, rhs, 0); |
|
for (i = 0; i < 3; i++) |
|
ccent[i] = pd[i] + rhs[i]; |
|
return 1; |
|
} |
|
} |
|
|
|
if (useinsertradius) { |
|
// Do not split this tet if the shortest edge is shorter than the |
|
// insertion radius of one of its endpoints. |
|
triface checkedge; |
|
point e1, e2; |
|
REAL rrv, smrrv; |
|
|
|
// Get the shortest edge of this tet. |
|
checkedge.tet = chktet->tet; |
|
for (i = 0; i < 6; i++) { |
|
checkedge.ver = edge2ver[i]; |
|
e1 = org(checkedge); |
|
e2 = dest(checkedge); |
|
elen[i] = distance(e1, e2); |
|
if (i == 0) { |
|
smlen = elen[i]; |
|
j = 0; |
|
} else { |
|
if (elen[i] < smlen) { |
|
smlen = elen[i]; |
|
j = i; |
|
} |
|
} |
|
} |
|
// Check if the edge is too short. |
|
checkedge.ver = edge2ver[j]; |
|
// Get the smallest rrv of e1 and e2. |
|
// Note: if rrv of e1 and e2 is zero. Do not use it. |
|
e1 = org(checkedge); |
|
smrrv = getpointinsradius(e1); |
|
e2 = dest(checkedge); |
|
rrv = getpointinsradius(e2); |
|
if (rrv > 0) { |
|
if (smrrv > 0) { |
|
if (rrv < smrrv) { |
|
smrrv = rrv; |
|
} |
|
} else { |
|
smrrv = rrv; |
|
} |
|
} |
|
if (smrrv > 0) { |
|
// To avoid rounding error, round smrrv before doing comparison. |
|
if ((fabs(smrrv - smlen) / smlen) < b->epsilon) { |
|
smrrv = smlen; |
|
} |
|
if (smrrv > smlen) { |
|
return 0; |
|
} |
|
} |
|
} // if (useinsertradius) |
|
|
|
// Check the radius-edge ratio. Set by -q#. |
|
if (b->minratio > 0) { |
|
// Calculate the circumcenter and radius of this tet. |
|
rhs[0] = 0.5 * dot(vda, vda); |
|
rhs[1] = 0.5 * dot(vdb, vdb); |
|
rhs[2] = 0.5 * dot(vdc, vdc); |
|
lu_solve(A, 3, indx, rhs, 0); |
|
for (i = 0; i < 3; i++) |
|
ccent[i] = pd[i] + rhs[i]; |
|
rd = sqrt(dot(rhs, rhs)); |
|
if (!useinsertradius) { |
|
// Calculate the shortest edge length. |
|
elen[0] = dot(vda, vda); |
|
elen[1] = dot(vdb, vdb); |
|
elen[2] = dot(vdc, vdc); |
|
elen[3] = dot(vab, vab); |
|
elen[4] = dot(vbc, vbc); |
|
elen[5] = dot(vca, vca); |
|
smlen = elen[0]; // sidx = 0; |
|
for (i = 1; i < 6; i++) { |
|
if (smlen > elen[i]) { |
|
smlen = elen[i]; // sidx = i; |
|
} |
|
} |
|
smlen = sqrt(smlen); |
|
} |
|
D = rd / smlen; |
|
if (D > b->minratio) { |
|
// A bad radius-edge ratio. |
|
return 1; |
|
} |
|
} |
|
|
|
// Check the minimum dihedral angle. Set by -qq#. |
|
if (b->mindihedral > 0) { |
|
// Compute the 4 face normals (N[0], ..., N[3]). |
|
for (j = 0; j < 3; j++) { |
|
for (i = 0; i < 3; i++) |
|
N[j][i] = 0.0; |
|
N[j][j] = 1.0; // Positive means the inside direction |
|
lu_solve(A, 3, indx, N[j], 0); |
|
} |
|
for (i = 0; i < 3; i++) |
|
N[3][i] = -N[0][i] - N[1][i] - N[2][i]; |
|
// Normalize the normals. |
|
for (i = 0; i < 4; i++) { |
|
L[i] = sqrt(dot(N[i], N[i])); |
|
if (L[i] == 0) { |
|
terminatetetgen(this, 2); |
|
} |
|
for (j = 0; j < 3; j++) |
|
N[i][j] /= L[i]; |
|
} |
|
// Calculate the six dihedral angles. |
|
cosd[0] = -dot(N[0], N[1]); // Edge cd, bd, bc. |
|
cosd[1] = -dot(N[0], N[2]); |
|
cosd[2] = -dot(N[0], N[3]); |
|
cosd[3] = -dot(N[1], N[2]); // Edge ad, ac |
|
cosd[4] = -dot(N[1], N[3]); |
|
cosd[5] = -dot(N[2], N[3]); // Edge ab |
|
// Get the smallest dihedral angle. |
|
// maxcosd = mincosd = cosd[0]; |
|
maxcosd = cosd[0]; |
|
for (i = 1; i < 6; i++) { |
|
// if (cosd[i] > maxcosd) maxcosd = cosd[i]; |
|
maxcosd = (cosd[i] > maxcosd ? cosd[i] : maxcosd); |
|
// mincosd = (cosd[i] < mincosd ? cosd[i] : maxcosd); |
|
} |
|
if (maxcosd > cosmindihed) { |
|
// Calculate the circumcenter of this tet. |
|
// A bad dihedral angle. |
|
// if ((b->quality & 1) == 0) { |
|
rhs[0] = 0.5 * dot(vda, vda); |
|
rhs[1] = 0.5 * dot(vdb, vdb); |
|
rhs[2] = 0.5 * dot(vdc, vdc); |
|
lu_solve(A, 3, indx, rhs, 0); |
|
for (i = 0; i < 3; i++) |
|
ccent[i] = pd[i] + rhs[i]; |
|
//*rd = sqrt(dot(rhs, rhs)); |
|
//} |
|
return 1; |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// splittetrahedron() Split a tetrahedron. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::splittetrahedron(triface* splittet, int qflag, REAL* ccent, int chkencflag) { |
|
triface searchtet; |
|
face* paryseg; |
|
point newpt, *ppt; |
|
badface* bface; |
|
insertvertexflags ivf; |
|
int splitflag = 0; |
|
int i; |
|
|
|
REAL rv = 0.; // Insertion radius of 'newpt'. |
|
|
|
makepoint(&newpt, FREEVOLVERTEX); |
|
for (i = 0; i < 3; i++) |
|
newpt[i] = ccent[i]; |
|
|
|
// Locate the new point. Starting from an interior point 'q' of the |
|
// splittet. We perform a walk from q to the 'newpt', stop walking |
|
// either we hit a subface or enter OUTSIDE. |
|
searchtet = *splittet; |
|
ivf.iloc = (int)OUTSIDE; |
|
ivf.iloc = locate(newpt, &searchtet, 1); // 'chkencflag' = 1. |
|
|
|
if ((ivf.iloc == (int)OUTSIDE) || (ivf.iloc == (int)ENCSUBFACE)) { |
|
// The circumcenter 'c' is not visible from 'q' (the interior of the tet). |
|
// iffalse |
|
if (b->verbose > 2) { |
|
printf(" New point %d is blocked by a polygon.\n", pointmark(newpt)); |
|
} |
|
// \fi |
|
pointdealloc(newpt); // Do not insert this vertex. |
|
if (b->nobisect) return 0; // -Y option. |
|
// There must be a polygon that blocks the visibility. |
|
// Search a subpolygon that contains the proj(c). |
|
face searchsh; |
|
REAL prjpt[3]; |
|
locateresult sloc = OUTSIDE; |
|
tspivot(searchtet, searchsh); |
|
ppt = (point*)&(searchsh.sh[3]); |
|
projpt2face(ccent, ppt[0], ppt[1], ppt[2], prjpt); |
|
// Locate proj(c) on polygon. |
|
sloc = slocate(prjpt, &searchsh, 0, 0, 1); |
|
if ((sloc == ONEDGE) || (sloc == ONFACE)) { |
|
// Found a subface/edge containing proj(c). |
|
// Check if 'c' encoraches upon this subface. |
|
REAL fcent[3], r = 0; |
|
ppt = (point*)&(searchsh.sh[3]); |
|
if (checkfac4encroach(ppt[0], ppt[1], ppt[2], ccent, fcent, &r)) { |
|
// Encroached. Split this subface. |
|
splitflag = |
|
splitsubface(&searchsh, NULL, org(*splittet), qflag, fcent, chkencflag | 2); |
|
if (splitflag) { |
|
// Some subfaces may need to be repaired. |
|
repairencfacs(chkencflag | 2); |
|
} |
|
} |
|
} else if ((sloc == OUTSIDE) || (sloc == ENCSEGMENT)) { |
|
// Hit a segment. We should split it. |
|
// To be done... |
|
// printf("hit segment, split it.\n"); // For debug only |
|
} |
|
if (splitflag) { |
|
// Queue the tet if it is still alive. |
|
if ((splittet->tet != NULL) && (splittet->tet[4] != NULL)) { |
|
enqueuetetrahedron(splittet); |
|
} |
|
} |
|
return splitflag; |
|
} |
|
|
|
// Use Bowyer-Watson algorithm. Preserve subsegments and subfaces; |
|
ivf.bowywat = 3; |
|
ivf.lawson = 2; |
|
ivf.rejflag = 3; // Do check for encroached segments and subfaces. |
|
if (b->metric) { |
|
ivf.rejflag |= 4; // Reject it if it lies in some protecting balls. |
|
} |
|
ivf.chkencflag = chkencflag; |
|
ivf.sloc = ivf.sbowywat = 0; // No use. |
|
ivf.splitbdflag = 0; // No use. |
|
ivf.validflag = 1; |
|
ivf.respectbdflag = 1; |
|
ivf.assignmeshsize = b->metric; |
|
|
|
ivf.refineflag = 1; |
|
ivf.refinetet = *splittet; |
|
if (useinsertradius) { |
|
// Need to save insertion radius for this new point. |
|
ivf.smlenflag = 1; // Return the shortest edge length after inserting |
|
// the new vertex. [2016-09-19] |
|
} |
|
|
|
if (insertpoint(newpt, &searchtet, NULL, NULL, &ivf)) { |
|
// Vertex is inserted. |
|
st_volref_count++; |
|
if (steinerleft > 0) steinerleft--; |
|
if (useinsertradius) { |
|
setpointinsradius(newpt, ivf.smlen); |
|
setpoint2ppt(newpt, ivf.parentpt); |
|
} |
|
if (flipstack != NULL) { |
|
flipconstraints fc; |
|
fc.chkencflag = chkencflag; |
|
fc.enqflag = 2; |
|
lawsonflip3d(&fc); |
|
unflipqueue->restart(); |
|
} |
|
return 1; |
|
} else { |
|
// Point is not inserted. |
|
pointdealloc(newpt); |
|
// Check if there are encroached segments/subfaces. |
|
if (ivf.iloc == (int)ENCSEGMENT) { |
|
if (!b->nobisect || checkconstraints) { |
|
// Select an encroached segment and split it. |
|
for (i = 0; i < encseglist->objects; i++) { |
|
paryseg = (face*)fastlookup(encseglist, i); |
|
if (splitsegment(paryseg, NULL, rv, org(*splittet), NULL, qflag, |
|
chkencflag | 3)) { |
|
splitflag = 1; // A point is inserted on a segment. |
|
break; |
|
} |
|
} |
|
} // if (!b->nobisect) |
|
encseglist->restart(); |
|
if (splitflag) { |
|
// Some segments may need to be repaired. |
|
if (badsubsegs->items > 0) { |
|
repairencsegs(chkencflag | 3); |
|
} |
|
// Some subfaces may need to be repaired. |
|
if (badsubfacs->items > 0) { |
|
repairencfacs(chkencflag | 2); |
|
} |
|
} |
|
} else if (ivf.iloc == (int)ENCSUBFACE) { |
|
if (!b->nobisect || checkconstraints) { |
|
// Select an encroached subface and split it. |
|
for (i = 0; i < encshlist->objects; i++) { |
|
bface = (badface*)fastlookup(encshlist, i); |
|
if (splitsubface(&(bface->ss), NULL, org(*splittet), qflag, bface->cent, |
|
chkencflag | 2)) { |
|
splitflag = 1; // A point is inserted on a subface or a segment. |
|
break; |
|
} |
|
} |
|
} // if (!b->nobisect) |
|
encshlist->restart(); |
|
if (splitflag) { |
|
// Some subfaces may need to be repaired. |
|
if (badsubfacs->items > 0) { |
|
repairencfacs(chkencflag | 2); |
|
} |
|
} |
|
} else { |
|
if (ivf.iloc == (int)NEARVERTEX) { |
|
terminatetetgen(this, 2); |
|
} |
|
} |
|
if (splitflag) { |
|
// Queue the tet if it is still alive. |
|
if ((splittet->tet != NULL) && (splittet->tet[4] != NULL)) { |
|
enqueuetetrahedron(splittet); |
|
} |
|
} else { |
|
// assert(0); // If no small angle, why can this happen? |
|
} |
|
return splitflag; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// repairbadtets() Repair bad quality tetrahedra. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::repairbadtets(int chkencflag) { |
|
triface* bface; |
|
REAL ccent[3]; |
|
int qflag = 0; |
|
|
|
// Loop until the pool 'badsubfacs' is empty. Note that steinerleft == -1 |
|
// if an unlimited number of Steiner points is allowed. |
|
while ((badtetrahedrons->items > 0) && (steinerleft != 0)) { |
|
badtetrahedrons->traversalinit(); |
|
bface = (triface*)badtetrahedrons->traverse(); |
|
while ((bface != NULL) && (steinerleft != 0)) { |
|
// Skip a deleted element. |
|
if (bface->ver >= 0) { |
|
// A queued tet may have been deleted. |
|
if (!isdeadtet(*bface)) { |
|
// A queued tet may have been processed. |
|
if (marktest2ed(*bface)) { |
|
unmarktest2(*bface); |
|
if (checktet4split(bface, qflag, ccent)) { |
|
splittetrahedron(bface, qflag, ccent, chkencflag); |
|
} |
|
} |
|
} |
|
bface->ver = -1; // Signal it as a deleted element. |
|
badtetrahedrons->dealloc((void*)bface); |
|
} |
|
bface = (triface*)badtetrahedrons->traverse(); |
|
} |
|
} |
|
|
|
if (badtetrahedrons->items > 0) { |
|
if (steinerleft == 0) { |
|
if (b->verbose) { |
|
printf("The desired number of Steiner points is reached.\n"); |
|
} |
|
} else { |
|
terminatetetgen(this, 2); // Unknown case. |
|
} |
|
// Unmark all queued tet. |
|
badtetrahedrons->traversalinit(); |
|
bface = (triface*)badtetrahedrons->traverse(); |
|
while (bface != NULL) { |
|
// Skip a deleted element. |
|
if (bface->ver >= 0) { |
|
if (!isdeadtet(*bface)) { |
|
if (marktest2ed(*bface)) { |
|
unmarktest2(*bface); |
|
} |
|
} |
|
} |
|
bface = (triface*)badtetrahedrons->traverse(); |
|
} |
|
// Clear the pool. |
|
badtetrahedrons->restart(); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// delaunayrefinement() Refine the mesh by Delaunay refinement. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::delaunayrefinement() { |
|
triface checktet; |
|
face checksh; |
|
face checkseg; |
|
long steinercount; |
|
int chkencflag; |
|
|
|
long bak_segref_count, bak_facref_count, bak_volref_count; |
|
long bak_flipcount = flip23count + flip32count + flip44count; |
|
|
|
if (!b->quiet) { |
|
printf("Refining mesh...\n"); |
|
} |
|
|
|
if (b->verbose) { |
|
printf(" Min radius-edge ratio = %g.\n", b->minratio); |
|
printf(" Min dihedral angle = %g.\n", b->mindihedral); |
|
// printf(" Min Edge length = %g.\n", b->minedgelength); |
|
} |
|
|
|
steinerleft = b->steinerleft; // Upperbound of # Steiner points (by -S#). |
|
if (steinerleft > 0) { |
|
// Check if we've already used up the given number of Steiner points. |
|
steinercount = st_segref_count + st_facref_count + st_volref_count; |
|
if (steinercount < steinerleft) { |
|
steinerleft -= steinercount; |
|
} else { |
|
if (!b->quiet) { |
|
printf("\nWarning: "); |
|
printf("The desired number of Steiner points (%d) has reached.\n\n", |
|
b->steinerleft); |
|
} |
|
return; // No more Steiner points. |
|
} |
|
} |
|
|
|
if (useinsertradius) { |
|
if ((b->plc && b->nobisect) || b->refine) { // '-pY' or '-r' option. |
|
makesegmentendpointsmap(); |
|
makefacetverticesmap(); |
|
} |
|
} |
|
|
|
encseglist = new arraypool(sizeof(face), 8); |
|
encshlist = new arraypool(sizeof(badface), 8); |
|
|
|
// if (!b->nobisect) { // if no '-Y' option |
|
if (!b->nobisect || checkconstraints) { |
|
if (b->verbose) { |
|
printf(" Splitting encroached subsegments.\n"); |
|
} |
|
|
|
chkencflag = 1; // Only check encroaching subsegments. |
|
steinercount = points->items; |
|
|
|
// Initialize the pool of encroached subsegments. |
|
badsubsegs = new memorypool(sizeof(face), b->shellfaceperblock, sizeof(void*), 0); |
|
|
|
// Add all segments into the pool. |
|
subsegs->traversalinit(); |
|
checkseg.sh = shellfacetraverse(subsegs); |
|
while (checkseg.sh != (shellface*)NULL) { |
|
enqueuesubface(badsubsegs, &checkseg); |
|
checkseg.sh = shellfacetraverse(subsegs); |
|
} |
|
|
|
// Split all encroached segments. |
|
repairencsegs(chkencflag); |
|
|
|
if (b->verbose) { |
|
printf(" Added %ld Steiner points.\n", points->items - steinercount); |
|
} |
|
|
|
if (b->reflevel > 1) { // '-D2' option |
|
if (b->verbose) { |
|
printf(" Splitting encroached subfaces.\n"); |
|
} |
|
|
|
chkencflag = 2; // Only check encroaching subfaces. |
|
steinercount = points->items; |
|
bak_segref_count = st_segref_count; |
|
bak_facref_count = st_facref_count; |
|
|
|
// Initialize the pool of encroached subfaces. |
|
badsubfacs = new memorypool(sizeof(face), b->shellfaceperblock, sizeof(void*), 0); |
|
|
|
// Add all subfaces into the pool. |
|
subfaces->traversalinit(); |
|
checksh.sh = shellfacetraverse(subfaces); |
|
while (checksh.sh != (shellface*)NULL) { |
|
enqueuesubface(badsubfacs, &checksh); |
|
checksh.sh = shellfacetraverse(subfaces); |
|
} |
|
|
|
// Split all encroached subfaces. |
|
repairencfacs(chkencflag); |
|
|
|
if (b->verbose) { |
|
printf(" Added %ld (%ld,%ld) Steiner points.\n", points->items - steinercount, |
|
st_segref_count - bak_segref_count, st_facref_count - bak_facref_count); |
|
} |
|
} // if (b->reflevel > 1) |
|
} // if (!b->nobisect) |
|
|
|
if (b->reflevel > 2) { // '-D3' option (The default option) |
|
if (b->verbose) { |
|
printf(" Splitting bad quality tets.\n"); |
|
} |
|
|
|
chkencflag = 4; // Only check tetrahedra. |
|
steinercount = points->items; |
|
bak_segref_count = st_segref_count; |
|
bak_facref_count = st_facref_count; |
|
bak_volref_count = st_volref_count; |
|
|
|
// The cosine value of the min dihedral angle (-qq) for tetrahedra. |
|
cosmindihed = cos(b->mindihedral / 180.0 * PI); |
|
|
|
// Initialize the pool of bad quality tetrahedra. |
|
badtetrahedrons = new memorypool(sizeof(triface), b->tetrahedraperblock, sizeof(void*), 0); |
|
// Add all tetrahedra (no hull tets) into the pool. |
|
tetrahedrons->traversalinit(); |
|
checktet.tet = tetrahedrontraverse(); |
|
while (checktet.tet != NULL) { |
|
enqueuetetrahedron(&checktet); |
|
checktet.tet = tetrahedrontraverse(); |
|
} |
|
|
|
// Split all bad quality tetrahedra. |
|
repairbadtets(chkencflag); |
|
|
|
if (b->verbose) { |
|
printf(" Added %ld (%ld,%ld,%ld) Steiner points.\n", points->items - steinercount, |
|
st_segref_count - bak_segref_count, st_facref_count - bak_facref_count, |
|
st_volref_count - bak_volref_count); |
|
} |
|
} // if (b->reflevel > 2) |
|
|
|
if (b->verbose) { |
|
if (flip23count + flip32count + flip44count > bak_flipcount) { |
|
printf(" Performed %ld flips.\n", |
|
flip23count + flip32count + flip44count - bak_flipcount); |
|
} |
|
} |
|
|
|
if (steinerleft == 0) { |
|
if (!b->quiet) { |
|
printf("\nWarnning: "); |
|
printf("The desired number of Steiner points (%d) is reached.\n\n", b->steinerleft); |
|
} |
|
} |
|
|
|
delete encseglist; |
|
delete encshlist; |
|
encseglist = NULL; |
|
encshlist = NULL; |
|
|
|
if (!b->nobisect || checkconstraints) { |
|
totalworkmemory += (badsubsegs->maxitems * badsubsegs->itembytes); |
|
delete badsubsegs; |
|
badsubsegs = NULL; |
|
if (b->reflevel > 1) { |
|
totalworkmemory += (badsubfacs->maxitems * badsubfacs->itembytes); |
|
delete badsubfacs; |
|
badsubfacs = NULL; |
|
} |
|
} |
|
if (b->reflevel > 2) { |
|
totalworkmemory += (badtetrahedrons->maxitems * badtetrahedrons->itembytes); |
|
delete badtetrahedrons; |
|
badtetrahedrons = NULL; |
|
} |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// refine_cxx /////////////////////////////////////////////////////////////// |
|
|
|
//// optimize_cxx ///////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// lawsonflip3d() A three-dimensional Lawson's algorithm. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
long tetgenmesh::lawsonflip3d(flipconstraints* fc) { |
|
triface fliptets[5], neightet, hulltet; |
|
face checksh, casingout; |
|
badface *popface, *bface; |
|
point pd, pe, *pts; |
|
REAL sign, ori; |
|
REAL vol, len3; |
|
long flipcount, totalcount = 0l; |
|
long sliver_peels = 0l; |
|
int t1ver; |
|
int i; |
|
|
|
while (1) { |
|
|
|
if (b->verbose > 2) { |
|
printf(" Lawson flip %ld faces.\n", flippool->items); |
|
} |
|
flipcount = 0l; |
|
|
|
while (flipstack != (badface*)NULL) { |
|
// Pop a face from the stack. |
|
popface = flipstack; |
|
fliptets[0] = popface->tt; |
|
flipstack = flipstack->nextitem; // The next top item in stack. |
|
flippool->dealloc((void*)popface); |
|
|
|
// Skip it if it is a dead tet (destroyed by previous flips). |
|
if (isdeadtet(fliptets[0])) continue; |
|
// Skip it if it is not the same tet as we saved. |
|
if (!facemarked(fliptets[0])) continue; |
|
|
|
unmarkface(fliptets[0]); |
|
|
|
if (ishulltet(fliptets[0])) continue; |
|
|
|
fsym(fliptets[0], fliptets[1]); |
|
if (ishulltet(fliptets[1])) { |
|
if (nonconvex) { |
|
// Check if 'fliptets[0]' it is a hull sliver. |
|
tspivot(fliptets[0], checksh); |
|
for (i = 0; i < 3; i++) { |
|
if (!isshsubseg(checksh)) { |
|
spivot(checksh, casingout); |
|
// assert(casingout.sh != NULL); |
|
if (sorg(checksh) != sdest(casingout)) sesymself(casingout); |
|
stpivot(casingout, neightet); |
|
if (neightet.tet == fliptets[0].tet) { |
|
// Found a hull sliver 'neightet'. Let it be [e,d,a,b], where |
|
// [e,d,a] and [d,e,b] are hull faces. |
|
edestoppo(neightet, hulltet); // [a,b,e,d] |
|
fsymself(hulltet); // [b,a,e,#] |
|
if (oppo(hulltet) == dummypoint) { |
|
pe = org(neightet); |
|
if ((pointtype(pe) == FREEFACETVERTEX) || |
|
(pointtype(pe) == FREESEGVERTEX)) { |
|
removevertexbyflips(pe); |
|
} |
|
} else { |
|
eorgoppo(neightet, hulltet); // [b,a,d,e] |
|
fsymself(hulltet); // [a,b,d,#] |
|
if (oppo(hulltet) == dummypoint) { |
|
pd = dest(neightet); |
|
if ((pointtype(pd) == FREEFACETVERTEX) || |
|
(pointtype(pd) == FREESEGVERTEX)) { |
|
removevertexbyflips(pd); |
|
} |
|
} else { |
|
// Perform a 3-to-2 flip to remove the sliver. |
|
fliptets[0] = neightet; // [e,d,a,b] |
|
fnext(fliptets[0], fliptets[1]); // [e,d,b,c] |
|
fnext(fliptets[1], fliptets[2]); // [e,d,c,a] |
|
flip32(fliptets, 1, fc); |
|
// Update counters. |
|
flip32count--; |
|
flip22count--; |
|
sliver_peels++; |
|
if (fc->remove_ndelaunay_edge) { |
|
// Update the volume (must be decreased). |
|
// assert(fc->tetprism_vol_sum <= 0); |
|
tetprism_vol_sum += fc->tetprism_vol_sum; |
|
fc->tetprism_vol_sum = 0.0; // Clear it. |
|
} |
|
} |
|
} |
|
break; |
|
} // if (neightet.tet == fliptets[0].tet) |
|
} // if (!isshsubseg(checksh)) |
|
senextself(checksh); |
|
} // i |
|
} // if (nonconvex) |
|
continue; |
|
} |
|
|
|
if (checksubfaceflag) { |
|
// Do not flip if it is a subface. |
|
if (issubface(fliptets[0])) continue; |
|
} |
|
|
|
// Test whether the face is locally Delaunay or not. |
|
pts = (point*)fliptets[1].tet; |
|
sign = insphere_s(pts[4], pts[5], pts[6], pts[7], oppo(fliptets[0])); |
|
|
|
if (sign < 0) { |
|
// A non-Delaunay face. Try to flip it. |
|
pd = oppo(fliptets[0]); |
|
pe = oppo(fliptets[1]); |
|
|
|
// Use the length of the edge [d,e] as a reference to determine |
|
// a nearly degenerated new tet. |
|
len3 = distance(pd, pe); |
|
len3 = (len3 * len3 * len3); |
|
int round_flag = 0; // [2017-10-20] |
|
// Check the convexity of its three edges. Stop checking either a |
|
// locally non-convex edge (ori < 0) or a flat edge (ori = 0) is |
|
// encountered, and 'fliptet' represents that edge. |
|
for (i = 0; i < 3; i++) { |
|
ori = orient3d(org(fliptets[0]), dest(fliptets[0]), pd, pe); |
|
if (ori > 0) { |
|
// Avoid creating a nearly degenerated new tet at boundary. |
|
// Re-use fliptets[2], fliptets[3]; |
|
esym(fliptets[0], fliptets[2]); |
|
esym(fliptets[1], fliptets[3]); |
|
if (issubface(fliptets[2]) || issubface(fliptets[3])) { |
|
vol = orient3dfast(org(fliptets[0]), dest(fliptets[0]), pd, pe); |
|
if ((fabs(vol) / len3) < b->epsilon) { |
|
ori = 0.0; // Do rounding. |
|
round_flag = 1; // [2017-10-20] |
|
} |
|
} |
|
} // Rounding check |
|
if (ori <= 0) break; |
|
enextself(fliptets[0]); |
|
eprevself(fliptets[1]); |
|
} |
|
|
|
if (ori > 0) { |
|
// A 2-to-3 flip is found. |
|
// [0] [a,b,c,d], |
|
// [1] [b,a,c,e]. no dummypoint. |
|
flip23(fliptets, 0, fc); |
|
flipcount++; |
|
if (fc->remove_ndelaunay_edge) { |
|
// Update the volume (must be decreased). |
|
// assert(fc->tetprism_vol_sum <= 0); |
|
tetprism_vol_sum += fc->tetprism_vol_sum; |
|
fc->tetprism_vol_sum = 0.0; // Clear it. |
|
} |
|
continue; |
|
} else { // ori <= 0 |
|
// The edge ('fliptets[0]' = [a',b',c',d]) is non-convex or flat, |
|
// where the edge [a',b'] is one of [a,b], [b,c], and [c,a]. |
|
if (checksubsegflag) { |
|
// Do not flip if it is a segment. |
|
if (issubseg(fliptets[0])) continue; |
|
} |
|
// Check if there are three or four tets sharing at this edge. |
|
esymself(fliptets[0]); // [b,a,d,c] |
|
for (i = 0; i < 3; i++) { |
|
fnext(fliptets[i], fliptets[i + 1]); |
|
} |
|
if (fliptets[3].tet == fliptets[0].tet) { |
|
// A 3-to-2 flip is found. (No hull tet.) |
|
flip32(fliptets, 0, fc); |
|
flipcount++; |
|
if (fc->remove_ndelaunay_edge) { |
|
// Update the volume (must be decreased). |
|
// assert(fc->tetprism_vol_sum <= 0); |
|
tetprism_vol_sum += fc->tetprism_vol_sum; |
|
fc->tetprism_vol_sum = 0.0; // Clear it. |
|
} |
|
continue; |
|
} else { |
|
// There are more than 3 tets at this edge. |
|
fnext(fliptets[3], fliptets[4]); |
|
if (fliptets[4].tet == fliptets[0].tet) { |
|
// There are exactly 4 tets at this edge. |
|
if (round_flag == 1) { |
|
continue; // [2017-10-20] |
|
} |
|
if (nonconvex) { |
|
if (apex(fliptets[3]) == dummypoint) { |
|
// This edge is locally non-convex on the hull. |
|
// It can be removed by a 4-to-4 flip. |
|
ori = 0; |
|
} |
|
} // if (nonconvex) |
|
if (ori == 0) { |
|
// A 4-to-4 flip is found. (Two hull tets may be involved.) |
|
// Current tets in 'fliptets': |
|
// [0] [b,a,d,c] (d may be newpt) |
|
// [1] [b,a,c,e] |
|
// [2] [b,a,e,f] (f may be dummypoint) |
|
// [3] [b,a,f,d] |
|
esymself(fliptets[0]); // [a,b,c,d] |
|
// A 2-to-3 flip replaces face [a,b,c] by edge [e,d]. |
|
// This creates a degenerate tet [e,d,a,b] (tmpfliptets[0]). |
|
// It will be removed by the followed 3-to-2 flip. |
|
flip23(fliptets, 0, fc); // No hull tet. |
|
fnext(fliptets[3], fliptets[1]); |
|
fnext(fliptets[1], fliptets[2]); |
|
// Current tets in 'fliptets': |
|
// [0] [...] |
|
// [1] [b,a,d,e] (degenerated, d may be new point). |
|
// [2] [b,a,e,f] (f may be dummypoint) |
|
// [3] [b,a,f,d] |
|
// A 3-to-2 flip replaces edge [b,a] by face [d,e,f]. |
|
// Hull tets may be involved (f may be dummypoint). |
|
flip32(&(fliptets[1]), (apex(fliptets[3]) == dummypoint), fc); |
|
flipcount++; |
|
flip23count--; |
|
flip32count--; |
|
flip44count++; |
|
if (fc->remove_ndelaunay_edge) { |
|
// Update the volume (must be decreased). |
|
// assert(fc->tetprism_vol_sum <= 0); |
|
tetprism_vol_sum += fc->tetprism_vol_sum; |
|
fc->tetprism_vol_sum = 0.0; // Clear it. |
|
} |
|
/////// Debug |
|
// if (checkmesh(0) > 0) { |
|
// assert(0); |
|
//} |
|
continue; |
|
} // if (ori == 0) |
|
} |
|
} |
|
} // if (ori <= 0) |
|
|
|
// This non-Delaunay face is unflippable. Save it. |
|
unflipqueue->newindex((void**)&bface); |
|
bface->tt = fliptets[0]; |
|
bface->forg = org(fliptets[0]); |
|
bface->fdest = dest(fliptets[0]); |
|
bface->fapex = apex(fliptets[0]); |
|
} // if (sign < 0) |
|
} // while (flipstack) |
|
|
|
if (b->verbose > 2) { |
|
if (flipcount > 0) { |
|
printf(" Performed %ld flips.\n", flipcount); |
|
} |
|
} |
|
// Accumulate the counter of flips. |
|
totalcount += flipcount; |
|
|
|
// Return if no unflippable faces left. |
|
if (unflipqueue->objects == 0l) break; |
|
// Return if no flip has been performed. |
|
if (flipcount == 0l) break; |
|
|
|
// Try to flip the unflippable faces. |
|
for (i = 0; i < unflipqueue->objects; i++) { |
|
bface = (badface*)fastlookup(unflipqueue, i); |
|
if (!isdeadtet(bface->tt) && (org(bface->tt) == bface->forg) && |
|
(dest(bface->tt) == bface->fdest) && (apex(bface->tt) == bface->fapex)) { |
|
flippush(flipstack, &(bface->tt)); |
|
} |
|
} |
|
unflipqueue->restart(); |
|
|
|
} // while (1) |
|
|
|
if (b->verbose > 2) { |
|
if (totalcount > 0) { |
|
printf(" Performed %ld flips.\n", totalcount); |
|
} |
|
if (sliver_peels > 0) { |
|
printf(" Removed %ld hull slivers.\n", sliver_peels); |
|
} |
|
if (unflipqueue->objects > 0l) { |
|
printf(" %ld unflippable edges remained.\n", unflipqueue->objects); |
|
} |
|
} |
|
|
|
return totalcount + sliver_peels; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// recoverdelaunay() Recovery the locally Delaunay property. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::recoverdelaunay() { |
|
arraypool *flipqueue, *nextflipqueue, *swapqueue; |
|
triface tetloop, neightet, *parytet; |
|
badface *bface, *parybface; |
|
point* ppt; |
|
flipconstraints fc; |
|
int i, j; |
|
|
|
if (!b->quiet) { |
|
printf("Recovering Delaunayness...\n"); |
|
} |
|
|
|
tetprism_vol_sum = 0.0; // Initialize it. |
|
|
|
// Put all interior faces of the mesh into 'flipstack'. |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
while (tetloop.tet != NULL) { |
|
for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
|
decode(tetloop.tet[tetloop.ver], neightet); |
|
if (!facemarked(neightet)) { |
|
flippush(flipstack, &tetloop); |
|
} |
|
} |
|
ppt = (point*)&(tetloop.tet[4]); |
|
tetprism_vol_sum += tetprismvol(ppt[0], ppt[1], ppt[2], ppt[3]); |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
|
|
// Calulate a relatively lower bound for small improvement. |
|
// Used to avoid rounding error in volume calculation. |
|
fc.bak_tetprism_vol = tetprism_vol_sum * b->epsilon * 1e-3; |
|
|
|
if (b->verbose) { |
|
printf(" Initial obj = %.17g\n", tetprism_vol_sum); |
|
} |
|
|
|
if (b->verbose > 1) { |
|
printf(" Recover Delaunay [Lawson] : %ld\n", flippool->items); |
|
} |
|
|
|
// First only use the basic Lawson's flip. |
|
fc.remove_ndelaunay_edge = 1; |
|
fc.enqflag = 2; |
|
|
|
lawsonflip3d(&fc); |
|
|
|
if (b->verbose > 1) { |
|
printf(" obj (after Lawson) = %.17g\n", tetprism_vol_sum); |
|
} |
|
|
|
if (unflipqueue->objects == 0l) { |
|
return; // The mesh is Delaunay. |
|
} |
|
|
|
fc.unflip = 1; // Unflip if the edge is not flipped. |
|
fc.collectnewtets = 1; // new tets are returned in 'cavetetlist'. |
|
fc.enqflag = 0; |
|
|
|
autofliplinklevel = 1; // Init level. |
|
b->fliplinklevel = -1; // No fixed level. |
|
|
|
// For efficiency reason, we limit the maximium size of the edge star. |
|
int bakmaxflipstarsize = b->flipstarsize; |
|
b->flipstarsize = 10; // default |
|
|
|
flipqueue = new arraypool(sizeof(badface), 10); |
|
nextflipqueue = new arraypool(sizeof(badface), 10); |
|
|
|
// Swap the two flip queues. |
|
swapqueue = flipqueue; |
|
flipqueue = unflipqueue; |
|
unflipqueue = swapqueue; |
|
|
|
while (flipqueue->objects > 0l) { |
|
|
|
if (b->verbose > 1) { |
|
printf(" Recover Delaunay [level = %2d] #: %ld.\n", autofliplinklevel, |
|
flipqueue->objects); |
|
} |
|
|
|
for (i = 0; i < flipqueue->objects; i++) { |
|
bface = (badface*)fastlookup(flipqueue, i); |
|
if (getedge(bface->forg, bface->fdest, &bface->tt)) { |
|
if (removeedgebyflips(&(bface->tt), &fc) == 2) { |
|
tetprism_vol_sum += fc.tetprism_vol_sum; |
|
fc.tetprism_vol_sum = 0.0; // Clear it. |
|
// Queue new faces for flips. |
|
for (j = 0; j < cavetetlist->objects; j++) { |
|
parytet = (triface*)fastlookup(cavetetlist, j); |
|
// A queued new tet may be dead. |
|
if (!isdeadtet(*parytet)) { |
|
for (parytet->ver = 0; parytet->ver < 4; parytet->ver++) { |
|
// Avoid queue a face twice. |
|
decode(parytet->tet[parytet->ver], neightet); |
|
if (!facemarked(neightet)) { |
|
flippush(flipstack, parytet); |
|
} |
|
} // parytet->ver |
|
} |
|
} // j |
|
cavetetlist->restart(); |
|
// Remove locally non-Delaunay faces. New non-Delaunay edges |
|
// may be found. They are saved in 'unflipqueue'. |
|
fc.enqflag = 2; |
|
lawsonflip3d(&fc); |
|
fc.enqflag = 0; |
|
// There may be unflipable faces. Add them in flipqueue. |
|
for (j = 0; j < unflipqueue->objects; j++) { |
|
bface = (badface*)fastlookup(unflipqueue, j); |
|
flipqueue->newindex((void**)&parybface); |
|
*parybface = *bface; |
|
} |
|
unflipqueue->restart(); |
|
} else { |
|
// Unable to remove this edge. Save it. |
|
nextflipqueue->newindex((void**)&parybface); |
|
*parybface = *bface; |
|
// Normally, it should be zero. |
|
// assert(fc.tetprism_vol_sum == 0.0); |
|
// However, due to rounding errors, a tiny value may appear. |
|
fc.tetprism_vol_sum = 0.0; |
|
} |
|
} |
|
} // i |
|
|
|
if (b->verbose > 1) { |
|
printf(" obj (after level %d) = %.17g.\n", autofliplinklevel, tetprism_vol_sum); |
|
} |
|
flipqueue->restart(); |
|
|
|
// Swap the two flip queues. |
|
swapqueue = flipqueue; |
|
flipqueue = nextflipqueue; |
|
nextflipqueue = swapqueue; |
|
|
|
if (flipqueue->objects > 0l) { |
|
// default 'b->delmaxfliplevel' is 1. |
|
if (autofliplinklevel >= b->delmaxfliplevel) { |
|
// For efficiency reason, we do not search too far. |
|
break; |
|
} |
|
autofliplinklevel += b->fliplinklevelinc; |
|
} |
|
} // while (flipqueue->objects > 0l) |
|
|
|
if (flipqueue->objects > 0l) { |
|
if (b->verbose > 1) { |
|
printf(" %ld non-Delaunay edges remained.\n", flipqueue->objects); |
|
} |
|
} |
|
|
|
if (b->verbose) { |
|
printf(" Final obj = %.17g\n", tetprism_vol_sum); |
|
} |
|
|
|
b->flipstarsize = bakmaxflipstarsize; |
|
delete flipqueue; |
|
delete nextflipqueue; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// gettetrahedron() Get a tetrahedron which have the given vertices. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::gettetrahedron(point pa, point pb, point pc, point pd, triface* searchtet) { |
|
triface spintet; |
|
int t1ver; |
|
|
|
if (getedge(pa, pb, searchtet)) { |
|
spintet = *searchtet; |
|
while (1) { |
|
if (apex(spintet) == pc) { |
|
*searchtet = spintet; |
|
break; |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet->tet) break; |
|
} |
|
if (apex(*searchtet) == pc) { |
|
if (oppo(*searchtet) == pd) { |
|
return 1; |
|
} else { |
|
fsymself(*searchtet); |
|
if (oppo(*searchtet) == pd) { |
|
return 1; |
|
} |
|
} |
|
} |
|
} |
|
|
|
return 0; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// improvequalitybyflips() Improve the mesh quality by flips. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
long tetgenmesh::improvequalitybyflips() { |
|
arraypool *flipqueue, *nextflipqueue, *swapqueue; |
|
badface *bface, *parybface; |
|
triface* parytet; |
|
point* ppt; |
|
flipconstraints fc; |
|
REAL *cosdd, ncosdd[6], maxdd; |
|
long totalremcount, remcount; |
|
int remflag; |
|
int n, i, j, k; |
|
|
|
// assert(unflipqueue->objects > 0l); |
|
flipqueue = new arraypool(sizeof(badface), 10); |
|
nextflipqueue = new arraypool(sizeof(badface), 10); |
|
|
|
// Backup flip edge options. |
|
int bakautofliplinklevel = autofliplinklevel; |
|
int bakfliplinklevel = b->fliplinklevel; |
|
int bakmaxflipstarsize = b->flipstarsize; |
|
|
|
// Set flip edge options. |
|
autofliplinklevel = 1; |
|
b->fliplinklevel = -1; |
|
b->flipstarsize = 10; // b->optmaxflipstarsize; |
|
|
|
fc.remove_large_angle = 1; |
|
fc.unflip = 1; |
|
fc.collectnewtets = 1; |
|
fc.checkflipeligibility = 1; |
|
|
|
totalremcount = 0l; |
|
|
|
// Swap the two flip queues. |
|
swapqueue = flipqueue; |
|
flipqueue = unflipqueue; |
|
unflipqueue = swapqueue; |
|
|
|
while (flipqueue->objects > 0l) { |
|
|
|
remcount = 0l; |
|
|
|
while (flipqueue->objects > 0l) { |
|
if (b->verbose > 1) { |
|
printf(" Improving mesh qualiy by flips [%d]#: %ld.\n", autofliplinklevel, |
|
flipqueue->objects); |
|
} |
|
|
|
for (k = 0; k < flipqueue->objects; k++) { |
|
bface = (badface*)fastlookup(flipqueue, k); |
|
if (gettetrahedron(bface->forg, bface->fdest, bface->fapex, bface->foppo, |
|
&bface->tt)) { |
|
// assert(!ishulltet(bface->tt)); |
|
// There are bad dihedral angles in this tet. |
|
if (bface->tt.ver != 11) { |
|
// The dihedral angles are permuted. |
|
// Here we simply re-compute them. Slow!!. |
|
ppt = (point*)&(bface->tt.tet[4]); |
|
tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent, &bface->key, |
|
NULL); |
|
bface->forg = ppt[0]; |
|
bface->fdest = ppt[1]; |
|
bface->fapex = ppt[2]; |
|
bface->foppo = ppt[3]; |
|
bface->tt.ver = 11; |
|
} |
|
if (bface->key == 0) { |
|
// Re-comput the quality values. Due to smoothing operations. |
|
ppt = (point*)&(bface->tt.tet[4]); |
|
tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent, &bface->key, |
|
NULL); |
|
} |
|
cosdd = bface->cent; |
|
remflag = 0; |
|
for (i = 0; (i < 6) && !remflag; i++) { |
|
if (cosdd[i] < cosmaxdihed) { |
|
// Found a large dihedral angle. |
|
bface->tt.ver = edge2ver[i]; // Go to the edge. |
|
fc.cosdihed_in = cosdd[i]; |
|
fc.cosdihed_out = 0.0; // 90 degree. |
|
n = removeedgebyflips(&(bface->tt), &fc); |
|
if (n == 2) { |
|
// Edge is flipped. |
|
remflag = 1; |
|
if (fc.cosdihed_out < cosmaxdihed) { |
|
// Queue new bad tets for further improvements. |
|
for (j = 0; j < cavetetlist->objects; j++) { |
|
parytet = (triface*)fastlookup(cavetetlist, j); |
|
if (!isdeadtet(*parytet)) { |
|
ppt = (point*)&(parytet->tet[4]); |
|
// Do not test a hull tet. |
|
if (ppt[3] != dummypoint) { |
|
tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], |
|
ncosdd, &maxdd, NULL); |
|
if (maxdd < cosmaxdihed) { |
|
// There are bad dihedral angles in this tet. |
|
nextflipqueue->newindex((void**)&parybface); |
|
parybface->tt.tet = parytet->tet; |
|
parybface->tt.ver = 11; |
|
parybface->forg = ppt[0]; |
|
parybface->fdest = ppt[1]; |
|
parybface->fapex = ppt[2]; |
|
parybface->foppo = ppt[3]; |
|
parybface->key = maxdd; |
|
for (n = 0; n < 6; n++) { |
|
parybface->cent[n] = ncosdd[n]; |
|
} |
|
} |
|
} // if (ppt[3] != dummypoint) |
|
} |
|
} // j |
|
} // if (fc.cosdihed_out < cosmaxdihed) |
|
cavetetlist->restart(); |
|
remcount++; |
|
} |
|
} |
|
} // i |
|
if (!remflag) { |
|
// An unremoved bad tet. Queue it again. |
|
unflipqueue->newindex((void**)&parybface); |
|
*parybface = *bface; |
|
} |
|
} // if (gettetrahedron(...)) |
|
} // k |
|
|
|
flipqueue->restart(); |
|
|
|
// Swap the two flip queues. |
|
swapqueue = flipqueue; |
|
flipqueue = nextflipqueue; |
|
nextflipqueue = swapqueue; |
|
} // while (flipqueues->objects > 0) |
|
|
|
if (b->verbose > 1) { |
|
printf(" Removed %ld bad tets.\n", remcount); |
|
} |
|
totalremcount += remcount; |
|
|
|
if (unflipqueue->objects > 0l) { |
|
// if (autofliplinklevel >= b->optmaxfliplevel) { |
|
if (autofliplinklevel >= b->optlevel) { |
|
break; |
|
} |
|
autofliplinklevel += b->fliplinklevelinc; |
|
// b->flipstarsize = 10 + (1 << (b->optlevel - 1)); |
|
} |
|
|
|
// Swap the two flip queues. |
|
swapqueue = flipqueue; |
|
flipqueue = unflipqueue; |
|
unflipqueue = swapqueue; |
|
} // while (flipqueues->objects > 0) |
|
|
|
// Restore original flip edge options. |
|
autofliplinklevel = bakautofliplinklevel; |
|
b->fliplinklevel = bakfliplinklevel; |
|
b->flipstarsize = bakmaxflipstarsize; |
|
|
|
delete flipqueue; |
|
delete nextflipqueue; |
|
|
|
return totalremcount; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// smoothpoint() Moving a vertex to improve the mesh quality. // |
|
// // |
|
// 'smtpt' (p) is a point to be smoothed. Generally, it is a Steiner point. // |
|
// It may be not a vertex of the mesh. // |
|
// // |
|
// This routine tries to move 'p' inside its star until a selected objective // |
|
// function over all tetrahedra in the star is improved. The function may be // |
|
// the some quality measures, i.e., aspect ratio, maximum dihedral angel, or // |
|
// simply the volume of the tetrahedra. // |
|
// // |
|
// 'linkfacelist' contains the list of link faces of 'p'. Since a link face // |
|
// has two orientations, ccw or cw, with respect to 'p'. 'ccw' indicates // |
|
// the orientation is ccw (1) or not (0). // |
|
// // |
|
// 'opm' is a structure contains the parameters of the objective function. // |
|
// It is needed by the evaluation of the function value. // |
|
// // |
|
// The return value indicates weather the point is smoothed or not. // |
|
// // |
|
// ASSUMPTION: This routine assumes that all link faces are true faces, i.e, // |
|
// no face has 'dummypoint' as its vertex. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::smoothpoint(point smtpt, arraypool* linkfacelist, int ccw, optparameters* opm) { |
|
triface *parytet, *parytet1, swaptet; |
|
point pa, pb, pc; |
|
REAL fcent[3], startpt[3], nextpt[3], bestpt[3]; |
|
REAL oldval, minval = 0.0, val; |
|
REAL maxcosd; // oldang, newang; |
|
REAL ori, diff; |
|
int numdirs, iter; |
|
int i, j, k; |
|
|
|
// Decide the number of moving directions. |
|
numdirs = (int)linkfacelist->objects; |
|
if (numdirs > opm->numofsearchdirs) { |
|
numdirs = opm->numofsearchdirs; // Maximum search directions. |
|
} |
|
|
|
// Set the initial value. |
|
opm->imprval = opm->initval; |
|
iter = 0; |
|
|
|
for (i = 0; i < 3; i++) { |
|
bestpt[i] = startpt[i] = smtpt[i]; |
|
} |
|
|
|
// Iterate until the obj function is not improved. |
|
while (1) { |
|
|
|
// Find the best next location. |
|
oldval = opm->imprval; |
|
|
|
for (i = 0; i < numdirs; i++) { |
|
// Randomly pick a link face (0 <= k <= objects - i - 1). |
|
k = (int)randomnation(linkfacelist->objects - i); |
|
parytet = (triface*)fastlookup(linkfacelist, k); |
|
// Calculate a new position from 'p' to the center of this face. |
|
pa = org(*parytet); |
|
pb = dest(*parytet); |
|
pc = apex(*parytet); |
|
for (j = 0; j < 3; j++) { |
|
fcent[j] = (pa[j] + pb[j] + pc[j]) / 3.0; |
|
} |
|
for (j = 0; j < 3; j++) { |
|
nextpt[j] = startpt[j] + opm->searchstep * (fcent[j] - startpt[j]); |
|
} |
|
// Calculate the largest minimum function value for the new location. |
|
for (j = 0; j < linkfacelist->objects; j++) { |
|
parytet = (triface*)fastlookup(linkfacelist, j); |
|
if (ccw) { |
|
pa = org(*parytet); |
|
pb = dest(*parytet); |
|
} else { |
|
pb = org(*parytet); |
|
pa = dest(*parytet); |
|
} |
|
pc = apex(*parytet); |
|
ori = orient3d(pa, pb, pc, nextpt); |
|
if (ori < 0.0) { |
|
// Calcuate the objective function value. |
|
if (opm->max_min_volume) { |
|
// val = -ori; |
|
val = -orient3dfast(pa, pb, pc, nextpt); |
|
} else if (opm->min_max_aspectratio) { |
|
val = 1.0 / tetaspectratio(pa, pb, pc, nextpt); |
|
} else if (opm->min_max_dihedangle) { |
|
tetalldihedral(pa, pb, pc, nextpt, NULL, &maxcosd, NULL); |
|
if (maxcosd < -1) maxcosd = -1.0; // Rounding. |
|
val = maxcosd + 1.0; // Make it be positive. |
|
} else { |
|
// Unknown objective function. |
|
val = 0.0; |
|
} |
|
} else { // ori >= 0.0; |
|
// An invalid new tet. |
|
// This may happen if the mesh contains inverted elements. |
|
if (opm->max_min_volume) { |
|
// val = -ori; |
|
val = -orient3dfast(pa, pb, pc, nextpt); |
|
} else { |
|
// Discard this point. |
|
break; // j |
|
} |
|
} // if (ori >= 0.0) |
|
// Stop looping when the object value is not improved. |
|
if (val <= opm->imprval) { |
|
break; // j |
|
} else { |
|
// Remember the smallest improved value. |
|
if (j == 0) { |
|
minval = val; |
|
} else { |
|
minval = (val < minval) ? val : minval; |
|
} |
|
} |
|
} // j |
|
if (j == linkfacelist->objects) { |
|
// The function value has been improved. |
|
opm->imprval = minval; |
|
// Save the new location of the point. |
|
for (j = 0; j < 3; j++) |
|
bestpt[j] = nextpt[j]; |
|
} |
|
// Swap k-th and (object-i-1)-th entries. |
|
j = linkfacelist->objects - i - 1; |
|
parytet = (triface*)fastlookup(linkfacelist, k); |
|
parytet1 = (triface*)fastlookup(linkfacelist, j); |
|
swaptet = *parytet1; |
|
*parytet1 = *parytet; |
|
*parytet = swaptet; |
|
} // i |
|
|
|
diff = opm->imprval - oldval; |
|
if (diff > 0.0) { |
|
// Is the function value improved effectively? |
|
if (opm->max_min_volume) { |
|
// if ((diff / oldval) < b->epsilon) diff = 0.0; |
|
} else if (opm->min_max_aspectratio) { |
|
if ((diff / oldval) < 1e-3) diff = 0.0; |
|
} else if (opm->min_max_dihedangle) { |
|
// oldang = acos(oldval - 1.0); |
|
// newang = acos(opm->imprval - 1.0); |
|
// if ((oldang - newang) < 0.00174) diff = 0.0; // about 0.1 degree. |
|
} else { |
|
// Unknown objective function. |
|
terminatetetgen(this, 2); |
|
} |
|
} |
|
|
|
if (diff > 0.0) { |
|
// Yes, move p to the new location and continue. |
|
for (j = 0; j < 3; j++) |
|
startpt[j] = bestpt[j]; |
|
iter++; |
|
if ((opm->maxiter > 0) && (iter >= opm->maxiter)) { |
|
// Maximum smoothing iterations reached. |
|
break; |
|
} |
|
} else { |
|
break; |
|
} |
|
|
|
} // while (1) |
|
|
|
if (iter > 0) { |
|
// The point has been smoothed. |
|
opm->smthiter = iter; // Remember the number of iterations. |
|
// The point has been smoothed. Update it to its new position. |
|
for (i = 0; i < 3; i++) |
|
smtpt[i] = startpt[i]; |
|
} |
|
|
|
return iter; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// improvequalitysmoothing() Improve mesh quality by smoothing. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
long tetgenmesh::improvequalitybysmoothing(optparameters* opm) { |
|
arraypool *flipqueue, *swapqueue; |
|
triface* parytet; |
|
badface *bface, *parybface; |
|
point* ppt; |
|
long totalsmtcount, smtcount; |
|
int smtflag; |
|
int iter, i, j, k; |
|
|
|
// assert(unflipqueue->objects > 0l); |
|
flipqueue = new arraypool(sizeof(badface), 10); |
|
|
|
// Swap the two flip queues. |
|
swapqueue = flipqueue; |
|
flipqueue = unflipqueue; |
|
unflipqueue = swapqueue; |
|
|
|
totalsmtcount = 0l; |
|
iter = 0; |
|
|
|
while (flipqueue->objects > 0l) { |
|
|
|
smtcount = 0l; |
|
|
|
if (b->verbose > 1) { |
|
printf(" Improving mesh quality by smoothing [%d]#: %ld.\n", iter, |
|
flipqueue->objects); |
|
} |
|
|
|
for (k = 0; k < flipqueue->objects; k++) { |
|
bface = (badface*)fastlookup(flipqueue, k); |
|
if (gettetrahedron(bface->forg, bface->fdest, bface->fapex, bface->foppo, &bface->tt)) { |
|
// Operate on it if it is not in 'unflipqueue'. |
|
if (!marktested(bface->tt)) { |
|
// Here we simply re-compute the quality. Since other smoothing |
|
// operation may have moved the vertices of this tet. |
|
ppt = (point*)&(bface->tt.tet[4]); |
|
tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent, &bface->key, NULL); |
|
if (bface->key < cossmtdihed) { // if (maxdd < cosslidihed) { |
|
// It is a sliver. Try to smooth its vertices. |
|
smtflag = 0; |
|
opm->initval = bface->key + 1.0; |
|
for (i = 0; (i < 4) && !smtflag; i++) { |
|
if (pointtype(ppt[i]) == FREEVOLVERTEX) { |
|
getvertexstar(1, ppt[i], cavetetlist, NULL, NULL); |
|
opm->searchstep = 0.001; // Search step size |
|
smtflag = smoothpoint(ppt[i], cavetetlist, 1, opm); |
|
if (smtflag) { |
|
while (opm->smthiter == opm->maxiter) { |
|
opm->searchstep *= 10.0; // Increase the step size. |
|
opm->initval = opm->imprval; |
|
opm->smthiter = 0; // reset |
|
smoothpoint(ppt[i], cavetetlist, 1, opm); |
|
} |
|
// This tet is modifed. |
|
smtcount++; |
|
if ((opm->imprval - 1.0) < cossmtdihed) { |
|
// There are slivers in new tets. Queue them. |
|
for (j = 0; j < cavetetlist->objects; j++) { |
|
parytet = (triface*)fastlookup(cavetetlist, j); |
|
// Operate it if it is not in 'unflipqueue'. |
|
if (!marktested(*parytet)) { |
|
// Evaluate its quality. |
|
// Re-use ppt, bface->key, bface->cent. |
|
ppt = (point*)&(parytet->tet[4]); |
|
tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], |
|
bface->cent, &bface->key, NULL); |
|
if (bface->key < cossmtdihed) { |
|
// A new sliver. Queue it. |
|
marktest(*parytet); // It is in unflipqueue. |
|
unflipqueue->newindex((void**)&parybface); |
|
parybface->tt = *parytet; |
|
parybface->forg = ppt[0]; |
|
parybface->fdest = ppt[1]; |
|
parybface->fapex = ppt[2]; |
|
parybface->foppo = ppt[3]; |
|
parybface->tt.ver = 11; |
|
parybface->key = 0.0; |
|
} |
|
} |
|
} // j |
|
} // if ((opm->imprval - 1.0) < cossmtdihed) |
|
} // if (smtflag) |
|
cavetetlist->restart(); |
|
} // if (pointtype(ppt[i]) == FREEVOLVERTEX) |
|
} // i |
|
if (!smtflag) { |
|
// Didn't smooth. Queue it again. |
|
marktest(bface->tt); // It is in unflipqueue. |
|
unflipqueue->newindex((void**)&parybface); |
|
parybface->tt = bface->tt; |
|
parybface->forg = ppt[0]; |
|
parybface->fdest = ppt[1]; |
|
parybface->fapex = ppt[2]; |
|
parybface->foppo = ppt[3]; |
|
parybface->tt.ver = 11; |
|
parybface->key = 0.0; |
|
} |
|
} // if (maxdd < cosslidihed) |
|
} // if (!marktested(...)) |
|
} // if (gettetrahedron(...)) |
|
} // k |
|
|
|
flipqueue->restart(); |
|
|
|
// Unmark the tets in unflipqueue. |
|
for (i = 0; i < unflipqueue->objects; i++) { |
|
bface = (badface*)fastlookup(unflipqueue, i); |
|
unmarktest(bface->tt); |
|
} |
|
|
|
if (b->verbose > 1) { |
|
printf(" Smooth %ld points.\n", smtcount); |
|
} |
|
totalsmtcount += smtcount; |
|
|
|
if (smtcount == 0l) { |
|
// No point has been smoothed. |
|
break; |
|
} else { |
|
iter++; |
|
if (iter == 2) { // if (iter >= b->optpasses) { |
|
break; |
|
} |
|
} |
|
|
|
// Swap the two flip queues. |
|
swapqueue = flipqueue; |
|
flipqueue = unflipqueue; |
|
unflipqueue = swapqueue; |
|
} // while |
|
|
|
delete flipqueue; |
|
|
|
return totalsmtcount; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// splitsliver() Split a sliver. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::splitsliver(triface* slitet, REAL cosd, int chkencflag) { |
|
triface* abtets; |
|
triface searchtet, spintet, *parytet; |
|
point pa, pb, steinerpt; |
|
optparameters opm; |
|
insertvertexflags ivf; |
|
REAL smtpt[3], midpt[3]; |
|
int success; |
|
int t1ver; |
|
int n, i; |
|
|
|
// 'slitet' is [c,d,a,b], where [c,d] has a big dihedral angle. |
|
// Go to the opposite edge [a,b]. |
|
edestoppo(*slitet, searchtet); // [a,b,c,d]. |
|
|
|
// Do not split a segment. |
|
if (issubseg(searchtet)) { |
|
return 0; |
|
} |
|
|
|
// Count the number of tets shared at [a,b]. |
|
// Do not split it if it is a hull edge. |
|
spintet = searchtet; |
|
n = 0; |
|
while (1) { |
|
if (ishulltet(spintet)) break; |
|
n++; |
|
fnextself(spintet); |
|
if (spintet.tet == searchtet.tet) break; |
|
} |
|
if (ishulltet(spintet)) { |
|
return 0; // It is a hull edge. |
|
} |
|
|
|
// Get all tets at edge [a,b]. |
|
abtets = new triface[n]; |
|
spintet = searchtet; |
|
for (i = 0; i < n; i++) { |
|
abtets[i] = spintet; |
|
fnextself(spintet); |
|
} |
|
|
|
// Initialize the list of 2n boundary faces. |
|
for (i = 0; i < n; i++) { |
|
eprev(abtets[i], searchtet); |
|
esymself(searchtet); // [a,p_i,p_i+1]. |
|
cavetetlist->newindex((void**)&parytet); |
|
*parytet = searchtet; |
|
enext(abtets[i], searchtet); |
|
esymself(searchtet); // [p_i,b,p_i+1]. |
|
cavetetlist->newindex((void**)&parytet); |
|
*parytet = searchtet; |
|
} |
|
|
|
// Init the Steiner point at the midpoint of edge [a,b]. |
|
pa = org(abtets[0]); |
|
pb = dest(abtets[0]); |
|
for (i = 0; i < 3; i++) { |
|
smtpt[i] = midpt[i] = 0.5 * (pa[i] + pb[i]); |
|
} |
|
|
|
// Point smooth options. |
|
opm.min_max_dihedangle = 1; |
|
opm.initval = cosd + 1.0; // Initial volume is zero. |
|
opm.numofsearchdirs = 20; |
|
opm.searchstep = 0.001; |
|
opm.maxiter = 100; // Limit the maximum iterations. |
|
|
|
success = smoothpoint(smtpt, cavetetlist, 1, &opm); |
|
|
|
if (success) { |
|
while (opm.smthiter == opm.maxiter) { |
|
// It was relocated and the prescribed maximum iteration reached. |
|
// Try to increase the search stepsize. |
|
opm.searchstep *= 10.0; |
|
// opm.maxiter = 100; // Limit the maximum iterations. |
|
opm.initval = opm.imprval; |
|
opm.smthiter = 0; // Init. |
|
smoothpoint(smtpt, cavetetlist, 1, &opm); |
|
} |
|
} // if (success) |
|
|
|
cavetetlist->restart(); |
|
|
|
if (!success) { |
|
delete[] abtets; |
|
return 0; |
|
} |
|
|
|
// Insert the Steiner point. |
|
makepoint(&steinerpt, FREEVOLVERTEX); |
|
for (i = 0; i < 3; i++) |
|
steinerpt[i] = smtpt[i]; |
|
|
|
// Insert the created Steiner point. |
|
for (i = 0; i < n; i++) { |
|
infect(abtets[i]); |
|
caveoldtetlist->newindex((void**)&parytet); |
|
*parytet = abtets[i]; |
|
} |
|
|
|
searchtet = abtets[0]; // No need point location. |
|
if (b->metric) { |
|
locate(steinerpt, &searchtet); // For size interpolation. |
|
} |
|
|
|
delete[] abtets; |
|
|
|
ivf.iloc = (int)INSTAR; |
|
ivf.chkencflag = chkencflag; |
|
ivf.assignmeshsize = b->metric; |
|
|
|
if (insertpoint(steinerpt, &searchtet, NULL, NULL, &ivf)) { |
|
// The vertex has been inserted. |
|
st_volref_count++; |
|
if (steinerleft > 0) steinerleft--; |
|
return 1; |
|
} else { |
|
// The Steiner point is too close to an existing vertex. Reject it. |
|
pointdealloc(steinerpt); |
|
return 0; |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// removeslivers() Remove slivers by adding Steiner points. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
long tetgenmesh::removeslivers(int chkencflag) { |
|
arraypool *flipqueue, *swapqueue; |
|
badface *bface, *parybface; |
|
triface slitet, *parytet; |
|
point* ppt; |
|
REAL cosdd[6], maxcosd; |
|
long totalsptcount, sptcount; |
|
int iter, i, j, k; |
|
|
|
// assert(unflipqueue->objects > 0l); |
|
flipqueue = new arraypool(sizeof(badface), 10); |
|
|
|
// Swap the two flip queues. |
|
swapqueue = flipqueue; |
|
flipqueue = unflipqueue; |
|
unflipqueue = swapqueue; |
|
|
|
totalsptcount = 0l; |
|
iter = 0; |
|
|
|
while ((flipqueue->objects > 0l) && (steinerleft != 0)) { |
|
|
|
sptcount = 0l; |
|
|
|
if (b->verbose > 1) { |
|
printf(" Splitting bad quality tets [%d]#: %ld.\n", iter, flipqueue->objects); |
|
} |
|
|
|
for (k = 0; (k < flipqueue->objects) && (steinerleft != 0); k++) { |
|
bface = (badface*)fastlookup(flipqueue, k); |
|
if (gettetrahedron(bface->forg, bface->fdest, bface->fapex, bface->foppo, &bface->tt)) { |
|
if ((bface->key == 0) || (bface->tt.ver != 11)) { |
|
// Here we need to re-compute the quality. Since other smoothing |
|
// operation may have moved the vertices of this tet. |
|
ppt = (point*)&(bface->tt.tet[4]); |
|
tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], bface->cent, &bface->key, NULL); |
|
} |
|
if (bface->key < cosslidihed) { |
|
// It is a sliver. Try to split it. |
|
slitet.tet = bface->tt.tet; |
|
// cosdd = bface->cent; |
|
for (j = 0; j < 6; j++) { |
|
if (bface->cent[j] < cosslidihed) { |
|
// Found a large dihedral angle. |
|
slitet.ver = edge2ver[j]; // Go to the edge. |
|
if (splitsliver(&slitet, bface->cent[j], chkencflag)) { |
|
sptcount++; |
|
break; |
|
} |
|
} |
|
} // j |
|
if (j < 6) { |
|
// A sliver is split. Queue new slivers. |
|
badtetrahedrons->traversalinit(); |
|
parytet = (triface*)badtetrahedrons->traverse(); |
|
while (parytet != NULL) { |
|
unmarktest2(*parytet); |
|
ppt = (point*)&(parytet->tet[4]); |
|
tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], cosdd, &maxcosd, NULL); |
|
if (maxcosd < cosslidihed) { |
|
// A new sliver. Queue it. |
|
unflipqueue->newindex((void**)&parybface); |
|
parybface->forg = ppt[0]; |
|
parybface->fdest = ppt[1]; |
|
parybface->fapex = ppt[2]; |
|
parybface->foppo = ppt[3]; |
|
parybface->tt.tet = parytet->tet; |
|
parybface->tt.ver = 11; |
|
parybface->key = maxcosd; |
|
for (i = 0; i < 6; i++) { |
|
parybface->cent[i] = cosdd[i]; |
|
} |
|
} |
|
parytet = (triface*)badtetrahedrons->traverse(); |
|
} |
|
badtetrahedrons->restart(); |
|
} else { |
|
// Didn't split. Queue it again. |
|
unflipqueue->newindex((void**)&parybface); |
|
*parybface = *bface; |
|
} // if (j == 6) |
|
} // if (bface->key < cosslidihed) |
|
} // if (gettetrahedron(...)) |
|
} // k |
|
|
|
flipqueue->restart(); |
|
|
|
if (b->verbose > 1) { |
|
printf(" Split %ld tets.\n", sptcount); |
|
} |
|
totalsptcount += sptcount; |
|
|
|
if (sptcount == 0l) { |
|
// No point has been smoothed. |
|
break; |
|
} else { |
|
iter++; |
|
if (iter == 2) { // if (iter >= b->optpasses) { |
|
break; |
|
} |
|
} |
|
|
|
// Swap the two flip queues. |
|
swapqueue = flipqueue; |
|
flipqueue = unflipqueue; |
|
unflipqueue = swapqueue; |
|
} // while |
|
|
|
delete flipqueue; |
|
|
|
return totalsptcount; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// optimizemesh() Optimize mesh for specified objective functions. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::optimizemesh() { |
|
badface* parybface; |
|
triface checktet; |
|
point* ppt; |
|
int optpasses; |
|
optparameters opm; |
|
REAL ncosdd[6], maxdd; |
|
long totalremcount, remcount; |
|
long totalsmtcount, smtcount; |
|
long totalsptcount, sptcount; |
|
int chkencflag; |
|
int iter; |
|
int n; |
|
|
|
if (!b->quiet) { |
|
printf("Optimizing mesh...\n"); |
|
} |
|
|
|
optpasses = ((1 << b->optlevel) - 1); |
|
|
|
if (b->verbose) { |
|
printf(" Optimization level = %d.\n", b->optlevel); |
|
printf(" Optimization scheme = %d.\n", b->optscheme); |
|
printf(" Number of iteration = %d.\n", optpasses); |
|
printf(" Min_Max dihed angle = %g.\n", b->optmaxdihedral); |
|
} |
|
|
|
totalsmtcount = totalsptcount = totalremcount = 0l; |
|
|
|
cosmaxdihed = cos(b->optmaxdihedral / 180.0 * PI); |
|
cossmtdihed = cos(b->optminsmtdihed / 180.0 * PI); |
|
cosslidihed = cos(b->optminslidihed / 180.0 * PI); |
|
|
|
int attrnum = numelemattrib - 1; |
|
|
|
// Put all bad tetrahedra into array. |
|
tetrahedrons->traversalinit(); |
|
checktet.tet = tetrahedrontraverse(); |
|
while (checktet.tet != NULL) { |
|
if (b->convex) { // -c |
|
// Skip this tet if it lies in the exterior. |
|
if (elemattribute(checktet.tet, attrnum) == -1.0) { |
|
checktet.tet = tetrahedrontraverse(); |
|
continue; |
|
} |
|
} |
|
ppt = (point*)&(checktet.tet[4]); |
|
tetalldihedral(ppt[0], ppt[1], ppt[2], ppt[3], ncosdd, &maxdd, NULL); |
|
if (maxdd < cosmaxdihed) { |
|
// There are bad dihedral angles in this tet. |
|
unflipqueue->newindex((void**)&parybface); |
|
parybface->tt.tet = checktet.tet; |
|
parybface->tt.ver = 11; |
|
parybface->forg = ppt[0]; |
|
parybface->fdest = ppt[1]; |
|
parybface->fapex = ppt[2]; |
|
parybface->foppo = ppt[3]; |
|
parybface->key = maxdd; |
|
for (n = 0; n < 6; n++) { |
|
parybface->cent[n] = ncosdd[n]; |
|
} |
|
} |
|
checktet.tet = tetrahedrontraverse(); |
|
} |
|
|
|
totalremcount = improvequalitybyflips(); |
|
|
|
if ((unflipqueue->objects > 0l) && ((b->optscheme & 2) || (b->optscheme & 4))) { |
|
// The pool is only used by removeslivers(). |
|
badtetrahedrons = new memorypool(sizeof(triface), b->tetrahedraperblock, sizeof(void*), 0); |
|
|
|
// Smoothing options. |
|
opm.min_max_dihedangle = 1; |
|
opm.numofsearchdirs = 10; |
|
// opm.searchstep = 0.001; |
|
opm.maxiter = 30; // Limit the maximum iterations. |
|
// opm.checkencflag = 4; // Queue affected tets after smoothing. |
|
chkencflag = 4; // Queue affected tets after splitting a sliver. |
|
iter = 0; |
|
|
|
while (iter < optpasses) { |
|
smtcount = sptcount = remcount = 0l; |
|
if (b->optscheme & 2) { |
|
smtcount += improvequalitybysmoothing(&opm); |
|
totalsmtcount += smtcount; |
|
if (smtcount > 0l) { |
|
remcount = improvequalitybyflips(); |
|
totalremcount += remcount; |
|
} |
|
} |
|
if (unflipqueue->objects > 0l) { |
|
if (b->optscheme & 4) { |
|
sptcount += removeslivers(chkencflag); |
|
totalsptcount += sptcount; |
|
if (sptcount > 0l) { |
|
remcount = improvequalitybyflips(); |
|
totalremcount += remcount; |
|
} |
|
} |
|
} |
|
if (unflipqueue->objects > 0l) { |
|
if (remcount > 0l) { |
|
iter++; |
|
} else { |
|
break; |
|
} |
|
} else { |
|
break; |
|
} |
|
} // while (iter) |
|
|
|
delete badtetrahedrons; |
|
badtetrahedrons = NULL; |
|
} |
|
|
|
if (unflipqueue->objects > 0l) { |
|
if (b->verbose > 1) { |
|
printf(" %ld bad tets remained.\n", unflipqueue->objects); |
|
} |
|
unflipqueue->restart(); |
|
} |
|
|
|
if (b->verbose) { |
|
if (totalremcount > 0l) { |
|
printf(" Removed %ld edges.\n", totalremcount); |
|
} |
|
if (totalsmtcount > 0l) { |
|
printf(" Smoothed %ld points.\n", totalsmtcount); |
|
} |
|
if (totalsptcount > 0l) { |
|
printf(" Split %ld slivers.\n", totalsptcount); |
|
} |
|
} |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// optimize_cxx ///////////////////////////////////////////////////////////// |
|
|
|
//// meshstat_cxx ///////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// printfcomma() Print a (large) number with the 'thousands separator'. // |
|
// // |
|
// The following code was simply copied from "stackoverflow". // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::printfcomma(unsigned long n) { |
|
unsigned long n2 = 0; |
|
int scale = 1; |
|
while (n >= 1000) { |
|
n2 = n2 + scale * (n % 1000); |
|
n /= 1000; |
|
scale *= 1000; |
|
} |
|
printf("%ld", n); |
|
while (scale != 1) { |
|
scale /= 1000; |
|
n = n2 / scale; |
|
n2 = n2 % scale; |
|
printf(",%03ld", n); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// checkmesh() Test the mesh for topological consistency. // |
|
// // |
|
// If 'topoflag' is set, only check the topological connection of the mesh, // |
|
// i.e., do not report degenerated or inverted elements. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::checkmesh(int topoflag) { |
|
triface tetloop, neightet, symtet; |
|
point pa, pb, pc, pd; |
|
REAL ori; |
|
int horrors, i; |
|
|
|
if (!b->quiet) { |
|
printf(" Checking consistency of mesh...\n"); |
|
} |
|
|
|
horrors = 0; |
|
tetloop.ver = 0; |
|
// Run through the list of tetrahedra, checking each one. |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = alltetrahedrontraverse(); |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
// Check all four faces of the tetrahedron. |
|
for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
|
pa = org(tetloop); |
|
pb = dest(tetloop); |
|
pc = apex(tetloop); |
|
pd = oppo(tetloop); |
|
if (tetloop.ver == 0) { // Only test for inversion once. |
|
if (!ishulltet(tetloop)) { // Only do test if it is not a hull tet. |
|
if (!topoflag) { |
|
ori = orient3d(pa, pb, pc, pd); |
|
if (ori >= 0.0) { |
|
printf(" !! !! %s ", ori > 0.0 ? "Inverted" : "Degenerated"); |
|
printf(" (%d, %d, %d, %d) (ori = %.17g)\n", pointmark(pa), |
|
pointmark(pb), pointmark(pc), pointmark(pd), ori); |
|
horrors++; |
|
} |
|
} |
|
} |
|
if (infected(tetloop)) { |
|
// This may be a bug. Report it. |
|
printf(" !! (%d, %d, %d, %d) is infected.\n", pointmark(pa), pointmark(pb), |
|
pointmark(pc), pointmark(pd)); |
|
horrors++; |
|
} |
|
if (marktested(tetloop)) { |
|
// This may be a bug. Report it. |
|
printf(" !! (%d, %d, %d, %d) is marked.\n", pointmark(pa), pointmark(pb), |
|
pointmark(pc), pointmark(pd)); |
|
horrors++; |
|
} |
|
} |
|
if (tetloop.tet[tetloop.ver] == NULL) { |
|
printf(" !! !! No neighbor at face (%d, %d, %d).\n", pointmark(pa), pointmark(pb), |
|
pointmark(pc)); |
|
horrors++; |
|
} else { |
|
// Find the neighboring tetrahedron on this face. |
|
fsym(tetloop, neightet); |
|
if (neightet.tet != NULL) { |
|
// Check that the tetrahedron's neighbor knows it's a neighbor. |
|
fsym(neightet, symtet); |
|
if ((tetloop.tet != symtet.tet) || (tetloop.ver != symtet.ver)) { |
|
printf(" !! !! Asymmetric tetra-tetra bond:\n"); |
|
if (tetloop.tet == symtet.tet) { |
|
printf(" (Right tetrahedron, wrong orientation)\n"); |
|
} |
|
printf(" First: (%d, %d, %d, %d)\n", pointmark(pa), pointmark(pb), |
|
pointmark(pc), pointmark(pd)); |
|
printf(" Second: (%d, %d, %d, %d)\n", pointmark(org(neightet)), |
|
pointmark(dest(neightet)), pointmark(apex(neightet)), |
|
pointmark(oppo(neightet))); |
|
horrors++; |
|
} |
|
// Check if they have the same edge (the bond() operation). |
|
if ((org(neightet) != pb) || (dest(neightet) != pa)) { |
|
printf(" !! !! Wrong edge-edge bond:\n"); |
|
printf(" First: (%d, %d, %d, %d)\n", pointmark(pa), pointmark(pb), |
|
pointmark(pc), pointmark(pd)); |
|
printf(" Second: (%d, %d, %d, %d)\n", pointmark(org(neightet)), |
|
pointmark(dest(neightet)), pointmark(apex(neightet)), |
|
pointmark(oppo(neightet))); |
|
horrors++; |
|
} |
|
// Check if they have the same apex. |
|
if (apex(neightet) != pc) { |
|
printf(" !! !! Wrong face-face bond:\n"); |
|
printf(" First: (%d, %d, %d, %d)\n", pointmark(pa), pointmark(pb), |
|
pointmark(pc), pointmark(pd)); |
|
printf(" Second: (%d, %d, %d, %d)\n", pointmark(org(neightet)), |
|
pointmark(dest(neightet)), pointmark(apex(neightet)), |
|
pointmark(oppo(neightet))); |
|
horrors++; |
|
} |
|
// Check if they have the same opposite. |
|
if (oppo(neightet) == pd) { |
|
printf(" !! !! Two identical tetra:\n"); |
|
printf(" First: (%d, %d, %d, %d)\n", pointmark(pa), pointmark(pb), |
|
pointmark(pc), pointmark(pd)); |
|
printf(" Second: (%d, %d, %d, %d)\n", pointmark(org(neightet)), |
|
pointmark(dest(neightet)), pointmark(apex(neightet)), |
|
pointmark(oppo(neightet))); |
|
horrors++; |
|
} |
|
} else { |
|
printf(" !! !! Tet-face has no neighbor (%d, %d, %d) - %d:\n", pointmark(pa), |
|
pointmark(pb), pointmark(pc), pointmark(pd)); |
|
horrors++; |
|
} |
|
} |
|
if (facemarked(tetloop)) { |
|
// This may be a bug. Report it. |
|
printf(" !! tetface (%d, %d, %d) %d is marked.\n", pointmark(pa), pointmark(pb), |
|
pointmark(pc), pointmark(pd)); |
|
} |
|
} |
|
// Check the six edges of this tet. |
|
for (i = 0; i < 6; i++) { |
|
tetloop.ver = edge2ver[i]; |
|
if (edgemarked(tetloop)) { |
|
// This may be a bug. Report it. |
|
printf(" !! tetedge (%d, %d) %d, %d is marked.\n", pointmark(org(tetloop)), |
|
pointmark(dest(tetloop)), pointmark(apex(tetloop)), |
|
pointmark(oppo(tetloop))); |
|
} |
|
} |
|
tetloop.tet = alltetrahedrontraverse(); |
|
} |
|
if (horrors == 0) { |
|
if (!b->quiet) { |
|
printf(" In my studied opinion, the mesh appears to be consistent.\n"); |
|
} |
|
} else { |
|
printf(" !! !! !! !! %d %s witnessed.\n", horrors, |
|
horrors > 1 ? "abnormity" : "abnormities"); |
|
} |
|
|
|
return horrors; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// checkshells() Test the boundary mesh for topological consistency. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::checkshells() { |
|
triface neightet, symtet; |
|
face shloop, spinsh, nextsh; |
|
face checkseg; |
|
point pa, pb; |
|
int bakcount; |
|
int horrors, i; |
|
|
|
if (!b->quiet) { |
|
printf(" Checking consistency of the mesh boundary...\n"); |
|
} |
|
horrors = 0; |
|
|
|
void** bakpathblock = subfaces->pathblock; |
|
void* bakpathitem = subfaces->pathitem; |
|
int bakpathitemsleft = subfaces->pathitemsleft; |
|
int bakalignbytes = subfaces->alignbytes; |
|
|
|
subfaces->traversalinit(); |
|
shloop.sh = shellfacetraverse(subfaces); |
|
while (shloop.sh != NULL) { |
|
shloop.shver = 0; |
|
for (i = 0; i < 3; i++) { |
|
// Check the face ring at this edge. |
|
pa = sorg(shloop); |
|
pb = sdest(shloop); |
|
spinsh = shloop; |
|
spivot(spinsh, nextsh); |
|
bakcount = horrors; |
|
while ((nextsh.sh != NULL) && (nextsh.sh != shloop.sh)) { |
|
if (nextsh.sh[3] == NULL) { |
|
printf(" !! !! Wrong subface-subface connection (Dead subface).\n"); |
|
printf(" First: x%lx (%d, %d, %d).\n", (uintptr_t)spinsh.sh, |
|
pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
|
pointmark(sapex(spinsh))); |
|
printf(" Second: x%lx (DEAD)\n", (uintptr_t)nextsh.sh); |
|
horrors++; |
|
break; |
|
} |
|
// check if they have the same edge. |
|
if (!(((sorg(nextsh) == pa) && (sdest(nextsh) == pb)) || |
|
((sorg(nextsh) == pb) && (sdest(nextsh) == pa)))) { |
|
printf(" !! !! Wrong subface-subface connection.\n"); |
|
printf(" First: x%lx (%d, %d, %d).\n", (uintptr_t)spinsh.sh, |
|
pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
|
pointmark(sapex(spinsh))); |
|
printf(" Scond: x%lx (%d, %d, %d).\n", (uintptr_t)nextsh.sh, |
|
pointmark(sorg(nextsh)), pointmark(sdest(nextsh)), |
|
pointmark(sapex(nextsh))); |
|
horrors++; |
|
break; |
|
} |
|
// Check they should not have the same apex. |
|
if (sapex(nextsh) == sapex(spinsh)) { |
|
printf(" !! !! Existing two duplicated subfaces.\n"); |
|
printf(" First: x%lx (%d, %d, %d).\n", (uintptr_t)spinsh.sh, |
|
pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
|
pointmark(sapex(spinsh))); |
|
printf(" Scond: x%lx (%d, %d, %d).\n", (uintptr_t)nextsh.sh, |
|
pointmark(sorg(nextsh)), pointmark(sdest(nextsh)), |
|
pointmark(sapex(nextsh))); |
|
horrors++; |
|
break; |
|
} |
|
spinsh = nextsh; |
|
spivot(spinsh, nextsh); |
|
} |
|
// Check subface-subseg bond. |
|
sspivot(shloop, checkseg); |
|
if (checkseg.sh != NULL) { |
|
if (checkseg.sh[3] == NULL) { |
|
printf(" !! !! Wrong subface-subseg connection (Dead subseg).\n"); |
|
printf(" Sub: x%lx (%d, %d, %d).\n", (uintptr_t)shloop.sh, |
|
pointmark(sorg(shloop)), pointmark(sdest(shloop)), |
|
pointmark(sapex(shloop))); |
|
printf(" Sub: x%lx (Dead)\n", (uintptr_t)checkseg.sh); |
|
horrors++; |
|
} else { |
|
if (!(((sorg(checkseg) == pa) && (sdest(checkseg) == pb)) || |
|
((sorg(checkseg) == pb) && (sdest(checkseg) == pa)))) { |
|
printf(" !! !! Wrong subface-subseg connection.\n"); |
|
printf(" Sub: x%lx (%d, %d, %d).\n", (uintptr_t)shloop.sh, |
|
pointmark(sorg(shloop)), pointmark(sdest(shloop)), |
|
pointmark(sapex(shloop))); |
|
printf(" Seg: x%lx (%d, %d).\n", (uintptr_t)checkseg.sh, |
|
pointmark(sorg(checkseg)), pointmark(sdest(checkseg))); |
|
horrors++; |
|
} |
|
} |
|
} |
|
if (horrors > bakcount) break; // An error detected. |
|
senextself(shloop); |
|
} |
|
// Check tet-subface connection. |
|
stpivot(shloop, neightet); |
|
if (neightet.tet != NULL) { |
|
if (neightet.tet[4] == NULL) { |
|
printf(" !! !! Wrong sub-to-tet connection (Dead tet)\n"); |
|
printf(" Sub: x%lx (%d, %d, %d).\n", (uintptr_t)shloop.sh, |
|
pointmark(sorg(shloop)), pointmark(sdest(shloop)), pointmark(sapex(shloop))); |
|
printf(" Tet: x%lx (DEAD)\n", (uintptr_t)neightet.tet); |
|
horrors++; |
|
} else { |
|
if (!((sorg(shloop) == org(neightet)) && (sdest(shloop) == dest(neightet)))) { |
|
printf(" !! !! Wrong sub-to-tet connection\n"); |
|
printf(" Sub: x%lx (%d, %d, %d).\n", (uintptr_t)shloop.sh, |
|
pointmark(sorg(shloop)), pointmark(sdest(shloop)), |
|
pointmark(sapex(shloop))); |
|
printf(" Tet: x%lx (%d, %d, %d, %d).\n", (uintptr_t)neightet.tet, |
|
pointmark(org(neightet)), pointmark(dest(neightet)), |
|
pointmark(apex(neightet)), pointmark(oppo(neightet))); |
|
horrors++; |
|
} |
|
tspivot(neightet, spinsh); |
|
if (!((sorg(spinsh) == org(neightet)) && (sdest(spinsh) == dest(neightet)))) { |
|
printf(" !! !! Wrong tet-sub connection.\n"); |
|
printf(" Sub: x%lx (%d, %d, %d).\n", (uintptr_t)spinsh.sh, |
|
pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
|
pointmark(sapex(spinsh))); |
|
printf(" Tet: x%lx (%d, %d, %d, %d).\n", (uintptr_t)neightet.tet, |
|
pointmark(org(neightet)), pointmark(dest(neightet)), |
|
pointmark(apex(neightet)), pointmark(oppo(neightet))); |
|
horrors++; |
|
} |
|
fsym(neightet, symtet); |
|
tspivot(symtet, spinsh); |
|
if (spinsh.sh != NULL) { |
|
if (!((sorg(spinsh) == org(symtet)) && (sdest(spinsh) == dest(symtet)))) { |
|
printf(" !! !! Wrong tet-sub connection.\n"); |
|
printf(" Sub: x%lx (%d, %d, %d).\n", (uintptr_t)spinsh.sh, |
|
pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
|
pointmark(sapex(spinsh))); |
|
printf(" Tet: x%lx (%d, %d, %d, %d).\n", (uintptr_t)symtet.tet, |
|
pointmark(org(symtet)), pointmark(dest(symtet)), |
|
pointmark(apex(symtet)), pointmark(oppo(symtet))); |
|
horrors++; |
|
} |
|
} else { |
|
printf(" Warning: Broken tet-sub-tet connection.\n"); |
|
} |
|
} |
|
} |
|
if (sinfected(shloop)) { |
|
// This may be a bug. report it. |
|
printf(" !! A infected subface: (%d, %d, %d).\n", pointmark(sorg(shloop)), |
|
pointmark(sdest(shloop)), pointmark(sapex(shloop))); |
|
} |
|
if (smarktested(shloop)) { |
|
// This may be a bug. report it. |
|
printf(" !! A marked subface: (%d, %d, %d).\n", pointmark(sorg(shloop)), |
|
pointmark(sdest(shloop)), pointmark(sapex(shloop))); |
|
} |
|
shloop.sh = shellfacetraverse(subfaces); |
|
} |
|
|
|
if (horrors == 0) { |
|
if (!b->quiet) { |
|
printf(" Mesh boundaries connected correctly.\n"); |
|
} |
|
} else { |
|
printf(" !! !! !! !! %d boundary connection viewed with horror.\n", horrors); |
|
} |
|
|
|
subfaces->pathblock = bakpathblock; |
|
subfaces->pathitem = bakpathitem; |
|
subfaces->pathitemsleft = bakpathitemsleft; |
|
subfaces->alignbytes = bakalignbytes; |
|
|
|
return horrors; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// checksegments() Check the connections between tetrahedra and segments. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::checksegments() { |
|
triface tetloop, neightet, spintet; |
|
shellface* segs; |
|
face neighsh, spinsh, checksh; |
|
face sseg, checkseg; |
|
point pa, pb; |
|
int miscount; |
|
int t1ver; |
|
int horrors, i; |
|
|
|
if (!b->quiet) { |
|
printf(" Checking tet->seg connections...\n"); |
|
} |
|
|
|
horrors = 0; |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
while (tetloop.tet != NULL) { |
|
// Loop the six edges of the tet. |
|
if (tetloop.tet[8] != NULL) { |
|
segs = (shellface*)tetloop.tet[8]; |
|
for (i = 0; i < 6; i++) { |
|
sdecode(segs[i], sseg); |
|
if (sseg.sh != NULL) { |
|
// Get the edge of the tet. |
|
tetloop.ver = edge2ver[i]; |
|
// Check if they are the same edge. |
|
pa = (point)sseg.sh[3]; |
|
pb = (point)sseg.sh[4]; |
|
if (!(((org(tetloop) == pa) && (dest(tetloop) == pb)) || |
|
((org(tetloop) == pb) && (dest(tetloop) == pa)))) { |
|
printf(" !! Wrong tet-seg connection.\n"); |
|
printf(" Tet: x%lx (%d, %d, %d, %d) - Seg: x%lx (%d, %d).\n", |
|
(uintptr_t)tetloop.tet, pointmark(org(tetloop)), |
|
pointmark(dest(tetloop)), pointmark(apex(tetloop)), |
|
pointmark(oppo(tetloop)), (uintptr_t)sseg.sh, pointmark(pa), |
|
pointmark(pb)); |
|
horrors++; |
|
} else { |
|
// Loop all tets sharing at this edge. |
|
neightet = tetloop; |
|
do { |
|
tsspivot1(neightet, checkseg); |
|
if (checkseg.sh != sseg.sh) { |
|
printf(" !! Wrong tet->seg connection.\n"); |
|
printf(" Tet: x%lx (%d, %d, %d, %d) - ", (uintptr_t)neightet.tet, |
|
pointmark(org(neightet)), pointmark(dest(neightet)), |
|
pointmark(apex(neightet)), pointmark(oppo(neightet))); |
|
if (checkseg.sh != NULL) { |
|
printf("Seg x%lx (%d, %d).\n", (uintptr_t)checkseg.sh, |
|
pointmark(sorg(checkseg)), pointmark(sdest(checkseg))); |
|
} else { |
|
printf("Seg: NULL.\n"); |
|
} |
|
horrors++; |
|
} |
|
fnextself(neightet); |
|
} while (neightet.tet != tetloop.tet); |
|
} |
|
// Check the seg->tet pointer. |
|
sstpivot1(sseg, neightet); |
|
if (neightet.tet == NULL) { |
|
printf(" !! Wrong seg->tet connection (A NULL tet).\n"); |
|
horrors++; |
|
} else { |
|
if (!(((org(neightet) == pa) && (dest(neightet) == pb)) || |
|
((org(neightet) == pb) && (dest(neightet) == pa)))) { |
|
printf(" !! Wrong seg->tet connection (Wrong edge).\n"); |
|
printf(" Tet: x%lx (%d, %d, %d, %d) - Seg: x%lx (%d, %d).\n", |
|
(uintptr_t)neightet.tet, pointmark(org(neightet)), |
|
pointmark(dest(neightet)), pointmark(apex(neightet)), |
|
pointmark(oppo(neightet)), (uintptr_t)sseg.sh, pointmark(pa), |
|
pointmark(pb)); |
|
horrors++; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
// Loop the six edge of this tet. |
|
neightet.tet = tetloop.tet; |
|
for (i = 0; i < 6; i++) { |
|
neightet.ver = edge2ver[i]; |
|
if (edgemarked(neightet)) { |
|
// A possible bug. Report it. |
|
printf(" !! A marked edge: (%d, %d, %d, %d) -- x%lx %d.\n", |
|
pointmark(org(neightet)), pointmark(dest(neightet)), |
|
pointmark(apex(neightet)), pointmark(oppo(neightet)), |
|
(uintptr_t)neightet.tet, neightet.ver); |
|
// Check if all tets at the edge are marked. |
|
spintet = neightet; |
|
while (1) { |
|
fnextself(spintet); |
|
if (!edgemarked(spintet)) { |
|
printf(" !! !! An unmarked edge (%d, %d, %d, %d) -- x%lx %d.\n", |
|
pointmark(org(spintet)), pointmark(dest(spintet)), |
|
pointmark(apex(spintet)), pointmark(oppo(spintet)), |
|
(uintptr_t)spintet.tet, spintet.ver); |
|
horrors++; |
|
} |
|
if (spintet.tet == neightet.tet) break; |
|
} |
|
} |
|
} |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
|
|
if (!b->quiet) { |
|
printf(" Checking seg->tet connections...\n"); |
|
} |
|
|
|
miscount = 0; // Count the number of unrecovered segments. |
|
subsegs->traversalinit(); |
|
sseg.shver = 0; |
|
sseg.sh = shellfacetraverse(subsegs); |
|
while (sseg.sh != NULL) { |
|
pa = sorg(sseg); |
|
pb = sdest(sseg); |
|
spivot(sseg, neighsh); |
|
if (neighsh.sh != NULL) { |
|
spinsh = neighsh; |
|
while (1) { |
|
// Check seg-subface bond. |
|
if (((sorg(spinsh) == pa) && (sdest(spinsh) == pb)) || |
|
((sorg(spinsh) == pb) && (sdest(spinsh) == pa))) { |
|
// Keep the same rotate direction. |
|
// if (sorg(spinsh) != pa) { |
|
// sesymself(spinsh); |
|
// printf(" !! Wrong ori at subface (%d, %d, %d) -- x%lx %d\n", |
|
// pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
|
// pointmark(sapex(spinsh)), (uintptr_t) spinsh.sh, |
|
// spinsh.shver); |
|
// horrors++; |
|
//} |
|
stpivot(spinsh, spintet); |
|
if (spintet.tet != NULL) { |
|
// Check if all tets at this segment. |
|
while (1) { |
|
tsspivot1(spintet, checkseg); |
|
if (checkseg.sh == NULL) { |
|
printf(" !! !! No seg at tet (%d, %d, %d, %d) -- x%lx %d\n", |
|
pointmark(org(spintet)), pointmark(dest(spintet)), |
|
pointmark(apex(spintet)), pointmark(oppo(spintet)), |
|
(uintptr_t)spintet.tet, spintet.ver); |
|
horrors++; |
|
} |
|
if (checkseg.sh != sseg.sh) { |
|
printf(" !! !! Wrong seg (%d, %d) at tet (%d, %d, %d, %d)\n", |
|
pointmark(sorg(checkseg)), pointmark(sdest(checkseg)), |
|
pointmark(org(spintet)), pointmark(dest(spintet)), |
|
pointmark(apex(spintet)), pointmark(oppo(spintet))); |
|
horrors++; |
|
} |
|
fnextself(spintet); |
|
// Stop at the next subface. |
|
tspivot(spintet, checksh); |
|
if (checksh.sh != NULL) break; |
|
} // while (1) |
|
} |
|
} else { |
|
printf(" !! Wrong seg-subface (%d, %d, %d) -- x%lx %d connect\n", |
|
pointmark(sorg(spinsh)), pointmark(sdest(spinsh)), |
|
pointmark(sapex(spinsh)), (uintptr_t)spinsh.sh, spinsh.shver); |
|
horrors++; |
|
break; |
|
} // if pa, pb |
|
spivotself(spinsh); |
|
if (spinsh.sh == NULL) break; // A dangling segment. |
|
if (spinsh.sh == neighsh.sh) break; |
|
} // while (1) |
|
} // if (neighsh.sh != NULL) |
|
// Count the number of "un-recovered" segments. |
|
sstpivot1(sseg, neightet); |
|
if (neightet.tet == NULL) { |
|
miscount++; |
|
} |
|
sseg.sh = shellfacetraverse(subsegs); |
|
} |
|
|
|
if (!b->quiet) { |
|
printf(" Checking seg->seg connections...\n"); |
|
} |
|
|
|
points->traversalinit(); |
|
pa = pointtraverse(); |
|
while (pa != NULL) { |
|
if (pointtype(pa) == FREESEGVERTEX) { |
|
// There should be two subsegments connected at 'pa'. |
|
// Get a subsegment containing 'pa'. |
|
sdecode(point2sh(pa), sseg); |
|
if ((sseg.sh == NULL) || sseg.sh[3] == NULL) { |
|
printf(" !! Dead point-to-seg pointer at point %d.\n", pointmark(pa)); |
|
horrors++; |
|
} else { |
|
sseg.shver = 0; |
|
if (sorg(sseg) != pa) { |
|
if (sdest(sseg) != pa) { |
|
printf(" !! Wrong point-to-seg pointer at point %d.\n", pointmark(pa)); |
|
horrors++; |
|
} else { |
|
// Find the next subsegment at 'pa'. |
|
senext(sseg, checkseg); |
|
if ((checkseg.sh == NULL) || (checkseg.sh[3] == NULL)) { |
|
printf(" !! Dead seg-seg connection at point %d.\n", pointmark(pa)); |
|
horrors++; |
|
} else { |
|
spivotself(checkseg); |
|
checkseg.shver = 0; |
|
if ((sorg(checkseg) != pa) && (sdest(checkseg) != pa)) { |
|
printf(" !! Wrong seg-seg connection at point %d.\n", |
|
pointmark(pa)); |
|
horrors++; |
|
} |
|
} |
|
} |
|
} else { |
|
// Find the previous subsegment at 'pa'. |
|
senext2(sseg, checkseg); |
|
if ((checkseg.sh == NULL) || (checkseg.sh[3] == NULL)) { |
|
printf(" !! Dead seg-seg connection at point %d.\n", pointmark(pa)); |
|
horrors++; |
|
} else { |
|
spivotself(checkseg); |
|
checkseg.shver = 0; |
|
if ((sorg(checkseg) != pa) && (sdest(checkseg) != pa)) { |
|
printf(" !! Wrong seg-seg connection at point %d.\n", pointmark(pa)); |
|
horrors++; |
|
} |
|
} |
|
} |
|
} |
|
} |
|
pa = pointtraverse(); |
|
} |
|
|
|
if (horrors == 0) { |
|
printf(" Segments are connected properly.\n"); |
|
} else { |
|
printf(" !! !! !! !! Found %d missing connections.\n", horrors); |
|
} |
|
if (miscount > 0) { |
|
printf(" !! !! Found %d missing segments.\n", miscount); |
|
} |
|
|
|
return horrors; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// checkdelaunay() Ensure that the mesh is (constrained) Delaunay. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::checkdelaunay(int perturb) { |
|
triface tetloop; |
|
triface symtet; |
|
face checksh; |
|
point pa, pb, pc, pd, pe; |
|
REAL sign; |
|
int ndcount; // Count the non-locally Delaunay faces. |
|
int horrors; |
|
|
|
if (!b->quiet) { |
|
printf(" Checking Delaunay property of the mesh...\n"); |
|
} |
|
|
|
ndcount = 0; |
|
horrors = 0; |
|
tetloop.ver = 0; |
|
// Run through the list of triangles, checking each one. |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
// Check all four faces of the tetrahedron. |
|
for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
|
fsym(tetloop, symtet); |
|
// Only do test if its adjoining tet is not a hull tet or its pointer |
|
// is larger (to ensure that each pair isn't tested twice). |
|
if (((point)symtet.tet[7] != dummypoint) && (tetloop.tet < symtet.tet)) { |
|
pa = org(tetloop); |
|
pb = dest(tetloop); |
|
pc = apex(tetloop); |
|
pd = oppo(tetloop); |
|
pe = oppo(symtet); |
|
if (perturb) { |
|
sign = insphere_s(pa, pb, pc, pd, pe); |
|
} else { |
|
sign = insphere(pa, pb, pc, pd, pe); |
|
} |
|
if (sign < 0.0) { |
|
ndcount++; |
|
if (checksubfaceflag) { |
|
tspivot(tetloop, checksh); |
|
} |
|
if (checksh.sh == NULL) { |
|
printf(" !! Non-locally Delaunay (%d, %d, %d) - %d, %d\n", pointmark(pa), |
|
pointmark(pb), pointmark(pc), pointmark(pd), pointmark(pe)); |
|
horrors++; |
|
} |
|
} |
|
} |
|
} |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
|
|
if (horrors == 0) { |
|
if (!b->quiet) { |
|
if (ndcount > 0) { |
|
printf(" The mesh is constrained Delaunay.\n"); |
|
} else { |
|
printf(" The mesh is Delaunay.\n"); |
|
} |
|
} |
|
} else { |
|
printf(" !! !! !! !! Found %d non-Delaunay faces.\n", horrors); |
|
} |
|
|
|
return horrors; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// Check if the current tetrahedralization is (constrained) regular. // |
|
// // |
|
// The parameter 'type' determines which regularity should be checked: // |
|
// - 0: check the Delaunay property. // |
|
// - 1: check the Delaunay property with symbolic perturbation. // |
|
// - 2: check the regular property, the weights are stored in p[3]. // |
|
// - 3: check the regular property with symbolic perturbation. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::checkregular(int type) { |
|
triface tetloop; |
|
triface symtet; |
|
face checksh; |
|
point p[5]; |
|
REAL sign; |
|
int ndcount; // Count the non-locally Delaunay faces. |
|
int horrors; |
|
|
|
if (!b->quiet) { |
|
printf(" Checking %s %s property of the mesh...\n", |
|
(type & 2) == 0 ? "Delaunay" : "regular", (type & 1) == 0 ? " " : "(s)"); |
|
} |
|
|
|
// Make sure orient3d(p[1], p[0], p[2], p[3]) > 0; |
|
// Hence if (insphere(p[1], p[0], p[2], p[3], p[4]) > 0) means that |
|
// p[4] lies inside the circumsphere of p[1], p[0], p[2], p[3]. |
|
// The same if orient4d(p[1], p[0], p[2], p[3], p[4]) > 0 means that |
|
// p[4] lies below the oriented hyperplane passing through |
|
// p[1], p[0], p[2], p[3]. |
|
|
|
ndcount = 0; |
|
horrors = 0; |
|
tetloop.ver = 0; |
|
// Run through the list of triangles, checking each one. |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
// Check all four faces of the tetrahedron. |
|
for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
|
fsym(tetloop, symtet); |
|
// Only do test if its adjoining tet is not a hull tet or its pointer |
|
// is larger (to ensure that each pair isn't tested twice). |
|
if (((point)symtet.tet[7] != dummypoint) && (tetloop.tet < symtet.tet)) { |
|
p[0] = org(tetloop); // pa |
|
p[1] = dest(tetloop); // pb |
|
p[2] = apex(tetloop); // pc |
|
p[3] = oppo(tetloop); // pd |
|
p[4] = oppo(symtet); // pe |
|
|
|
if (type == 0) { |
|
sign = insphere(p[1], p[0], p[2], p[3], p[4]); |
|
} else if (type == 1) { |
|
sign = insphere_s(p[1], p[0], p[2], p[3], p[4]); |
|
} else if (type == 2) { |
|
sign = orient4d(p[1], p[0], p[2], p[3], p[4], p[1][3], p[0][3], p[2][3], |
|
p[3][3], p[4][3]); |
|
} else { // type == 3 |
|
sign = orient4d_s(p[1], p[0], p[2], p[3], p[4], p[1][3], p[0][3], p[2][3], |
|
p[3][3], p[4][3]); |
|
} |
|
|
|
if (sign > 0.0) { |
|
ndcount++; |
|
if (checksubfaceflag) { |
|
tspivot(tetloop, checksh); |
|
} |
|
if (checksh.sh == NULL) { |
|
printf(" !! Non-locally %s (%d, %d, %d) - %d, %d\n", |
|
(type & 2) == 0 ? "Delaunay" : "regular", pointmark(p[0]), |
|
pointmark(p[1]), pointmark(p[2]), pointmark(p[3]), pointmark(p[4])); |
|
horrors++; |
|
} |
|
} |
|
} |
|
} |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
|
|
if (horrors == 0) { |
|
if (!b->quiet) { |
|
if (ndcount > 0) { |
|
printf(" The mesh is constrained %s.\n", (type & 2) == 0 ? "Delaunay" : "regular"); |
|
} else { |
|
printf(" The mesh is %s.\n", (type & 2) == 0 ? "Delaunay" : "regular"); |
|
} |
|
} |
|
} else { |
|
printf(" !! !! !! !! Found %d non-%s faces.\n", horrors, |
|
(type & 2) == 0 ? "Delaunay" : "regular"); |
|
} |
|
|
|
return horrors; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// checkconforming() Ensure that the mesh is conforming Delaunay. // |
|
// // |
|
// If 'flag' is 1, only check subsegments. If 'flag' is 2, check subfaces. // |
|
// If 'flag' is 3, check both subsegments and subfaces. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int tetgenmesh::checkconforming(int flag) { |
|
triface searchtet, neightet, spintet; |
|
face shloop; |
|
face segloop; |
|
point eorg, edest, eapex, pa, pb, pc; |
|
REAL cent[3], radius, dist, diff, rd, len; |
|
bool enq; |
|
int encsubsegs, encsubfaces; |
|
int t1ver; |
|
int i; |
|
|
|
REAL A[4][4], rhs[4], D; |
|
int indx[4]; |
|
REAL elen[3]; |
|
|
|
encsubsegs = 0; |
|
|
|
if (flag & 1) { |
|
if (!b->quiet) { |
|
printf(" Checking conforming property of segments...\n"); |
|
} |
|
encsubsegs = 0; |
|
|
|
// Run through the list of subsegments, check each one. |
|
subsegs->traversalinit(); |
|
segloop.sh = shellfacetraverse(subsegs); |
|
while (segloop.sh != (shellface*)NULL) { |
|
eorg = (point)segloop.sh[3]; |
|
edest = (point)segloop.sh[4]; |
|
radius = 0.5 * distance(eorg, edest); |
|
for (i = 0; i < 3; i++) |
|
cent[i] = 0.5 * (eorg[i] + edest[i]); |
|
|
|
enq = false; |
|
sstpivot1(segloop, neightet); |
|
if (neightet.tet != NULL) { |
|
spintet = neightet; |
|
while (1) { |
|
eapex = apex(spintet); |
|
if (eapex != dummypoint) { |
|
dist = distance(eapex, cent); |
|
diff = dist - radius; |
|
if (fabs(diff) / radius <= b->epsilon) diff = 0.0; // Rounding. |
|
if (diff < 0) { |
|
enq = true; |
|
break; |
|
} |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == neightet.tet) break; |
|
} |
|
} |
|
if (enq) { |
|
printf(" !! !! Non-conforming segment: (%d, %d)\n", pointmark(eorg), |
|
pointmark(edest)); |
|
encsubsegs++; |
|
} |
|
segloop.sh = shellfacetraverse(subsegs); |
|
} |
|
|
|
if (encsubsegs == 0) { |
|
if (!b->quiet) { |
|
printf(" The segments are conforming Delaunay.\n"); |
|
} |
|
} else { |
|
printf(" !! !! %d subsegments are non-conforming.\n", encsubsegs); |
|
} |
|
} // if (flag & 1) |
|
|
|
encsubfaces = 0; |
|
|
|
if (flag & 2) { |
|
if (!b->quiet) { |
|
printf(" Checking conforming property of subfaces...\n"); |
|
} |
|
|
|
// Run through the list of subfaces, check each one. |
|
subfaces->traversalinit(); |
|
shloop.sh = shellfacetraverse(subfaces); |
|
while (shloop.sh != (shellface*)NULL) { |
|
pa = (point)shloop.sh[3]; |
|
pb = (point)shloop.sh[4]; |
|
pc = (point)shloop.sh[5]; |
|
|
|
// Compute the coefficient matrix A (3x3). |
|
A[0][0] = pb[0] - pa[0]; |
|
A[0][1] = pb[1] - pa[1]; |
|
A[0][2] = pb[2] - pa[2]; // vector V1 (pa->pb) |
|
A[1][0] = pc[0] - pa[0]; |
|
A[1][1] = pc[1] - pa[1]; |
|
A[1][2] = pc[2] - pa[2]; // vector V2 (pa->pc) |
|
cross(A[0], A[1], A[2]); // vector V3 (V1 X V2) |
|
|
|
// Compute the right hand side vector b (3x1). |
|
elen[0] = dot(A[0], A[0]); |
|
elen[1] = dot(A[1], A[1]); |
|
rhs[0] = 0.5 * elen[0]; |
|
rhs[1] = 0.5 * elen[1]; |
|
rhs[2] = 0.0; |
|
|
|
if (lu_decmp(A, 3, indx, &D, 0)) { |
|
lu_solve(A, 3, indx, rhs, 0); |
|
cent[0] = pa[0] + rhs[0]; |
|
cent[1] = pa[1] + rhs[1]; |
|
cent[2] = pa[2] + rhs[2]; |
|
rd = sqrt(rhs[0] * rhs[0] + rhs[1] * rhs[1] + rhs[2] * rhs[2]); |
|
|
|
// Check if this subface is encroached. |
|
for (i = 0; i < 2; i++) { |
|
stpivot(shloop, searchtet); |
|
if (!ishulltet(searchtet)) { |
|
len = distance(oppo(searchtet), cent); |
|
if ((fabs(len - rd) / rd) < b->epsilon) len = rd; // Rounding. |
|
if (len < rd) { |
|
printf(" !! !! Non-conforming subface: (%d, %d, %d)\n", pointmark(pa), |
|
pointmark(pb), pointmark(pc)); |
|
encsubfaces++; |
|
enq = true; |
|
break; |
|
} |
|
} |
|
sesymself(shloop); |
|
} |
|
} |
|
shloop.sh = shellfacetraverse(subfaces); |
|
} |
|
|
|
if (encsubfaces == 0) { |
|
if (!b->quiet) { |
|
printf(" The subfaces are conforming Delaunay.\n"); |
|
} |
|
} else { |
|
printf(" !! !! %d subfaces are non-conforming.\n", encsubfaces); |
|
} |
|
} // if (flag & 2) |
|
|
|
return encsubsegs + encsubfaces; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// qualitystatistics() Print statistics about the quality of the mesh. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::qualitystatistics() { |
|
triface tetloop, neightet; |
|
point p[4]; |
|
char sbuf[128]; |
|
REAL radiusratiotable[12]; |
|
REAL aspectratiotable[12]; |
|
REAL A[4][4], rhs[4], D; |
|
REAL V[6][3], N[4][3], H[4]; // edge-vectors, face-normals, face-heights. |
|
REAL edgelength[6], alldihed[6], faceangle[3]; |
|
REAL shortest, longest; |
|
REAL smallestvolume, biggestvolume; |
|
REAL smallestratio, biggestratio; |
|
REAL smallestradiusratio, biggestradiusratio; // radius-edge ratio. |
|
REAL smallestdiangle, biggestdiangle; |
|
REAL smallestfaangle, biggestfaangle; |
|
REAL total_tet_vol, total_tetprism_vol; |
|
REAL tetvol, minaltitude; |
|
REAL cirradius, minheightinv; // insradius; |
|
REAL shortlen, longlen; |
|
REAL tetaspect, tetradius; |
|
REAL smalldiangle, bigdiangle; |
|
REAL smallfaangle, bigfaangle; |
|
unsigned long radiustable[12]; |
|
unsigned long aspecttable[16]; |
|
unsigned long dihedangletable[18]; |
|
unsigned long faceangletable[18]; |
|
int indx[4]; |
|
int radiusindex; |
|
int aspectindex; |
|
int tendegree; |
|
int i, j; |
|
// Report the tet which has the biggest radius-edge ratio. |
|
triface biggestradiusratiotet; |
|
|
|
printf("Mesh quality statistics:\n\n"); |
|
|
|
shortlen = longlen = 0.0; |
|
smalldiangle = bigdiangle = 0.0; |
|
total_tet_vol = 0.0; |
|
total_tetprism_vol = 0.0; |
|
|
|
radiusratiotable[0] = 0.707; |
|
radiusratiotable[1] = 1.0; |
|
radiusratiotable[2] = 1.1; |
|
radiusratiotable[3] = 1.2; |
|
radiusratiotable[4] = 1.4; |
|
radiusratiotable[5] = 1.6; |
|
radiusratiotable[6] = 1.8; |
|
radiusratiotable[7] = 2.0; |
|
radiusratiotable[8] = 2.5; |
|
radiusratiotable[9] = 3.0; |
|
radiusratiotable[10] = 10.0; |
|
radiusratiotable[11] = 0.0; |
|
|
|
aspectratiotable[0] = 1.5; |
|
aspectratiotable[1] = 2.0; |
|
aspectratiotable[2] = 2.5; |
|
aspectratiotable[3] = 3.0; |
|
aspectratiotable[4] = 4.0; |
|
aspectratiotable[5] = 6.0; |
|
aspectratiotable[6] = 10.0; |
|
aspectratiotable[7] = 15.0; |
|
aspectratiotable[8] = 25.0; |
|
aspectratiotable[9] = 50.0; |
|
aspectratiotable[10] = 100.0; |
|
aspectratiotable[11] = 0.0; |
|
|
|
for (i = 0; i < 12; i++) |
|
radiustable[i] = 0l; |
|
for (i = 0; i < 12; i++) |
|
aspecttable[i] = 0l; |
|
for (i = 0; i < 18; i++) |
|
dihedangletable[i] = 0l; |
|
for (i = 0; i < 18; i++) |
|
faceangletable[i] = 0l; |
|
|
|
minaltitude = xmax - xmin + ymax - ymin + zmax - zmin; |
|
minaltitude = minaltitude * minaltitude; |
|
shortest = minaltitude; |
|
longest = 0.0; |
|
smallestvolume = minaltitude; |
|
biggestvolume = 0.0; |
|
smallestratio = smallestradiusratio = 1e+16; // minaltitude; |
|
biggestratio = biggestradiusratio = 0.0; |
|
smallestdiangle = smallestfaangle = 180.0; |
|
biggestdiangle = biggestfaangle = 0.0; |
|
|
|
int attrnum = numelemattrib - 1; |
|
|
|
// Loop all elements, calculate quality parameters for each element. |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
|
|
if (b->convex) { |
|
// Skip tets in the exterior. |
|
if (elemattribute(tetloop.tet, attrnum) == -1.0) { |
|
tetloop.tet = tetrahedrontraverse(); |
|
continue; |
|
} |
|
} |
|
|
|
// Get four vertices: p0, p1, p2, p3. |
|
for (i = 0; i < 4; i++) |
|
p[i] = (point)tetloop.tet[4 + i]; |
|
|
|
// Get the tet volume. |
|
tetvol = orient3dfast(p[1], p[0], p[2], p[3]) / 6.0; |
|
total_tet_vol += tetvol; |
|
total_tetprism_vol += tetprismvol(p[0], p[1], p[2], p[3]); |
|
|
|
// Calculate the largest and smallest volume. |
|
if (tetvol < smallestvolume) { |
|
smallestvolume = tetvol; |
|
} |
|
if (tetvol > biggestvolume) { |
|
biggestvolume = tetvol; |
|
} |
|
|
|
// Set the edge vectors: V[0], ..., V[5] |
|
for (i = 0; i < 3; i++) |
|
V[0][i] = p[0][i] - p[3][i]; // V[0]: p3->p0. |
|
for (i = 0; i < 3; i++) |
|
V[1][i] = p[1][i] - p[3][i]; // V[1]: p3->p1. |
|
for (i = 0; i < 3; i++) |
|
V[2][i] = p[2][i] - p[3][i]; // V[2]: p3->p2. |
|
for (i = 0; i < 3; i++) |
|
V[3][i] = p[1][i] - p[0][i]; // V[3]: p0->p1. |
|
for (i = 0; i < 3; i++) |
|
V[4][i] = p[2][i] - p[1][i]; // V[4]: p1->p2. |
|
for (i = 0; i < 3; i++) |
|
V[5][i] = p[0][i] - p[2][i]; // V[5]: p2->p0. |
|
|
|
// Get the squares of the edge lengths. |
|
for (i = 0; i < 6; i++) |
|
edgelength[i] = dot(V[i], V[i]); |
|
|
|
// Calculate the longest and shortest edge length. |
|
for (i = 0; i < 6; i++) { |
|
if (i == 0) { |
|
shortlen = longlen = edgelength[i]; |
|
} else { |
|
shortlen = edgelength[i] < shortlen ? edgelength[i] : shortlen; |
|
longlen = edgelength[i] > longlen ? edgelength[i] : longlen; |
|
} |
|
if (edgelength[i] > longest) { |
|
longest = edgelength[i]; |
|
} |
|
if (edgelength[i] < shortest) { |
|
shortest = edgelength[i]; |
|
} |
|
} |
|
|
|
// Set the matrix A = [V[0], V[1], V[2]]^T. |
|
for (j = 0; j < 3; j++) { |
|
for (i = 0; i < 3; i++) |
|
A[j][i] = V[j][i]; |
|
} |
|
|
|
// Decompose A just once. |
|
if (lu_decmp(A, 3, indx, &D, 0)) { |
|
// Get the three faces normals. |
|
for (j = 0; j < 3; j++) { |
|
for (i = 0; i < 3; i++) |
|
rhs[i] = 0.0; |
|
rhs[j] = 1.0; // Positive means the inside direction |
|
lu_solve(A, 3, indx, rhs, 0); |
|
for (i = 0; i < 3; i++) |
|
N[j][i] = rhs[i]; |
|
} |
|
// Get the fourth face normal by summing up the first three. |
|
for (i = 0; i < 3; i++) |
|
N[3][i] = -N[0][i] - N[1][i] - N[2][i]; |
|
// Get the radius of the circumsphere. |
|
for (i = 0; i < 3; i++) |
|
rhs[i] = 0.5 * dot(V[i], V[i]); |
|
lu_solve(A, 3, indx, rhs, 0); |
|
cirradius = sqrt(dot(rhs, rhs)); |
|
// Normalize the face normals. |
|
for (i = 0; i < 4; i++) { |
|
// H[i] is the inverse of height of its corresponding face. |
|
H[i] = sqrt(dot(N[i], N[i])); |
|
for (j = 0; j < 3; j++) |
|
N[i][j] /= H[i]; |
|
} |
|
// Get the radius of the inscribed sphere. |
|
// insradius = 1.0 / (H[0] + H[1] + H[2] + H[3]); |
|
// Get the biggest H[i] (corresponding to the smallest height). |
|
minheightinv = H[0]; |
|
for (i = 1; i < 4; i++) { |
|
if (H[i] > minheightinv) minheightinv = H[i]; |
|
} |
|
} else { |
|
// A nearly degenerated tet. |
|
if (tetvol <= 0.0) { |
|
printf(" !! Warning: A %s tet (%d,%d,%d,%d).\n", |
|
tetvol < 0 ? "inverted" : "degenerated", pointmark(p[0]), pointmark(p[1]), |
|
pointmark(p[2]), pointmark(p[3])); |
|
// Skip it. |
|
tetloop.tet = tetrahedrontraverse(); |
|
continue; |
|
} |
|
// Calculate the four face normals. |
|
facenormal(p[2], p[1], p[3], N[0], 1, NULL); |
|
facenormal(p[0], p[2], p[3], N[1], 1, NULL); |
|
facenormal(p[1], p[0], p[3], N[2], 1, NULL); |
|
facenormal(p[0], p[1], p[2], N[3], 1, NULL); |
|
// Normalize the face normals. |
|
for (i = 0; i < 4; i++) { |
|
// H[i] is the twice of the area of the face. |
|
H[i] = sqrt(dot(N[i], N[i])); |
|
for (j = 0; j < 3; j++) |
|
N[i][j] /= H[i]; |
|
} |
|
// Get the biggest H[i] / tetvol (corresponding to the smallest height). |
|
minheightinv = (H[0] / tetvol); |
|
for (i = 1; i < 4; i++) { |
|
if ((H[i] / tetvol) > minheightinv) minheightinv = (H[i] / tetvol); |
|
} |
|
// Let the circumradius to be the half of its longest edge length. |
|
cirradius = 0.5 * sqrt(longlen); |
|
} |
|
|
|
// Get the dihedrals (in degree) at each edges. |
|
j = 0; |
|
for (i = 1; i < 4; i++) { |
|
alldihed[j] = -dot(N[0], N[i]); // Edge cd, bd, bc. |
|
if (alldihed[j] < -1.0) |
|
alldihed[j] = -1; // Rounding. |
|
else if (alldihed[j] > 1.0) |
|
alldihed[j] = 1; |
|
alldihed[j] = acos(alldihed[j]) / PI * 180.0; |
|
j++; |
|
} |
|
for (i = 2; i < 4; i++) { |
|
alldihed[j] = -dot(N[1], N[i]); // Edge ad, ac. |
|
if (alldihed[j] < -1.0) |
|
alldihed[j] = -1; // Rounding. |
|
else if (alldihed[j] > 1.0) |
|
alldihed[j] = 1; |
|
alldihed[j] = acos(alldihed[j]) / PI * 180.0; |
|
j++; |
|
} |
|
alldihed[j] = -dot(N[2], N[3]); // Edge ab. |
|
if (alldihed[j] < -1.0) |
|
alldihed[j] = -1; // Rounding. |
|
else if (alldihed[j] > 1.0) |
|
alldihed[j] = 1; |
|
alldihed[j] = acos(alldihed[j]) / PI * 180.0; |
|
|
|
// Calculate the largest and smallest dihedral angles. |
|
for (i = 0; i < 6; i++) { |
|
if (i == 0) { |
|
smalldiangle = bigdiangle = alldihed[i]; |
|
} else { |
|
smalldiangle = alldihed[i] < smalldiangle ? alldihed[i] : smalldiangle; |
|
bigdiangle = alldihed[i] > bigdiangle ? alldihed[i] : bigdiangle; |
|
} |
|
if (alldihed[i] < smallestdiangle) { |
|
smallestdiangle = alldihed[i]; |
|
} |
|
if (alldihed[i] > biggestdiangle) { |
|
biggestdiangle = alldihed[i]; |
|
} |
|
// Accumulate the corresponding number in the dihedral angle histogram. |
|
if (alldihed[i] < 5.0) { |
|
tendegree = 0; |
|
} else if (alldihed[i] >= 5.0 && alldihed[i] < 10.0) { |
|
tendegree = 1; |
|
} else if (alldihed[i] >= 80.0 && alldihed[i] < 110.0) { |
|
tendegree = 9; // Angles between 80 to 110 degree are in one entry. |
|
} else if (alldihed[i] >= 170.0 && alldihed[i] < 175.0) { |
|
tendegree = 16; |
|
} else if (alldihed[i] >= 175.0) { |
|
tendegree = 17; |
|
} else { |
|
tendegree = (int)(alldihed[i] / 10.); |
|
if (alldihed[i] < 80.0) { |
|
tendegree++; // In the left column. |
|
} else { |
|
tendegree--; // In the right column. |
|
} |
|
} |
|
dihedangletable[tendegree]++; |
|
} |
|
|
|
// Calculate the largest and smallest face angles. |
|
for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
|
fsym(tetloop, neightet); |
|
// Only do the calulation once for a face. |
|
if (((point)neightet.tet[7] == dummypoint) || (tetloop.tet < neightet.tet)) { |
|
p[0] = org(tetloop); |
|
p[1] = dest(tetloop); |
|
p[2] = apex(tetloop); |
|
faceangle[0] = interiorangle(p[0], p[1], p[2], NULL); |
|
faceangle[1] = interiorangle(p[1], p[2], p[0], NULL); |
|
faceangle[2] = PI - (faceangle[0] + faceangle[1]); |
|
// Translate angles into degrees. |
|
for (i = 0; i < 3; i++) { |
|
faceangle[i] = (faceangle[i] * 180.0) / PI; |
|
} |
|
// Calculate the largest and smallest face angles. |
|
for (i = 0; i < 3; i++) { |
|
if (i == 0) { |
|
smallfaangle = bigfaangle = faceangle[i]; |
|
} else { |
|
smallfaangle = faceangle[i] < smallfaangle ? faceangle[i] : smallfaangle; |
|
bigfaangle = faceangle[i] > bigfaangle ? faceangle[i] : bigfaangle; |
|
} |
|
if (faceangle[i] < smallestfaangle) { |
|
smallestfaangle = faceangle[i]; |
|
} |
|
if (faceangle[i] > biggestfaangle) { |
|
biggestfaangle = faceangle[i]; |
|
} |
|
tendegree = (int)(faceangle[i] / 10.); |
|
faceangletable[tendegree]++; |
|
} |
|
} |
|
} |
|
|
|
// Calculate aspect ratio and radius-edge ratio for this element. |
|
tetradius = cirradius / sqrt(shortlen); |
|
if (tetradius < smallestradiusratio) { |
|
smallestradiusratio = tetradius; |
|
} |
|
if (tetradius > biggestradiusratio) { |
|
biggestradiusratio = tetradius; |
|
biggestradiusratiotet.tet = tetloop.tet; |
|
} |
|
// tetaspect = sqrt(longlen) / (2.0 * insradius); |
|
tetaspect = sqrt(longlen) * minheightinv; |
|
// Remember the largest and smallest aspect ratio. |
|
if (tetaspect < smallestratio) { |
|
smallestratio = tetaspect; |
|
} |
|
if (tetaspect > biggestratio) { |
|
biggestratio = tetaspect; |
|
} |
|
// Accumulate the corresponding number in the aspect ratio histogram. |
|
aspectindex = 0; |
|
while ((tetaspect > aspectratiotable[aspectindex]) && (aspectindex < 11)) { |
|
aspectindex++; |
|
} |
|
aspecttable[aspectindex]++; |
|
radiusindex = 0; |
|
while ((tetradius > radiusratiotable[radiusindex]) && (radiusindex < 11)) { |
|
radiusindex++; |
|
} |
|
radiustable[radiusindex]++; |
|
|
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
|
|
shortest = sqrt(shortest); |
|
longest = sqrt(longest); |
|
minaltitude = sqrt(minaltitude); |
|
|
|
printf(" Smallest volume: %16.5g | Largest volume: %16.5g\n", smallestvolume, |
|
biggestvolume); |
|
printf(" Shortest edge: %16.5g | Longest edge: %16.5g\n", shortest, longest); |
|
printf(" Smallest asp.ratio: %13.5g | Largest asp.ratio: %13.5g\n", smallestratio, |
|
biggestratio); |
|
sprintf(sbuf, "%.17g", biggestfaangle); |
|
if (strlen(sbuf) > 8) { |
|
sbuf[8] = '\0'; |
|
} |
|
printf(" Smallest facangle: %14.5g | Largest facangle: %s\n", smallestfaangle, sbuf); |
|
sprintf(sbuf, "%.17g", biggestdiangle); |
|
if (strlen(sbuf) > 8) { |
|
sbuf[8] = '\0'; |
|
} |
|
printf(" Smallest dihedral: %14.5g | Largest dihedral: %s\n\n", smallestdiangle, |
|
sbuf); |
|
|
|
printf(" Aspect ratio histogram:\n"); |
|
printf(" < %-6.6g : %8ld | %6.6g - %-6.6g : %8ld\n", aspectratiotable[0], |
|
aspecttable[0], aspectratiotable[5], aspectratiotable[6], aspecttable[6]); |
|
for (i = 1; i < 5; i++) { |
|
printf(" %6.6g - %-6.6g : %8ld | %6.6g - %-6.6g : %8ld\n", |
|
aspectratiotable[i - 1], aspectratiotable[i], aspecttable[i], |
|
aspectratiotable[i + 5], aspectratiotable[i + 6], aspecttable[i + 6]); |
|
} |
|
printf(" %6.6g - %-6.6g : %8ld | %6.6g - : %8ld\n", aspectratiotable[4], |
|
aspectratiotable[5], aspecttable[5], aspectratiotable[10], aspecttable[11]); |
|
printf(" (A tetrahedron's aspect ratio is its longest edge length"); |
|
printf(" divided by its\n"); |
|
printf(" smallest side height)\n\n"); |
|
|
|
printf(" Face angle histogram:\n"); |
|
for (i = 0; i < 9; i++) { |
|
printf(" %3d - %3d degrees: %8ld | %3d - %3d degrees: %8ld\n", i * 10, |
|
i * 10 + 10, faceangletable[i], i * 10 + 90, i * 10 + 100, faceangletable[i + 9]); |
|
} |
|
if (minfaceang != PI) { |
|
printf(" Minimum input face angle is %g (degree).\n", minfaceang / PI * 180.0); |
|
} |
|
printf("\n"); |
|
|
|
printf(" Dihedral angle histogram:\n"); |
|
// Print the three two rows: |
|
printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n", 0, 5, |
|
dihedangletable[0], 80, 110, dihedangletable[9]); |
|
printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n", 5, 10, |
|
dihedangletable[1], 110, 120, dihedangletable[10]); |
|
// Print the third to seventh rows. |
|
for (i = 2; i < 7; i++) { |
|
printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n", (i - 1) * 10, |
|
(i - 1) * 10 + 10, dihedangletable[i], (i - 1) * 10 + 110, (i - 1) * 10 + 120, |
|
dihedangletable[i + 9]); |
|
} |
|
// Print the last two rows. |
|
printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n", 60, 70, |
|
dihedangletable[7], 170, 175, dihedangletable[16]); |
|
printf(" %3d - %2d degrees: %8ld | %3d - %3d degrees: %8ld\n", 70, 80, |
|
dihedangletable[8], 175, 180, dihedangletable[17]); |
|
if (minfacetdihed != PI) { |
|
printf(" Minimum input dihedral angle is %g (degree).\n", minfacetdihed / PI * 180.0); |
|
} |
|
printf("\n"); |
|
|
|
printf("\n"); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// memorystatistics() Report the memory usage. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::memorystatistics() { |
|
printf("Memory usage statistics:\n\n"); |
|
|
|
// Count the number of blocks of tetrahedra. |
|
int tetblocks = 0; |
|
tetrahedrons->pathblock = tetrahedrons->firstblock; |
|
while (tetrahedrons->pathblock != NULL) { |
|
tetblocks++; |
|
tetrahedrons->pathblock = (void**)*(tetrahedrons->pathblock); |
|
} |
|
|
|
// Calculate the total memory (in bytes) used by storing meshes. |
|
unsigned long totalmeshmemory = 0l, totalt2shmemory = 0l; |
|
totalmeshmemory = |
|
points->maxitems * points->itembytes + tetrahedrons->maxitems * tetrahedrons->itembytes; |
|
if (b->plc || b->refine) { |
|
totalmeshmemory += |
|
(subfaces->maxitems * subfaces->itembytes + subsegs->maxitems * subsegs->itembytes); |
|
totalt2shmemory = (tet2subpool->maxitems * tet2subpool->itembytes + |
|
tet2segpool->maxitems * tet2segpool->itembytes); |
|
} |
|
|
|
unsigned long totalalgomemory = 0l; |
|
totalalgomemory = cavetetlist->totalmemory + cavebdrylist->totalmemory + |
|
caveoldtetlist->totalmemory + flippool->maxitems * flippool->itembytes; |
|
if (b->plc || b->refine) { |
|
totalalgomemory += |
|
(subsegstack->totalmemory + subfacstack->totalmemory + subvertstack->totalmemory + |
|
caveshlist->totalmemory + caveshbdlist->totalmemory + cavesegshlist->totalmemory + |
|
cavetetshlist->totalmemory + cavetetseglist->totalmemory + caveencshlist->totalmemory + |
|
caveencseglist->totalmemory + cavetetvertlist->totalmemory + unflipqueue->totalmemory); |
|
} |
|
|
|
printf(" Maximum number of tetrahedra: %ld\n", tetrahedrons->maxitems); |
|
printf(" Maximum number of tet blocks (blocksize = %d): %d\n", b->tetrahedraperblock, |
|
tetblocks); |
|
/* |
|
if (b->plc || b->refine) { |
|
printf(" Approximate memory for tetrahedral mesh (bytes): %ld\n", |
|
totalmeshmemory); |
|
|
|
printf(" Approximate memory for extra pointers (bytes): %ld\n", |
|
totalt2shmemory); |
|
} else { |
|
printf(" Approximate memory for tetrahedralization (bytes): %ld\n", |
|
totalmeshmemory); |
|
} |
|
printf(" Approximate memory for algorithms (bytes): %ld\n", |
|
totalalgomemory); |
|
printf(" Approximate memory for working arrays (bytes): %ld\n", |
|
totalworkmemory); |
|
printf(" Approximate total used memory (bytes): %ld\n", |
|
totalmeshmemory + totalt2shmemory + totalalgomemory + |
|
totalworkmemory); |
|
*/ |
|
if (b->plc || b->refine) { |
|
printf(" Approximate memory for tetrahedral mesh (bytes): "); |
|
printfcomma(totalmeshmemory); |
|
printf("\n"); |
|
|
|
printf(" Approximate memory for extra pointers (bytes): "); |
|
printfcomma(totalt2shmemory); |
|
printf("\n"); |
|
} else { |
|
printf(" Approximate memory for tetrahedralization (bytes): "); |
|
printfcomma(totalmeshmemory); |
|
printf("\n"); |
|
} |
|
printf(" Approximate memory for algorithms (bytes): "); |
|
printfcomma(totalalgomemory); |
|
printf("\n"); |
|
printf(" Approximate memory for working arrays (bytes): "); |
|
printfcomma(totalworkmemory); |
|
printf("\n"); |
|
printf(" Approximate total used memory (bytes): "); |
|
printfcomma(totalmeshmemory + totalt2shmemory + totalalgomemory + totalworkmemory); |
|
printf("\n"); |
|
|
|
printf("\n"); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// statistics() Print all sorts of cool facts. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::statistics() { |
|
long tetnumber, facenumber; |
|
|
|
printf("\nStatistics:\n\n"); |
|
printf(" Input points: %d\n", in->numberofpoints); |
|
if (b->refine) { |
|
printf(" Input tetrahedra: %d\n", in->numberoftetrahedra); |
|
if (in->numberoftrifaces > 0) { |
|
printf(" Input triangles: %d\n", in->numberoftrifaces); |
|
} |
|
if (in->numberofedges > 0) { |
|
printf(" Input edges: %d\n", in->numberofedges); |
|
} |
|
} else if (b->plc) { |
|
printf(" Input facets: %d\n", in->numberoffacets); |
|
printf(" Input segments: %ld\n", insegments); |
|
if (in->numberofedges > 0) { |
|
printf(" Input edges: %d\n", in->numberofedges); |
|
} |
|
printf(" Input holes: %d\n", in->numberofholes); |
|
printf(" Input regions: %d\n", in->numberofregions); |
|
} |
|
|
|
tetnumber = tetrahedrons->items - hullsize; |
|
facenumber = (tetnumber * 4l + hullsize) / 2l; |
|
|
|
if (b->weighted) { // -w option |
|
printf("\n Mesh points: %ld\n", points->items - nonregularcount); |
|
} else { |
|
printf("\n Mesh points: %ld\n", points->items); |
|
} |
|
printf(" Mesh tetrahedra: %ld\n", tetnumber); |
|
printf(" Mesh faces: %ld\n", facenumber); |
|
if (meshedges > 0l) { |
|
printf(" Mesh edges: %ld\n", meshedges); |
|
} else { |
|
if (!nonconvex) { |
|
long vsize = points->items - dupverts - unuverts; |
|
if (b->weighted) vsize -= nonregularcount; |
|
meshedges = vsize + facenumber - tetnumber - 1; |
|
printf(" Mesh edges: %ld\n", meshedges); |
|
} |
|
} |
|
|
|
if (b->plc || b->refine) { |
|
printf(" Mesh faces on exterior boundary: %ld\n", hullsize); |
|
if (meshhulledges > 0l) { |
|
printf(" Mesh edges on exterior boundary: %ld\n", meshhulledges); |
|
} |
|
printf(" Mesh faces on input facets: %ld\n", subfaces->items); |
|
printf(" Mesh edges on input segments: %ld\n", subsegs->items); |
|
if (st_facref_count > 0l) { |
|
printf(" Steiner points on input facets: %ld\n", st_facref_count); |
|
} |
|
if (st_segref_count > 0l) { |
|
printf(" Steiner points on input segments: %ld\n", st_segref_count); |
|
} |
|
if (st_volref_count > 0l) { |
|
printf(" Steiner points inside domain: %ld\n", st_volref_count); |
|
} |
|
} else { |
|
printf(" Convex hull faces: %ld\n", hullsize); |
|
if (meshhulledges > 0l) { |
|
printf(" Convex hull edges: %ld\n", meshhulledges); |
|
} |
|
} |
|
if (b->weighted) { // -w option |
|
printf(" Skipped non-regular points: %ld\n", nonregularcount); |
|
} |
|
printf("\n"); |
|
|
|
if (b->verbose > 0) { |
|
if (b->plc || b->refine) { // -p or -r |
|
if (tetrahedrons->items > 0l) { |
|
qualitystatistics(); |
|
} |
|
} |
|
if (tetrahedrons->items > 0l) { |
|
memorystatistics(); |
|
} |
|
} |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// meshstat_cxx ///////////////////////////////////////////////////////////// |
|
|
|
//// output_cxx /////////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// jettisonnodes() Jettison unused or duplicated vertices. // |
|
// // |
|
// Unused points are those input points which are outside the mesh domain or // |
|
// have no connection (isolated) to the mesh. Duplicated points exist for // |
|
// example if the input PLC is read from a .stl mesh file (marked during the // |
|
// Delaunay tetrahedralization step. This routine remove these points from // |
|
// points list. All existing points are reindexed. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::jettisonnodes() { |
|
point pointloop; |
|
bool jetflag; |
|
int oldidx, newidx; |
|
int remcount; |
|
|
|
if (!b->quiet) { |
|
printf("Jettisoning redundant points.\n"); |
|
} |
|
|
|
points->traversalinit(); |
|
pointloop = pointtraverse(); |
|
oldidx = newidx = 0; // in->firstnumber; |
|
remcount = 0; |
|
while (pointloop != (point)NULL) { |
|
jetflag = |
|
(pointtype(pointloop) == DUPLICATEDVERTEX) || (pointtype(pointloop) == UNUSEDVERTEX); |
|
if (jetflag) { |
|
// It is a duplicated or unused point, delete it. |
|
pointdealloc(pointloop); |
|
remcount++; |
|
} else { |
|
// Re-index it. |
|
setpointmark(pointloop, newidx + in->firstnumber); |
|
if (in->pointmarkerlist != (int*)NULL) { |
|
if (oldidx < in->numberofpoints) { |
|
// Re-index the point marker as well. |
|
in->pointmarkerlist[newidx] = in->pointmarkerlist[oldidx]; |
|
} |
|
} |
|
newidx++; |
|
} |
|
oldidx++; |
|
pointloop = pointtraverse(); |
|
} |
|
if (b->verbose) { |
|
printf(" %ld duplicated vertices are removed.\n", dupverts); |
|
printf(" %ld unused vertices are removed.\n", unuverts); |
|
} |
|
dupverts = 0l; |
|
unuverts = 0l; |
|
|
|
// The following line ensures that dead items in the pool of nodes cannot |
|
// be allocated for the new created nodes. This ensures that the input |
|
// nodes will occur earlier in the output files, and have lower indices. |
|
points->deaditemstack = (void*)NULL; |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// highorder() Create extra nodes for quadratic subparametric elements. // |
|
// // |
|
// 'highordertable' is an array (size = numberoftetrahedra * 6) for storing // |
|
// high-order nodes of each tetrahedron. This routine is used only when -o2 // |
|
// switch is used. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::highorder() { |
|
triface tetloop, worktet, spintet; |
|
point *extralist, *adjextralist; |
|
point torg, tdest, newpoint; |
|
int highorderindex; |
|
int t1ver; |
|
int i, j; |
|
|
|
if (!b->quiet) { |
|
printf("Adding vertices for second-order tetrahedra.\n"); |
|
} |
|
|
|
// Initialize the 'highordertable'. |
|
highordertable = new point[tetrahedrons->items * 6]; |
|
if (highordertable == (point*)NULL) { |
|
terminatetetgen(this, 1); |
|
} |
|
|
|
// This will overwrite the slot for element markers. |
|
highorderindex = 11; |
|
|
|
// The following line ensures that dead items in the pool of nodes cannot |
|
// be allocated for the extra nodes associated with high order elements. |
|
// This ensures that the primary nodes (at the corners of elements) will |
|
// occur earlier in the output files, and have lower indices, than the |
|
// extra nodes. |
|
points->deaditemstack = (void*)NULL; |
|
|
|
// Assign an entry for each tetrahedron to find its extra nodes. At the |
|
// mean while, initialize all extra nodes be NULL. |
|
i = 0; |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
tetloop.tet[highorderindex] = (tetrahedron)&highordertable[i]; |
|
for (j = 0; j < 6; j++) { |
|
highordertable[i + j] = (point)NULL; |
|
} |
|
i += 6; |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
|
|
// To create a unique node on each edge. Loop over all tetrahedra, and |
|
// look at the six edges of each tetrahedron. If the extra node in |
|
// the tetrahedron corresponding to this edge is NULL, create a node |
|
// for this edge, at the same time, set the new node into the extra |
|
// node lists of all other tetrahedra sharing this edge. |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
// Get the list of extra nodes. |
|
extralist = (point*)tetloop.tet[highorderindex]; |
|
worktet.tet = tetloop.tet; |
|
for (i = 0; i < 6; i++) { |
|
if (extralist[i] == (point)NULL) { |
|
// Go to the ith-edge. |
|
worktet.ver = edge2ver[i]; |
|
// Create a new point in the middle of this edge. |
|
torg = org(worktet); |
|
tdest = dest(worktet); |
|
makepoint(&newpoint, FREEVOLVERTEX); |
|
for (j = 0; j < 3 + numpointattrib; j++) { |
|
newpoint[j] = 0.5 * (torg[j] + tdest[j]); |
|
} |
|
// Interpolate its metrics. |
|
for (j = 0; j < in->numberofpointmtrs; j++) { |
|
newpoint[pointmtrindex + j] = |
|
0.5 * (torg[pointmtrindex + j] + tdest[pointmtrindex + j]); |
|
} |
|
// Set this point into all extra node lists at this edge. |
|
spintet = worktet; |
|
while (1) { |
|
if (!ishulltet(spintet)) { |
|
adjextralist = (point*)spintet.tet[highorderindex]; |
|
adjextralist[ver2edge[spintet.ver]] = newpoint; |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == worktet.tet) break; |
|
} |
|
} // if (!extralist[i]) |
|
} // i |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// indexelements() Index all tetrahedra. // |
|
// // |
|
// Many output functions require that the tetrahedra are indexed. This // |
|
// routine is called when -E option is used. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::indexelements() { |
|
triface worktet; |
|
int eindex = b->zeroindex ? 0 : in->firstnumber; // firstindex; |
|
tetrahedrons->traversalinit(); |
|
worktet.tet = tetrahedrontraverse(); |
|
while (worktet.tet != NULL) { |
|
setelemindex(worktet.tet, eindex); |
|
eindex++; |
|
if (b->metric) { // -m option |
|
// Update the point-to-tet map, so that every point is pointing |
|
// to a real tet, not a fictious one. Used by .p2t file. |
|
tetrahedron tptr = encode(worktet); |
|
for (int i = 0; i < 4; i++) { |
|
setpoint2tet((point)(worktet.tet[4 + i]), tptr); |
|
} |
|
} |
|
worktet.tet = tetrahedrontraverse(); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// numberedges() Count the number of edges, save in "meshedges". // |
|
// // |
|
// This routine is called when '-p' or '-r', and '-E' options are used. The // |
|
// total number of edges depends on the genus of the input surface mesh. // |
|
// // |
|
// NOTE: This routine must be called after outelements(). So all elements // |
|
// have been indexed. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::numberedges() { |
|
triface worktet, spintet; |
|
int ishulledge; |
|
int t1ver; |
|
int i; |
|
|
|
meshedges = meshhulledges = 0l; |
|
|
|
tetrahedrons->traversalinit(); |
|
worktet.tet = tetrahedrontraverse(); |
|
while (worktet.tet != NULL) { |
|
for (i = 0; i < 6; i++) { |
|
worktet.ver = edge2ver[i]; |
|
ishulledge = 0; |
|
fnext(worktet, spintet); |
|
do { |
|
if (!ishulltet(spintet)) { |
|
if (elemindex(spintet.tet) < elemindex(worktet.tet)) break; |
|
} else { |
|
ishulledge = 1; |
|
} |
|
fnextself(spintet); |
|
} while (spintet.tet != worktet.tet); |
|
if (spintet.tet == worktet.tet) { |
|
meshedges++; |
|
if (ishulledge) meshhulledges++; |
|
} |
|
} |
|
infect(worktet); |
|
worktet.tet = tetrahedrontraverse(); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// outnodes() Output the points to a .node file or a tetgenio structure. // |
|
// // |
|
// Note: each point has already been numbered on input (the first index is // |
|
// 'in->firstnumber'). // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::outnodes(tetgenio* out) { |
|
FILE* outfile = NULL; |
|
char outnodefilename[FILENAMESIZE]; |
|
face parentsh; |
|
point pointloop; |
|
int nextras, bmark, marker = 0, weightDT = 0; |
|
int coordindex, attribindex; |
|
int pointnumber, firstindex; |
|
int index, i; |
|
|
|
if (out == (tetgenio*)NULL) { |
|
strcpy(outnodefilename, b->outfilename); |
|
strcat(outnodefilename, ".node"); |
|
} |
|
|
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", outnodefilename); |
|
} else { |
|
printf("Writing nodes.\n"); |
|
} |
|
} |
|
|
|
nextras = numpointattrib; |
|
if (b->weighted) { // -w |
|
if (b->weighted_param == 0) weightDT = 1; // Weighted DT. |
|
} |
|
|
|
bmark = !b->nobound && in->pointmarkerlist; |
|
|
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(outnodefilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", outnodefilename); |
|
terminatetetgen(this, 1); |
|
} |
|
// Number of points, number of dimensions, number of point attributes, |
|
// and number of boundary markers (zero or one). |
|
fprintf(outfile, "%ld %d %d %d\n", points->items, 3, nextras, bmark); |
|
} else { |
|
// Allocate space for 'pointlist'; |
|
out->pointlist = new REAL[points->items * 3]; |
|
if (out->pointlist == (REAL*)NULL) { |
|
printf("Error: Out of memory.\n"); |
|
terminatetetgen(this, 1); |
|
} |
|
// Allocate space for 'pointattributelist' if necessary; |
|
if (nextras > 0) { |
|
out->pointattributelist = new REAL[points->items * nextras]; |
|
if (out->pointattributelist == (REAL*)NULL) { |
|
printf("Error: Out of memory.\n"); |
|
terminatetetgen(this, 1); |
|
} |
|
} |
|
// Allocate space for 'pointmarkerlist' if necessary; |
|
if (bmark) { |
|
out->pointmarkerlist = new int[points->items]; |
|
if (out->pointmarkerlist == (int*)NULL) { |
|
printf("Error: Out of memory.\n"); |
|
terminatetetgen(this, 1); |
|
} |
|
} |
|
if (b->psc) { |
|
out->pointparamlist = new tetgenio::pointparam[points->items]; |
|
if (out->pointparamlist == NULL) { |
|
printf("Error: Out of memory.\n"); |
|
terminatetetgen(this, 1); |
|
} |
|
} |
|
out->numberofpoints = points->items; |
|
out->numberofpointattributes = nextras; |
|
coordindex = 0; |
|
attribindex = 0; |
|
} |
|
|
|
// Determine the first index (0 or 1). |
|
firstindex = b->zeroindex ? 0 : in->firstnumber; |
|
|
|
points->traversalinit(); |
|
pointloop = pointtraverse(); |
|
pointnumber = firstindex; // in->firstnumber; |
|
index = 0; |
|
while (pointloop != (point)NULL) { |
|
if (bmark) { |
|
// Default the vertex has a zero marker. |
|
marker = 0; |
|
// Is it an input vertex? |
|
if (index < in->numberofpoints) { |
|
// Input point's marker is directly copied to output. |
|
marker = in->pointmarkerlist[index]; |
|
} else { |
|
if ((pointtype(pointloop) == FREESEGVERTEX) || |
|
(pointtype(pointloop) == FREEFACETVERTEX)) { |
|
sdecode(point2sh(pointloop), parentsh); |
|
if (parentsh.sh != NULL) { |
|
marker = shellmark(parentsh); |
|
} |
|
} // if (pointtype(...)) |
|
} |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
// Point number, x, y and z coordinates. |
|
fprintf(outfile, "%4d %.17g %.17g %.17g", pointnumber, pointloop[0], pointloop[1], |
|
pointloop[2]); |
|
for (i = 0; i < nextras; i++) { |
|
// Write an attribute. |
|
if ((i == 0) && weightDT) { |
|
fprintf(outfile, " %.17g", |
|
pointloop[0] * pointloop[0] + pointloop[1] * pointloop[1] + |
|
pointloop[2] * pointloop[2] - pointloop[3 + i]); |
|
} else { |
|
fprintf(outfile, " %.17g", pointloop[3 + i]); |
|
} |
|
} |
|
if (bmark) { |
|
// Write the boundary marker. |
|
fprintf(outfile, " %d", marker); |
|
} |
|
if (b->psc) { |
|
fprintf(outfile, " %.8g %.8g %d", pointgeomuv(pointloop, 0), |
|
pointgeomuv(pointloop, 1), pointgeomtag(pointloop)); |
|
if (pointtype(pointloop) == RIDGEVERTEX) { |
|
fprintf(outfile, " 0"); |
|
} else if (pointtype(pointloop) == ACUTEVERTEX) { |
|
fprintf(outfile, " 0"); |
|
} else if (pointtype(pointloop) == FREESEGVERTEX) { |
|
fprintf(outfile, " 1"); |
|
} else if (pointtype(pointloop) == FREEFACETVERTEX) { |
|
fprintf(outfile, " 2"); |
|
} else if (pointtype(pointloop) == FREEVOLVERTEX) { |
|
fprintf(outfile, " 3"); |
|
} else { |
|
fprintf(outfile, " -1"); // Unknown type. |
|
} |
|
} |
|
fprintf(outfile, "\n"); |
|
} else { |
|
// X, y, and z coordinates. |
|
out->pointlist[coordindex++] = pointloop[0]; |
|
out->pointlist[coordindex++] = pointloop[1]; |
|
out->pointlist[coordindex++] = pointloop[2]; |
|
// Point attributes. |
|
for (i = 0; i < nextras; i++) { |
|
// Output an attribute. |
|
if ((i == 0) && weightDT) { |
|
out->pointattributelist[attribindex++] = |
|
pointloop[0] * pointloop[0] + pointloop[1] * pointloop[1] + |
|
pointloop[2] * pointloop[2] - pointloop[3 + i]; |
|
} else { |
|
out->pointattributelist[attribindex++] = pointloop[3 + i]; |
|
} |
|
} |
|
if (bmark) { |
|
// Output the boundary marker. |
|
out->pointmarkerlist[index] = marker; |
|
} |
|
if (b->psc) { |
|
out->pointparamlist[index].uv[0] = pointgeomuv(pointloop, 0); |
|
out->pointparamlist[index].uv[1] = pointgeomuv(pointloop, 1); |
|
out->pointparamlist[index].tag = pointgeomtag(pointloop); |
|
if (pointtype(pointloop) == RIDGEVERTEX) { |
|
out->pointparamlist[index].type = 0; |
|
} else if (pointtype(pointloop) == ACUTEVERTEX) { |
|
out->pointparamlist[index].type = 0; |
|
} else if (pointtype(pointloop) == FREESEGVERTEX) { |
|
out->pointparamlist[index].type = 1; |
|
} else if (pointtype(pointloop) == FREEFACETVERTEX) { |
|
out->pointparamlist[index].type = 2; |
|
} else if (pointtype(pointloop) == FREEVOLVERTEX) { |
|
out->pointparamlist[index].type = 3; |
|
} else { |
|
out->pointparamlist[index].type = -1; // Unknown type. |
|
} |
|
} |
|
} |
|
pointloop = pointtraverse(); |
|
pointnumber++; |
|
index++; |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "# Generated by %s\n", b->commandline); |
|
fclose(outfile); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// outmetrics() Output the metric to a file (*.mtr) or a tetgenio obj. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::outmetrics(tetgenio* out) { |
|
FILE* outfile = NULL; |
|
char outmtrfilename[FILENAMESIZE]; |
|
point ptloop; |
|
int mtrindex = 0; |
|
int i; |
|
int msize = (sizeoftensor - useinsertradius); |
|
if (msize == 0) { |
|
return; |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
strcpy(outmtrfilename, b->outfilename); |
|
strcat(outmtrfilename, ".mtr"); |
|
} |
|
|
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", outmtrfilename); |
|
} else { |
|
printf("Writing metrics.\n"); |
|
} |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(outmtrfilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", outmtrfilename); |
|
terminatetetgen(this, 3); |
|
} |
|
// Number of points, number of point metrices, |
|
fprintf(outfile, "%ld %d\n", points->items, msize); |
|
} else { |
|
// Allocate space for 'pointmtrlist'. |
|
out->numberofpointmtrs = msize; |
|
out->pointmtrlist = new REAL[points->items * msize]; |
|
if (out->pointmtrlist == (REAL*)NULL) { |
|
terminatetetgen(this, 1); |
|
} |
|
} |
|
|
|
points->traversalinit(); |
|
ptloop = pointtraverse(); |
|
while (ptloop != (point)NULL) { |
|
if (out == (tetgenio*)NULL) { |
|
for (i = 0; i < msize; i++) { |
|
fprintf(outfile, " %-16.8e", ptloop[pointmtrindex + i]); |
|
} |
|
fprintf(outfile, "\n"); |
|
} else { |
|
for (i = 0; i < msize; i++) { |
|
out->pointmtrlist[mtrindex++] = ptloop[pointmtrindex + i]; |
|
} |
|
} |
|
ptloop = pointtraverse(); |
|
} |
|
|
|
// Output the point-to-tet map. |
|
if (out == (tetgenio*)NULL) { |
|
strcpy(outmtrfilename, b->outfilename); |
|
strcat(outmtrfilename, ".p2t"); |
|
} |
|
|
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", outmtrfilename); |
|
} else { |
|
printf("Writing point-to-tet map.\n"); |
|
} |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(outmtrfilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", outmtrfilename); |
|
terminatetetgen(this, 3); |
|
} |
|
// Number of points, |
|
// fprintf(outfile, "%ld\n", points->items); |
|
} else { |
|
// Allocate space for 'point2tetlist'. |
|
out->point2tetlist = new int[points->items]; |
|
if (out->point2tetlist == (int*)NULL) { |
|
terminatetetgen(this, 1); |
|
} |
|
} |
|
|
|
// The list of tetrahedra must be indexed. |
|
if (bgm != NULL) { |
|
bgm->indexelements(); |
|
} |
|
// Determine the first index (0 or 1). |
|
int firstindex = b->zeroindex ? 0 : in->firstnumber; |
|
int pointindex = firstindex; |
|
i = 0; |
|
|
|
triface parenttet; |
|
points->traversalinit(); |
|
ptloop = pointtraverse(); |
|
while (ptloop != (point)NULL) { |
|
if (bgm != NULL) { |
|
bgm->decode(point2bgmtet(ptloop), parenttet); |
|
} else { |
|
decode(point2tet(ptloop), parenttet); |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "%d %d\n", pointindex, elemindex(parenttet.tet)); |
|
} else { |
|
out->point2tetlist[i] = elemindex(parenttet.tet); |
|
} |
|
pointindex++; |
|
i++; |
|
ptloop = pointtraverse(); |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "# Generated by %s\n", b->commandline); |
|
fclose(outfile); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// outelements() Output the tetrahedra to an .ele file or a tetgenio // |
|
// structure. // |
|
// // |
|
// This routine also indexes all tetrahedra (exclusing hull tets) (from in-> // |
|
// firstnumber). The total number of mesh edges is counted in 'meshedges'. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::outelements(tetgenio* out) { |
|
FILE* outfile = NULL; |
|
char outelefilename[FILENAMESIZE]; |
|
tetrahedron* tptr; |
|
point p1, p2, p3, p4; |
|
point* extralist; |
|
REAL* talist = NULL; |
|
int* tlist = NULL; |
|
long ntets; |
|
int firstindex, shift; |
|
int pointindex, attribindex; |
|
int highorderindex = 11; |
|
int elementnumber; |
|
int eextras; |
|
int i; |
|
|
|
if (out == (tetgenio*)NULL) { |
|
strcpy(outelefilename, b->outfilename); |
|
strcat(outelefilename, ".ele"); |
|
} |
|
|
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", outelefilename); |
|
} else { |
|
printf("Writing elements.\n"); |
|
} |
|
} |
|
|
|
// The number of tets excluding hull tets. |
|
ntets = tetrahedrons->items - hullsize; |
|
|
|
eextras = numelemattrib; |
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(outelefilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", outelefilename); |
|
terminatetetgen(this, 1); |
|
} |
|
// Number of tetras, points per tetra, attributes per tetra. |
|
fprintf(outfile, "%ld %d %d\n", ntets, b->order == 1 ? 4 : 10, eextras); |
|
} else { |
|
// Allocate memory for output tetrahedra. |
|
out->tetrahedronlist = new int[ntets * (b->order == 1 ? 4 : 10)]; |
|
if (out->tetrahedronlist == (int*)NULL) { |
|
printf("Error: Out of memory.\n"); |
|
terminatetetgen(this, 1); |
|
} |
|
// Allocate memory for output tetrahedron attributes if necessary. |
|
if (eextras > 0) { |
|
out->tetrahedronattributelist = new REAL[ntets * eextras]; |
|
if (out->tetrahedronattributelist == (REAL*)NULL) { |
|
printf("Error: Out of memory.\n"); |
|
terminatetetgen(this, 1); |
|
} |
|
} |
|
out->numberoftetrahedra = ntets; |
|
out->numberofcorners = b->order == 1 ? 4 : 10; |
|
out->numberoftetrahedronattributes = eextras; |
|
tlist = out->tetrahedronlist; |
|
talist = out->tetrahedronattributelist; |
|
pointindex = 0; |
|
attribindex = 0; |
|
} |
|
|
|
// Determine the first index (0 or 1). |
|
firstindex = b->zeroindex ? 0 : in->firstnumber; |
|
shift = 0; // Default no shift. |
|
if ((in->firstnumber == 1) && (firstindex == 0)) { |
|
shift = 1; // Shift the output indices by 1. |
|
} |
|
|
|
tetrahedrons->traversalinit(); |
|
tptr = tetrahedrontraverse(); |
|
elementnumber = firstindex; // in->firstnumber; |
|
while (tptr != (tetrahedron*)NULL) { |
|
if (!b->reversetetori) { |
|
p1 = (point)tptr[4]; |
|
p2 = (point)tptr[5]; |
|
} else { |
|
p1 = (point)tptr[5]; |
|
p2 = (point)tptr[4]; |
|
} |
|
p3 = (point)tptr[6]; |
|
p4 = (point)tptr[7]; |
|
if (out == (tetgenio*)NULL) { |
|
// Tetrahedron number, indices for four points. |
|
fprintf(outfile, "%5d %5d %5d %5d %5d", elementnumber, pointmark(p1) - shift, |
|
pointmark(p2) - shift, pointmark(p3) - shift, pointmark(p4) - shift); |
|
if (b->order == 2) { |
|
extralist = (point*)tptr[highorderindex]; |
|
// indices for six extra points. |
|
fprintf(outfile, " %5d %5d %5d %5d %5d %5d", pointmark(extralist[0]) - shift, |
|
pointmark(extralist[1]) - shift, pointmark(extralist[2]) - shift, |
|
pointmark(extralist[3]) - shift, pointmark(extralist[4]) - shift, |
|
pointmark(extralist[5]) - shift); |
|
} |
|
for (i = 0; i < eextras; i++) { |
|
fprintf(outfile, " %.17g", elemattribute(tptr, i)); |
|
} |
|
fprintf(outfile, "\n"); |
|
} else { |
|
tlist[pointindex++] = pointmark(p1) - shift; |
|
tlist[pointindex++] = pointmark(p2) - shift; |
|
tlist[pointindex++] = pointmark(p3) - shift; |
|
tlist[pointindex++] = pointmark(p4) - shift; |
|
if (b->order == 2) { |
|
extralist = (point*)tptr[highorderindex]; |
|
tlist[pointindex++] = pointmark(extralist[0]) - shift; |
|
tlist[pointindex++] = pointmark(extralist[1]) - shift; |
|
tlist[pointindex++] = pointmark(extralist[2]) - shift; |
|
tlist[pointindex++] = pointmark(extralist[3]) - shift; |
|
tlist[pointindex++] = pointmark(extralist[4]) - shift; |
|
tlist[pointindex++] = pointmark(extralist[5]) - shift; |
|
} |
|
for (i = 0; i < eextras; i++) { |
|
talist[attribindex++] = elemattribute(tptr, i); |
|
} |
|
} |
|
// Remember the index of this element (for counting edges). |
|
setelemindex(tptr, elementnumber); |
|
if (b->metric) { // -m option |
|
// Update the point-to-tet map, so that every point is pointing |
|
// to a real tet, not a fictious one. Used by .p2t file. |
|
for (int i = 0; i < 4; i++) { |
|
setpoint2tet((point)(tptr[4 + i]), (tetrahedron)tptr); |
|
} |
|
} |
|
tptr = tetrahedrontraverse(); |
|
elementnumber++; |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "# Generated by %s\n", b->commandline); |
|
fclose(outfile); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// outfaces() Output all faces to a .face file or a tetgenio object. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::outfaces(tetgenio* out) { |
|
FILE* outfile = NULL; |
|
char facefilename[FILENAMESIZE]; |
|
triface tface, tsymface; |
|
face checkmark; |
|
point torg, tdest, tapex; |
|
long ntets, faces; |
|
int *elist = NULL, *emlist = NULL; |
|
int neigh1 = 0, neigh2 = 0; |
|
int marker = 0; |
|
int firstindex, shift; |
|
int facenumber; |
|
int index = 0; |
|
|
|
// For -o2 option. |
|
triface workface; |
|
point *extralist, pp[3] = {0, 0, 0}; |
|
int highorderindex = 11; |
|
int o2index = 0, i; |
|
|
|
// For -nn option. |
|
int* tet2facelist = NULL; |
|
int tidx; |
|
|
|
if (out == (tetgenio*)NULL) { |
|
strcpy(facefilename, b->outfilename); |
|
strcat(facefilename, ".face"); |
|
} |
|
|
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", facefilename); |
|
} else { |
|
printf("Writing faces.\n"); |
|
} |
|
} |
|
|
|
ntets = tetrahedrons->items - hullsize; |
|
faces = (ntets * 4l + hullsize) / 2l; |
|
|
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(facefilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", facefilename); |
|
terminatetetgen(this, 1); |
|
} |
|
fprintf(outfile, "%ld %d\n", faces, !b->nobound); |
|
} else { |
|
// Allocate memory for 'trifacelist'. |
|
out->trifacelist = new int[faces * 3]; |
|
if (out->trifacelist == (int*)NULL) { |
|
printf("Error: Out of memory.\n"); |
|
terminatetetgen(this, 1); |
|
} |
|
if (b->order == 2) { |
|
out->o2facelist = new int[faces * 3]; |
|
} |
|
// Allocate memory for 'trifacemarkerlist' if necessary. |
|
if (!b->nobound) { |
|
out->trifacemarkerlist = new int[faces]; |
|
if (out->trifacemarkerlist == (int*)NULL) { |
|
printf("Error: Out of memory.\n"); |
|
terminatetetgen(this, 1); |
|
} |
|
} |
|
if (b->neighout > 1) { |
|
// '-nn' switch. |
|
out->face2tetlist = new int[faces * 2]; |
|
if (out->face2tetlist == (int*)NULL) { |
|
printf("Error: Out of memory.\n"); |
|
terminatetetgen(this, 1); |
|
} |
|
} |
|
out->numberoftrifaces = faces; |
|
elist = out->trifacelist; |
|
emlist = out->trifacemarkerlist; |
|
} |
|
|
|
if (b->neighout > 1) { // -nn option |
|
// Output the tetrahedron-to-face map. |
|
tet2facelist = new int[ntets * 4]; |
|
} |
|
|
|
// Determine the first index (0 or 1). |
|
firstindex = b->zeroindex ? 0 : in->firstnumber; |
|
shift = 0; // Default no shiftment. |
|
if ((in->firstnumber == 1) && (firstindex == 0)) { |
|
shift = 1; // Shift the output indices by 1. |
|
} |
|
|
|
tetrahedrons->traversalinit(); |
|
tface.tet = tetrahedrontraverse(); |
|
facenumber = firstindex; // in->firstnumber; |
|
// To loop over the set of faces, loop over all tetrahedra, and look at |
|
// the four faces of each one. If its adjacent tet is a hull tet, |
|
// operate on the face, otherwise, operate on the face only if the |
|
// current tet has a smaller index than its neighbor. |
|
while (tface.tet != (tetrahedron*)NULL) { |
|
for (tface.ver = 0; tface.ver < 4; tface.ver++) { |
|
fsym(tface, tsymface); |
|
if (ishulltet(tsymface) || (elemindex(tface.tet) < elemindex(tsymface.tet))) { |
|
torg = org(tface); |
|
tdest = dest(tface); |
|
tapex = apex(tface); |
|
if (b->order == 2) { // -o2 |
|
// Get the three extra vertices on edges. |
|
extralist = (point*)(tface.tet[highorderindex]); |
|
// The extra vertices are on edges opposite the corners. |
|
enext(tface, workface); |
|
for (i = 0; i < 3; i++) { |
|
pp[i] = extralist[ver2edge[workface.ver]]; |
|
enextself(workface); |
|
} |
|
} |
|
if (!b->nobound) { |
|
// Get the boundary marker of this face. |
|
if (b->plc || b->refine) { |
|
// Shell face is used. |
|
tspivot(tface, checkmark); |
|
if (checkmark.sh == NULL) { |
|
marker = 0; // It is an inner face. It's marker is 0. |
|
} else { |
|
marker = shellmark(checkmark); |
|
} |
|
} else { |
|
// Shell face is not used, only distinguish outer and inner face. |
|
marker = (int)ishulltet(tsymface); |
|
} |
|
} |
|
if (b->neighout > 1) { |
|
// '-nn' switch. Output adjacent tets indices. |
|
if (!ishulltet(tface)) { |
|
neigh1 = elemindex(tface.tet); |
|
} else { |
|
neigh1 = -1; |
|
} |
|
if (!ishulltet(tsymface)) { |
|
neigh2 = elemindex(tsymface.tet); |
|
} else { |
|
neigh2 = -1; |
|
} |
|
// Fill the tetrahedron-to-face map. |
|
tidx = elemindex(tface.tet) - firstindex; |
|
tet2facelist[tidx * 4 + tface.ver] = facenumber; |
|
if (!ishulltet(tsymface)) { |
|
tidx = elemindex(tsymface.tet) - firstindex; |
|
tet2facelist[tidx * 4 + (tsymface.ver & 3)] = facenumber; |
|
} |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
// Face number, indices of three vertices. |
|
fprintf(outfile, "%5d %4d %4d %4d", facenumber, pointmark(torg) - shift, |
|
pointmark(tdest) - shift, pointmark(tapex) - shift); |
|
if (b->order == 2) { // -o2 |
|
fprintf(outfile, " %4d %4d %4d", pointmark(pp[0]) - shift, |
|
pointmark(pp[1]) - shift, pointmark(pp[2]) - shift); |
|
} |
|
if (!b->nobound) { |
|
// Output a boundary marker. |
|
fprintf(outfile, " %d", marker); |
|
} |
|
if (b->neighout > 1) { |
|
fprintf(outfile, " %5d %5d", neigh1, neigh2); |
|
} |
|
fprintf(outfile, "\n"); |
|
} else { |
|
// Output indices of three vertices. |
|
elist[index++] = pointmark(torg) - shift; |
|
elist[index++] = pointmark(tdest) - shift; |
|
elist[index++] = pointmark(tapex) - shift; |
|
if (b->order == 2) { // -o2 |
|
out->o2facelist[o2index++] = pointmark(pp[0]) - shift; |
|
out->o2facelist[o2index++] = pointmark(pp[1]) - shift; |
|
out->o2facelist[o2index++] = pointmark(pp[2]) - shift; |
|
} |
|
if (!b->nobound) { |
|
emlist[facenumber - in->firstnumber] = marker; |
|
} |
|
if (b->neighout > 1) { |
|
out->face2tetlist[(facenumber - in->firstnumber) * 2] = neigh1; |
|
out->face2tetlist[(facenumber - in->firstnumber) * 2 + 1] = neigh2; |
|
} |
|
} |
|
facenumber++; |
|
} |
|
} |
|
tface.tet = tetrahedrontraverse(); |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "# Generated by %s\n", b->commandline); |
|
fclose(outfile); |
|
} |
|
|
|
if (b->neighout > 1) { // -nn option |
|
// Output the tetrahedron-to-face map. |
|
if (out == (tetgenio*)NULL) { |
|
strcpy(facefilename, b->outfilename); |
|
strcat(facefilename, ".t2f"); |
|
} |
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", facefilename); |
|
} else { |
|
printf("Writing tetrahedron-to-face map.\n"); |
|
} |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(facefilename, "w"); |
|
for (tidx = 0; tidx < ntets; tidx++) { |
|
index = tidx * 4; |
|
fprintf(outfile, "%4d %d %d %d %d\n", tidx + in->firstnumber, tet2facelist[index], |
|
tet2facelist[index + 1], tet2facelist[index + 2], tet2facelist[index + 3]); |
|
} |
|
fclose(outfile); |
|
delete[] tet2facelist; |
|
} else { |
|
// Simply copy the address of the list to the output. |
|
out->tet2facelist = tet2facelist; |
|
} |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// outhullfaces() Output hull faces to a .face file or a tetgenio object. // |
|
// // |
|
// The normal of each face is pointing to the outside of the domain. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::outhullfaces(tetgenio* out) { |
|
FILE* outfile = NULL; |
|
char facefilename[FILENAMESIZE]; |
|
triface hulltet; |
|
point torg, tdest, tapex; |
|
int* elist = NULL; |
|
int firstindex, shift; |
|
int facenumber; |
|
int index; |
|
|
|
if (out == (tetgenio*)NULL) { |
|
strcpy(facefilename, b->outfilename); |
|
strcat(facefilename, ".face"); |
|
} |
|
|
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", facefilename); |
|
} else { |
|
printf("Writing faces.\n"); |
|
} |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(facefilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", facefilename); |
|
terminatetetgen(this, 1); |
|
} |
|
fprintf(outfile, "%ld 0\n", hullsize); |
|
} else { |
|
// Allocate memory for 'trifacelist'. |
|
out->trifacelist = new int[hullsize * 3]; |
|
if (out->trifacelist == (int*)NULL) { |
|
printf("Error: Out of memory.\n"); |
|
terminatetetgen(this, 1); |
|
} |
|
out->numberoftrifaces = hullsize; |
|
elist = out->trifacelist; |
|
index = 0; |
|
} |
|
|
|
// Determine the first index (0 or 1). |
|
firstindex = b->zeroindex ? 0 : in->firstnumber; |
|
shift = 0; // Default no shiftment. |
|
if ((in->firstnumber == 1) && (firstindex == 0)) { |
|
shift = 1; // Shift the output indices by 1. |
|
} |
|
|
|
tetrahedrons->traversalinit(); |
|
hulltet.tet = alltetrahedrontraverse(); |
|
facenumber = firstindex; |
|
while (hulltet.tet != (tetrahedron*)NULL) { |
|
if (ishulltet(hulltet)) { |
|
torg = (point)hulltet.tet[4]; |
|
tdest = (point)hulltet.tet[5]; |
|
tapex = (point)hulltet.tet[6]; |
|
if (out == (tetgenio*)NULL) { |
|
// Face number, indices of three vertices. |
|
fprintf(outfile, "%5d %4d %4d %4d", facenumber, pointmark(torg) - shift, |
|
pointmark(tdest) - shift, pointmark(tapex) - shift); |
|
fprintf(outfile, "\n"); |
|
} else { |
|
// Output indices of three vertices. |
|
elist[index++] = pointmark(torg) - shift; |
|
elist[index++] = pointmark(tdest) - shift; |
|
elist[index++] = pointmark(tapex) - shift; |
|
} |
|
facenumber++; |
|
} |
|
hulltet.tet = alltetrahedrontraverse(); |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "# Generated by %s\n", b->commandline); |
|
fclose(outfile); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// outsubfaces() Output subfaces (i.e. boundary faces) to a .face file or // |
|
// a tetgenio structure. // |
|
// // |
|
// The boundary faces are found in 'subfaces'. For listing triangle vertices // |
|
// in the same sense for all triangles in the mesh, the direction determined // |
|
// by right-hand rule is pointer to the inside of the volume. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::outsubfaces(tetgenio* out) { |
|
FILE* outfile = NULL; |
|
char facefilename[FILENAMESIZE]; |
|
int* elist = NULL; |
|
int* emlist = NULL; |
|
int index = 0, index1 = 0, index2 = 0; |
|
triface abuttingtet; |
|
face faceloop; |
|
point torg, tdest, tapex; |
|
int marker = 0; |
|
int firstindex, shift; |
|
int neigh1 = 0, neigh2 = 0; |
|
int facenumber; |
|
|
|
// For -o2 option. |
|
triface workface; |
|
point *extralist, pp[3] = {0, 0, 0}; |
|
int highorderindex = 11; |
|
int o2index = 0, i; |
|
|
|
int t1ver; // used by fsymself() |
|
|
|
if (out == (tetgenio*)NULL) { |
|
strcpy(facefilename, b->outfilename); |
|
strcat(facefilename, ".face"); |
|
} |
|
|
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", facefilename); |
|
} else { |
|
printf("Writing faces.\n"); |
|
} |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(facefilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", facefilename); |
|
terminatetetgen(this, 3); |
|
} |
|
// Number of subfaces. |
|
fprintf(outfile, "%ld %d\n", subfaces->items, !b->nobound); |
|
} else { |
|
// Allocate memory for 'trifacelist'. |
|
out->trifacelist = new int[subfaces->items * 3]; |
|
if (out->trifacelist == (int*)NULL) { |
|
terminatetetgen(this, 1); |
|
} |
|
if (b->order == 2) { |
|
out->o2facelist = new int[subfaces->items * 3]; |
|
} |
|
if (!b->nobound) { |
|
// Allocate memory for 'trifacemarkerlist'. |
|
out->trifacemarkerlist = new int[subfaces->items]; |
|
if (out->trifacemarkerlist == (int*)NULL) { |
|
terminatetetgen(this, 1); |
|
} |
|
} |
|
if (b->neighout > 1) { |
|
// '-nn' switch. |
|
out->face2tetlist = new int[subfaces->items * 2]; |
|
if (out->face2tetlist == (int*)NULL) { |
|
terminatetetgen(this, 1); |
|
} |
|
} |
|
out->numberoftrifaces = subfaces->items; |
|
elist = out->trifacelist; |
|
emlist = out->trifacemarkerlist; |
|
} |
|
|
|
// Determine the first index (0 or 1). |
|
firstindex = b->zeroindex ? 0 : in->firstnumber; |
|
shift = 0; // Default no shiftment. |
|
if ((in->firstnumber == 1) && (firstindex == 0)) { |
|
shift = 1; // Shift the output indices by 1. |
|
} |
|
|
|
subfaces->traversalinit(); |
|
faceloop.sh = shellfacetraverse(subfaces); |
|
facenumber = firstindex; // in->firstnumber; |
|
while (faceloop.sh != (shellface*)NULL) { |
|
stpivot(faceloop, abuttingtet); |
|
// If there is a tetrahedron containing this subface, orient it so |
|
// that the normal of this face points to inside of the volume by |
|
// right-hand rule. |
|
if (abuttingtet.tet != NULL) { |
|
if (ishulltet(abuttingtet)) { |
|
fsymself(abuttingtet); |
|
} |
|
} |
|
if (abuttingtet.tet != NULL) { |
|
torg = org(abuttingtet); |
|
tdest = dest(abuttingtet); |
|
tapex = apex(abuttingtet); |
|
if (b->order == 2) { // -o2 |
|
// Get the three extra vertices on edges. |
|
extralist = (point*)(abuttingtet.tet[highorderindex]); |
|
workface = abuttingtet; |
|
for (i = 0; i < 3; i++) { |
|
pp[i] = extralist[ver2edge[workface.ver]]; |
|
enextself(workface); |
|
} |
|
} |
|
} else { |
|
// This may happen when only a surface mesh be generated. |
|
torg = sorg(faceloop); |
|
tdest = sdest(faceloop); |
|
tapex = sapex(faceloop); |
|
if (b->order == 2) { // -o2 |
|
// There is no extra node list available. |
|
pp[0] = torg; |
|
pp[1] = tdest; |
|
pp[2] = tapex; |
|
} |
|
} |
|
if (!b->nobound) { |
|
marker = shellmark(faceloop); |
|
} |
|
if (b->neighout > 1) { |
|
// '-nn' switch. Output adjacent tets indices. |
|
neigh1 = -1; |
|
neigh2 = -1; |
|
stpivot(faceloop, abuttingtet); |
|
if (abuttingtet.tet != NULL) { |
|
if (!ishulltet(abuttingtet)) { |
|
neigh1 = elemindex(abuttingtet.tet); |
|
} |
|
fsymself(abuttingtet); |
|
if (!ishulltet(abuttingtet)) { |
|
neigh2 = elemindex(abuttingtet.tet); |
|
} |
|
} |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "%5d %4d %4d %4d", facenumber, pointmark(torg) - shift, |
|
pointmark(tdest) - shift, pointmark(tapex) - shift); |
|
if (b->order == 2) { // -o2 |
|
fprintf(outfile, " %4d %4d %4d", pointmark(pp[0]) - shift, |
|
pointmark(pp[1]) - shift, pointmark(pp[2]) - shift); |
|
} |
|
if (!b->nobound) { |
|
fprintf(outfile, " %d", marker); |
|
} |
|
if (b->neighout > 1) { |
|
fprintf(outfile, " %5d %5d", neigh1, neigh2); |
|
} |
|
fprintf(outfile, "\n"); |
|
} else { |
|
// Output three vertices of this face; |
|
elist[index++] = pointmark(torg) - shift; |
|
elist[index++] = pointmark(tdest) - shift; |
|
elist[index++] = pointmark(tapex) - shift; |
|
if (b->order == 2) { // -o2 |
|
out->o2facelist[o2index++] = pointmark(pp[0]) - shift; |
|
out->o2facelist[o2index++] = pointmark(pp[1]) - shift; |
|
out->o2facelist[o2index++] = pointmark(pp[2]) - shift; |
|
} |
|
if (!b->nobound) { |
|
emlist[index1++] = marker; |
|
} |
|
if (b->neighout > 1) { |
|
out->face2tetlist[index2++] = neigh1; |
|
out->face2tetlist[index2++] = neigh2; |
|
} |
|
} |
|
facenumber++; |
|
faceloop.sh = shellfacetraverse(subfaces); |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "# Generated by %s\n", b->commandline); |
|
fclose(outfile); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// outedges() Output all edges to a .edge file or a tetgenio object. // |
|
// // |
|
// Note: This routine must be called after outelements(), so that the total // |
|
// number of edges 'meshedges' has been counted. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::outedges(tetgenio* out) { |
|
FILE* outfile = NULL; |
|
char edgefilename[FILENAMESIZE]; |
|
triface tetloop, worktet, spintet; |
|
face checkseg; |
|
point torg, tdest; |
|
int ishulledge; |
|
int firstindex, shift; |
|
int edgenumber, marker; |
|
int index = 0, index1 = 0, index2 = 0; |
|
int t1ver; |
|
int i; |
|
|
|
// For -o2 option. |
|
point *extralist, pp = NULL; |
|
int highorderindex = 11; |
|
int o2index = 0; |
|
|
|
// For -nn option. |
|
int* tet2edgelist = NULL; |
|
int tidx; |
|
|
|
if (out == (tetgenio*)NULL) { |
|
strcpy(edgefilename, b->outfilename); |
|
strcat(edgefilename, ".edge"); |
|
} |
|
|
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", edgefilename); |
|
} else { |
|
printf("Writing edges.\n"); |
|
} |
|
} |
|
|
|
if (meshedges == 0l) { |
|
if (nonconvex) { |
|
numberedges(); // Count the edges. |
|
} else { |
|
// Use Euler's characteristic to get the numbe of edges. |
|
// It states V - E + F - C = 1, hence E = V + F - C - 1. |
|
long tsize = tetrahedrons->items - hullsize; |
|
long fsize = (tsize * 4l + hullsize) / 2l; |
|
long vsize = points->items - dupverts - unuverts; |
|
if (b->weighted) vsize -= nonregularcount; |
|
meshedges = vsize + fsize - tsize - 1; |
|
} |
|
} |
|
meshhulledges = 0l; // It will be counted. |
|
|
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(edgefilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", edgefilename); |
|
terminatetetgen(this, 1); |
|
} |
|
// Write the number of edges, boundary markers (0 or 1). |
|
fprintf(outfile, "%ld %d\n", meshedges, !b->nobound); |
|
} else { |
|
// Allocate memory for 'edgelist'. |
|
out->numberofedges = meshedges; |
|
out->edgelist = new int[meshedges * 2]; |
|
if (out->edgelist == (int*)NULL) { |
|
printf("Error: Out of memory.\n"); |
|
terminatetetgen(this, 1); |
|
} |
|
if (b->order == 2) { // -o2 switch |
|
out->o2edgelist = new int[meshedges]; |
|
} |
|
if (!b->nobound) { |
|
out->edgemarkerlist = new int[meshedges]; |
|
} |
|
if (b->neighout > 1) { // '-nn' switch. |
|
out->edge2tetlist = new int[meshedges]; |
|
} |
|
} |
|
|
|
if (b->neighout > 1) { // -nn option |
|
// Output the tetrahedron-to-edge map. |
|
long tsize = tetrahedrons->items - hullsize; |
|
tet2edgelist = new int[tsize * 6]; |
|
} |
|
|
|
// Determine the first index (0 or 1). |
|
firstindex = b->zeroindex ? 0 : in->firstnumber; |
|
shift = 0; // Default no shiftment. |
|
if ((in->firstnumber == 1) && (firstindex == 0)) { |
|
shift = 1; // Shift (reduce) the output indices by 1. |
|
} |
|
|
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
edgenumber = firstindex; // in->firstnumber; |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
// Count the number of Voronoi faces. |
|
worktet.tet = tetloop.tet; |
|
for (i = 0; i < 6; i++) { |
|
worktet.ver = edge2ver[i]; |
|
ishulledge = 0; |
|
fnext(worktet, spintet); |
|
do { |
|
if (!ishulltet(spintet)) { |
|
if (elemindex(spintet.tet) < elemindex(worktet.tet)) break; |
|
} else { |
|
ishulledge = 1; |
|
} |
|
fnextself(spintet); |
|
} while (spintet.tet != worktet.tet); |
|
if (spintet.tet == worktet.tet) { |
|
// Found a new edge. |
|
if (ishulledge) meshhulledges++; |
|
torg = org(worktet); |
|
tdest = dest(worktet); |
|
if (b->order == 2) { // -o2 |
|
// Get the extra vertex on this edge. |
|
extralist = (point*)worktet.tet[highorderindex]; |
|
pp = extralist[ver2edge[worktet.ver]]; |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "%5d %4d %4d", edgenumber, pointmark(torg) - shift, |
|
pointmark(tdest) - shift); |
|
if (b->order == 2) { // -o2 |
|
fprintf(outfile, " %4d", pointmark(pp) - shift); |
|
} |
|
} else { |
|
// Output three vertices of this face; |
|
out->edgelist[index++] = pointmark(torg) - shift; |
|
out->edgelist[index++] = pointmark(tdest) - shift; |
|
if (b->order == 2) { // -o2 |
|
out->o2edgelist[o2index++] = pointmark(pp) - shift; |
|
} |
|
} |
|
if (!b->nobound) { |
|
if (b->plc || b->refine) { |
|
// Check if the edge is a segment. |
|
tsspivot1(worktet, checkseg); |
|
if (checkseg.sh != NULL) { |
|
marker = shellmark(checkseg); |
|
} else { |
|
marker = 0; // It's not a segment. |
|
} |
|
} else { |
|
// Mark it if it is a hull edge. |
|
marker = ishulledge ? 1 : 0; |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, " %d", marker); |
|
} else { |
|
out->edgemarkerlist[index1++] = marker; |
|
} |
|
} |
|
if (b->neighout > 1) { // '-nn' switch. |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, " %d", elemindex(tetloop.tet)); |
|
} else { |
|
out->edge2tetlist[index2++] = elemindex(tetloop.tet); |
|
} |
|
// Fill the tetrahedron-to-edge map. |
|
spintet = worktet; |
|
while (1) { |
|
if (!ishulltet(spintet)) { |
|
tidx = elemindex(spintet.tet) - firstindex; |
|
tet2edgelist[tidx * 6 + ver2edge[spintet.ver]] = edgenumber; |
|
} |
|
fnextself(spintet); |
|
if (spintet.tet == worktet.tet) break; |
|
} |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "\n"); |
|
} |
|
edgenumber++; |
|
} |
|
} |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "# Generated by %s\n", b->commandline); |
|
fclose(outfile); |
|
} |
|
|
|
if (b->neighout > 1) { // -nn option |
|
long tsize = tetrahedrons->items - hullsize; |
|
|
|
if (b->facesout) { // -f option |
|
// Build the face-to-edge map (use the tet-to-edge map). |
|
long fsize = (tsize * 4l + hullsize) / 2l; |
|
int* face2edgelist = new int[fsize * 3]; |
|
|
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
int facenumber = 0; // firstindex; // in->firstnumber; |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
|
fsym(tetloop, spintet); |
|
if (ishulltet(spintet) || (elemindex(tetloop.tet) < elemindex(spintet.tet))) { |
|
// The three edges of this face are ordered such that the |
|
// first edge is opposite to the first vertex of this face |
|
// that appears in the .face file, and so on. |
|
tidx = elemindex(tetloop.tet) - firstindex; |
|
worktet = tetloop; |
|
for (i = 0; i < 3; i++) { |
|
enextself(worktet); // The edge opposite to vertex i. |
|
int eidx = tet2edgelist[tidx * 6 + ver2edge[worktet.ver]]; |
|
face2edgelist[facenumber * 3 + i] = eidx; |
|
} |
|
facenumber++; |
|
} |
|
} |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
|
|
// Output the face-to-edge map. |
|
if (out == (tetgenio*)NULL) { |
|
strcpy(edgefilename, b->outfilename); |
|
strcat(edgefilename, ".f2e"); |
|
} |
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", edgefilename); |
|
} else { |
|
printf("Writing face-to-edge map.\n"); |
|
} |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(edgefilename, "w"); |
|
for (tidx = 0; tidx < fsize; tidx++) { // Re-use `tidx' |
|
i = tidx * 3; |
|
fprintf(outfile, "%4d %d %d %d\n", tidx + in->firstnumber, face2edgelist[i], |
|
face2edgelist[i + 1], face2edgelist[i + 2]); |
|
} |
|
fclose(outfile); |
|
delete[] face2edgelist; |
|
} else { |
|
// Simply copy the address of the list to the output. |
|
out->face2edgelist = face2edgelist; |
|
} |
|
} // if (b->facesout) |
|
|
|
// Output the tetrahedron-to-edge map. |
|
if (out == (tetgenio*)NULL) { |
|
strcpy(edgefilename, b->outfilename); |
|
strcat(edgefilename, ".t2e"); |
|
} |
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", edgefilename); |
|
} else { |
|
printf("Writing tetrahedron-to-edge map.\n"); |
|
} |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(edgefilename, "w"); |
|
for (tidx = 0; tidx < tsize; tidx++) { |
|
i = tidx * 6; |
|
fprintf(outfile, "%4d %d %d %d %d %d %d\n", tidx + in->firstnumber, |
|
tet2edgelist[i], tet2edgelist[i + 1], tet2edgelist[i + 2], |
|
tet2edgelist[i + 3], tet2edgelist[i + 4], tet2edgelist[i + 5]); |
|
} |
|
fclose(outfile); |
|
delete[] tet2edgelist; |
|
} else { |
|
// Simply copy the address of the list to the output. |
|
out->tet2edgelist = tet2edgelist; |
|
} |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// outsubsegments() Output segments to a .edge file or a structure. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::outsubsegments(tetgenio* out) { |
|
FILE* outfile = NULL; |
|
char edgefilename[FILENAMESIZE]; |
|
int* elist = NULL; |
|
int index, i; |
|
face edgeloop; |
|
point torg, tdest; |
|
int firstindex, shift; |
|
int marker; |
|
int edgenumber; |
|
|
|
// For -o2 option. |
|
triface workface, spintet; |
|
point *extralist, pp = NULL; |
|
int highorderindex = 11; |
|
int o2index = 0; |
|
|
|
// For -nn option. |
|
int neigh = -1; |
|
int index2 = 0; |
|
|
|
int t1ver; // used by fsymself() |
|
|
|
if (out == (tetgenio*)NULL) { |
|
strcpy(edgefilename, b->outfilename); |
|
strcat(edgefilename, ".edge"); |
|
} |
|
|
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", edgefilename); |
|
} else { |
|
printf("Writing edges.\n"); |
|
} |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(edgefilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", edgefilename); |
|
terminatetetgen(this, 3); |
|
} |
|
// Number of subsegments. |
|
fprintf(outfile, "%ld 1\n", subsegs->items); |
|
} else { |
|
// Allocate memory for 'edgelist'. |
|
out->edgelist = new int[subsegs->items * (b->order == 1 ? 2 : 3)]; |
|
if (out->edgelist == (int*)NULL) { |
|
terminatetetgen(this, 1); |
|
} |
|
if (b->order == 2) { |
|
out->o2edgelist = new int[subsegs->items]; |
|
} |
|
out->edgemarkerlist = new int[subsegs->items]; |
|
if (out->edgemarkerlist == (int*)NULL) { |
|
terminatetetgen(this, 1); |
|
} |
|
if (b->neighout > 1) { |
|
out->edge2tetlist = new int[subsegs->items]; |
|
} |
|
out->numberofedges = subsegs->items; |
|
elist = out->edgelist; |
|
} |
|
|
|
// Determine the first index (0 or 1). |
|
firstindex = b->zeroindex ? 0 : in->firstnumber; |
|
shift = 0; // Default no shiftment. |
|
if ((in->firstnumber == 1) && (firstindex == 0)) { |
|
shift = 1; // Shift the output indices by 1. |
|
} |
|
index = 0; |
|
i = 0; |
|
|
|
subsegs->traversalinit(); |
|
edgeloop.sh = shellfacetraverse(subsegs); |
|
edgenumber = firstindex; // in->firstnumber; |
|
while (edgeloop.sh != (shellface*)NULL) { |
|
torg = sorg(edgeloop); |
|
tdest = sdest(edgeloop); |
|
if ((b->order == 2) || (b->neighout > 1)) { |
|
sstpivot1(edgeloop, workface); |
|
if (workface.tet != NULL) { |
|
// We must find a non-hull tet. |
|
if (ishulltet(workface)) { |
|
spintet = workface; |
|
while (1) { |
|
fnextself(spintet); |
|
if (!ishulltet(spintet)) break; |
|
if (spintet.tet == workface.tet) break; |
|
} |
|
workface = spintet; |
|
} |
|
} |
|
} |
|
if (b->order == 2) { // -o2 |
|
// Get the extra vertex on this edge. |
|
if (workface.tet != NULL) { |
|
extralist = (point*)workface.tet[highorderindex]; |
|
pp = extralist[ver2edge[workface.ver]]; |
|
} else { |
|
pp = torg; // There is no extra node available. |
|
} |
|
} |
|
if (b->neighout > 1) { // -nn |
|
if (workface.tet != NULL) { |
|
neigh = elemindex(workface.tet); |
|
} else { |
|
neigh = -1; |
|
} |
|
} |
|
marker = shellmark(edgeloop); |
|
if (marker == 0) { |
|
marker = 1; // Default marker of a boundary edge is 1. |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "%5d %4d %4d", edgenumber, pointmark(torg) - shift, |
|
pointmark(tdest) - shift); |
|
if (b->order == 2) { // -o2 |
|
fprintf(outfile, " %4d", pointmark(pp) - shift); |
|
} |
|
fprintf(outfile, " %d", marker); |
|
if (b->neighout > 1) { // -nn |
|
fprintf(outfile, " %4d", neigh); |
|
} |
|
fprintf(outfile, "\n"); |
|
} else { |
|
// Output three vertices of this face; |
|
elist[index++] = pointmark(torg) - shift; |
|
elist[index++] = pointmark(tdest) - shift; |
|
if (b->order == 2) { // -o2 |
|
out->o2edgelist[o2index++] = pointmark(pp) - shift; |
|
} |
|
out->edgemarkerlist[i++] = marker; |
|
if (b->neighout > 1) { // -nn |
|
out->edge2tetlist[index2++] = neigh; |
|
} |
|
} |
|
edgenumber++; |
|
edgeloop.sh = shellfacetraverse(subsegs); |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "# Generated by %s\n", b->commandline); |
|
fclose(outfile); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// outneighbors() Output tet neighbors to a .neigh file or a structure. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::outneighbors(tetgenio* out) { |
|
FILE* outfile = NULL; |
|
char neighborfilename[FILENAMESIZE]; |
|
int* nlist = NULL; |
|
int index = 0; |
|
triface tetloop, tetsym; |
|
int neighbori[4]; |
|
int firstindex; |
|
int elementnumber; |
|
long ntets; |
|
|
|
if (out == (tetgenio*)NULL) { |
|
strcpy(neighborfilename, b->outfilename); |
|
strcat(neighborfilename, ".neigh"); |
|
} |
|
|
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", neighborfilename); |
|
} else { |
|
printf("Writing neighbors.\n"); |
|
} |
|
} |
|
|
|
ntets = tetrahedrons->items - hullsize; |
|
|
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(neighborfilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", neighborfilename); |
|
terminatetetgen(this, 1); |
|
} |
|
// Number of tetrahedra, four faces per tetrahedron. |
|
fprintf(outfile, "%ld %d\n", ntets, 4); |
|
} else { |
|
// Allocate memory for 'neighborlist'. |
|
out->neighborlist = new int[ntets * 4]; |
|
if (out->neighborlist == (int*)NULL) { |
|
printf("Error: Out of memory.\n"); |
|
terminatetetgen(this, 1); |
|
} |
|
nlist = out->neighborlist; |
|
} |
|
|
|
// Determine the first index (0 or 1). |
|
firstindex = b->zeroindex ? 0 : in->firstnumber; |
|
|
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
elementnumber = firstindex; // in->firstnumber; |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
|
fsym(tetloop, tetsym); |
|
if (!ishulltet(tetsym)) { |
|
neighbori[tetloop.ver] = elemindex(tetsym.tet); |
|
} else { |
|
neighbori[tetloop.ver] = -1; |
|
} |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
// Tetrahedra number, neighboring tetrahedron numbers. |
|
fprintf(outfile, "%4d %4d %4d %4d %4d\n", elementnumber, neighbori[0], |
|
neighbori[1], neighbori[2], neighbori[3]); |
|
} else { |
|
nlist[index++] = neighbori[0]; |
|
nlist[index++] = neighbori[1]; |
|
nlist[index++] = neighbori[2]; |
|
nlist[index++] = neighbori[3]; |
|
} |
|
tetloop.tet = tetrahedrontraverse(); |
|
elementnumber++; |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "# Generated by %s\n", b->commandline); |
|
fclose(outfile); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// outvoronoi() Output the Voronoi diagram to .v.node, .v.edge, v.face, // |
|
// and .v.cell. // |
|
// // |
|
// The Voronoi diagram is the geometric dual of the Delaunay triangulation. // |
|
// The Voronoi vertices are the circumcenters of Delaunay tetrahedra. Each // |
|
// Voronoi edge connects two Voronoi vertices at two sides of a common Dela- // |
|
// unay face. At a face of convex hull, it becomes a ray (goto the infinity).// |
|
// A Voronoi face is the convex hull of all Voronoi vertices around a common // |
|
// Delaunay edge. It is a closed polygon for any internal Delaunay edge. At a// |
|
// ridge, it is unbounded. Each Voronoi cell is the convex hull of all Vor- // |
|
// onoi vertices around a common Delaunay vertex. It is a polytope for any // |
|
// internal Delaunay vertex. It is an unbounded polyhedron for a Delaunay // |
|
// vertex belonging to the convex hull. // |
|
// // |
|
// NOTE: This routine is only used when the input is only a set of point. // |
|
// Comment: Special thanks to Victor Liu for finding and fixing few bugs. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::outvoronoi(tetgenio* out) { |
|
FILE* outfile = NULL; |
|
char outfilename[FILENAMESIZE]; |
|
tetgenio::voroedge* vedge = NULL; |
|
tetgenio::vorofacet* vfacet = NULL; |
|
arraypool *tetlist, *ptlist; |
|
triface tetloop, worktet, spintet, firsttet; |
|
point pt[4], ploop, neipt; |
|
REAL ccent[3], infvec[3], vec1[3], vec2[3], L; |
|
long ntets, faces, edges; |
|
int *indexarray, *fidxs, *eidxs; |
|
int arraysize, *vertarray = NULL; |
|
int vpointcount, vedgecount, vfacecount, tcount; |
|
int ishullvert, ishullface; |
|
int index, shift, end1, end2; |
|
int i, j; |
|
|
|
int t1ver; // used by fsymself() |
|
|
|
// Output Voronoi vertices to .v.node file. |
|
if (out == (tetgenio*)NULL) { |
|
strcpy(outfilename, b->outfilename); |
|
strcat(outfilename, ".v.node"); |
|
} |
|
|
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", outfilename); |
|
} else { |
|
printf("Writing Voronoi vertices.\n"); |
|
} |
|
} |
|
|
|
// Determine the first index (0 or 1). |
|
shift = (b->zeroindex ? 0 : in->firstnumber); |
|
|
|
// Each face and edge of the tetrahedral mesh will be indexed for indexing |
|
// the Voronoi edges and facets. Indices of faces and edges are saved in |
|
// each tetrahedron (including hull tets). |
|
|
|
// Allocate the total space once. |
|
indexarray = new int[tetrahedrons->items * 10]; |
|
|
|
// Allocate space (10 integers) into each tetrahedron. It re-uses the slot |
|
// for element markers, flags. |
|
i = 0; |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = alltetrahedrontraverse(); |
|
while (tetloop.tet != NULL) { |
|
tetloop.tet[11] = (tetrahedron) & (indexarray[i * 10]); |
|
i++; |
|
tetloop.tet = alltetrahedrontraverse(); |
|
} |
|
|
|
// The number of tetrahedra (excluding hull tets) (Voronoi vertices). |
|
ntets = tetrahedrons->items - hullsize; |
|
// The number of Delaunay faces (Voronoi edges). |
|
faces = (4l * ntets + hullsize) / 2l; |
|
// The number of Delaunay edges (Voronoi faces). |
|
long vsize = points->items - dupverts - unuverts; |
|
if (b->weighted) vsize -= nonregularcount; |
|
if (!nonconvex) { |
|
edges = vsize + faces - ntets - 1; |
|
} else { |
|
if (meshedges == 0l) { |
|
numberedges(); // Count edges. |
|
} |
|
edges = meshedges; |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(outfilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", outfilename); |
|
terminatetetgen(this, 3); |
|
} |
|
// Number of voronoi points, 3 dim, no attributes, no marker. |
|
fprintf(outfile, "%ld 3 0 0\n", ntets); |
|
} else { |
|
// Allocate space for 'vpointlist'. |
|
out->numberofvpoints = (int)ntets; |
|
out->vpointlist = new REAL[out->numberofvpoints * 3]; |
|
if (out->vpointlist == (REAL*)NULL) { |
|
terminatetetgen(this, 1); |
|
} |
|
} |
|
|
|
// Output Voronoi vertices (the circumcenters of tetrahedra). |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
vpointcount = 0; // The (internal) v-index always starts from 0. |
|
index = 0; |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
for (i = 0; i < 4; i++) { |
|
pt[i] = (point)tetloop.tet[4 + i]; |
|
setpoint2tet(pt[i], encode(tetloop)); |
|
} |
|
if (b->weighted) { |
|
orthosphere(pt[0], pt[1], pt[2], pt[3], pt[0][3], pt[1][3], pt[2][3], pt[3][3], ccent, |
|
NULL); |
|
} else { |
|
circumsphere(pt[0], pt[1], pt[2], pt[3], ccent, NULL); |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "%4d %16.8e %16.8e %16.8e\n", vpointcount + shift, ccent[0], ccent[1], |
|
ccent[2]); |
|
} else { |
|
out->vpointlist[index++] = ccent[0]; |
|
out->vpointlist[index++] = ccent[1]; |
|
out->vpointlist[index++] = ccent[2]; |
|
} |
|
setelemindex(tetloop.tet, vpointcount); |
|
vpointcount++; |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "# Generated by %s\n", b->commandline); |
|
fclose(outfile); |
|
} |
|
|
|
// Output Voronoi edges to .v.edge file. |
|
if (out == (tetgenio*)NULL) { |
|
strcpy(outfilename, b->outfilename); |
|
strcat(outfilename, ".v.edge"); |
|
} |
|
|
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", outfilename); |
|
} else { |
|
printf("Writing Voronoi edges.\n"); |
|
} |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(outfilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", outfilename); |
|
terminatetetgen(this, 3); |
|
} |
|
// Number of Voronoi edges, no marker. |
|
fprintf(outfile, "%ld 0\n", faces); |
|
} else { |
|
// Allocate space for 'vpointlist'. |
|
out->numberofvedges = (int)faces; |
|
out->vedgelist = new tetgenio::voroedge[out->numberofvedges]; |
|
} |
|
|
|
// Output the Voronoi edges. |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
vedgecount = 0; // D-Face (V-edge) index (from zero). |
|
index = 0; // The Delaunay-face index. |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
// Count the number of Voronoi edges. Look at the four faces of each |
|
// tetrahedron. Count the face if the tetrahedron's index is |
|
// smaller than its neighbor's or the neighbor is outside. |
|
end1 = elemindex(tetloop.tet); |
|
for (tetloop.ver = 0; tetloop.ver < 4; tetloop.ver++) { |
|
fsym(tetloop, worktet); |
|
if (ishulltet(worktet) || (elemindex(tetloop.tet) < elemindex(worktet.tet))) { |
|
// Found a Voronoi edge. Operate on it. |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "%4d %4d", vedgecount + shift, end1 + shift); |
|
} else { |
|
vedge = &(out->vedgelist[index++]); |
|
vedge->v1 = end1 + shift; |
|
} |
|
if (!ishulltet(worktet)) { |
|
end2 = elemindex(worktet.tet); |
|
} else { |
|
end2 = -1; |
|
} |
|
// Note that end2 may be -1 (worktet.tet is outside). |
|
if (end2 == -1) { |
|
// Calculate the out normal of this hull face. |
|
pt[0] = dest(worktet); |
|
pt[1] = org(worktet); |
|
pt[2] = apex(worktet); |
|
for (j = 0; j < 3; j++) |
|
vec1[j] = pt[1][j] - pt[0][j]; |
|
for (j = 0; j < 3; j++) |
|
vec2[j] = pt[2][j] - pt[0][j]; |
|
cross(vec1, vec2, infvec); |
|
// Normalize it. |
|
L = sqrt(infvec[0] * infvec[0] + infvec[1] * infvec[1] + infvec[2] * infvec[2]); |
|
if (L > 0) |
|
for (j = 0; j < 3; j++) |
|
infvec[j] /= L; |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, " -1"); |
|
fprintf(outfile, " %g %g %g\n", infvec[0], infvec[1], infvec[2]); |
|
} else { |
|
vedge->v2 = -1; |
|
vedge->vnormal[0] = infvec[0]; |
|
vedge->vnormal[1] = infvec[1]; |
|
vedge->vnormal[2] = infvec[2]; |
|
} |
|
} else { |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, " %4d\n", end2 + shift); |
|
} else { |
|
vedge->v2 = end2 + shift; |
|
vedge->vnormal[0] = 0.0; |
|
vedge->vnormal[1] = 0.0; |
|
vedge->vnormal[2] = 0.0; |
|
} |
|
} |
|
// Save the V-edge index in this tet and its neighbor. |
|
fidxs = (int*)(tetloop.tet[11]); |
|
fidxs[tetloop.ver] = vedgecount; |
|
fidxs = (int*)(worktet.tet[11]); |
|
fidxs[worktet.ver & 3] = vedgecount; |
|
vedgecount++; |
|
} |
|
} // tetloop.ver |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "# Generated by %s\n", b->commandline); |
|
fclose(outfile); |
|
} |
|
|
|
// Output Voronoi faces to .v.face file. |
|
if (out == (tetgenio*)NULL) { |
|
strcpy(outfilename, b->outfilename); |
|
strcat(outfilename, ".v.face"); |
|
} |
|
|
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", outfilename); |
|
} else { |
|
printf("Writing Voronoi faces.\n"); |
|
} |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(outfilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", outfilename); |
|
terminatetetgen(this, 3); |
|
} |
|
// Number of Voronoi faces. |
|
fprintf(outfile, "%ld 0\n", edges); |
|
} else { |
|
out->numberofvfacets = edges; |
|
out->vfacetlist = new tetgenio::vorofacet[out->numberofvfacets]; |
|
if (out->vfacetlist == (tetgenio::vorofacet*)NULL) { |
|
terminatetetgen(this, 1); |
|
} |
|
} |
|
|
|
// Output the Voronoi facets. |
|
tetrahedrons->traversalinit(); |
|
tetloop.tet = tetrahedrontraverse(); |
|
vfacecount = 0; // D-edge (V-facet) index (from zero). |
|
while (tetloop.tet != (tetrahedron*)NULL) { |
|
// Count the number of Voronoi faces. Look at the six edges of each |
|
// tetrahedron. Count the edge only if the tetrahedron's index is |
|
// smaller than those of all other tetrahedra that share the edge. |
|
worktet.tet = tetloop.tet; |
|
for (i = 0; i < 6; i++) { |
|
worktet.ver = edge2ver[i]; |
|
// Count the number of faces at this edge. If the edge is a hull edge, |
|
// the face containing dummypoint is also counted. |
|
// ishulledge = 0; // Is it a hull edge. |
|
tcount = 0; |
|
firsttet = worktet; |
|
spintet = worktet; |
|
while (1) { |
|
tcount++; |
|
fnextself(spintet); |
|
if (spintet.tet == worktet.tet) break; |
|
if (!ishulltet(spintet)) { |
|
if (elemindex(spintet.tet) < elemindex(worktet.tet)) break; |
|
} else { |
|
// ishulledge = 1; |
|
if (apex(spintet) == dummypoint) { |
|
// We make this V-edge appear in the end of the edge list. |
|
fnext(spintet, firsttet); |
|
} |
|
} |
|
} // while (1) |
|
if (spintet.tet == worktet.tet) { |
|
// Found a Voronoi facet. Operate on it. |
|
pt[0] = org(worktet); |
|
pt[1] = dest(worktet); |
|
end1 = pointmark(pt[0]) - in->firstnumber; // V-cell index |
|
end2 = pointmark(pt[1]) - in->firstnumber; |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "%4d %4d %4d %-2d ", vfacecount + shift, end1 + shift, |
|
end2 + shift, tcount); |
|
} else { |
|
vfacet = &(out->vfacetlist[vfacecount]); |
|
vfacet->c1 = end1 + shift; |
|
vfacet->c2 = end2 + shift; |
|
vfacet->elist = new int[tcount + 1]; |
|
vfacet->elist[0] = tcount; |
|
index = 1; |
|
} |
|
// Output V-edges of this V-facet. |
|
spintet = firsttet; // worktet; |
|
while (1) { |
|
fidxs = (int*)(spintet.tet[11]); |
|
if (apex(spintet) != dummypoint) { |
|
vedgecount = fidxs[spintet.ver & 3]; |
|
ishullface = 0; |
|
} else { |
|
ishullface = 1; // It's not a real face. |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, " %d", !ishullface ? (vedgecount + shift) : -1); |
|
} else { |
|
vfacet->elist[index++] = !ishullface ? (vedgecount + shift) : -1; |
|
} |
|
// Save the V-facet index in this tet at this edge. |
|
eidxs = &(fidxs[4]); |
|
eidxs[ver2edge[spintet.ver]] = vfacecount; |
|
// Go to the next face. |
|
fnextself(spintet); |
|
if (spintet.tet == firsttet.tet) break; |
|
} // while (1) |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "\n"); |
|
} |
|
vfacecount++; |
|
} // if (spintet.tet == worktet.tet) |
|
} // if (i = 0; i < 6; i++) |
|
tetloop.tet = tetrahedrontraverse(); |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "# Generated by %s\n", b->commandline); |
|
fclose(outfile); |
|
} |
|
|
|
// Output Voronoi cells to .v.cell file. |
|
if (out == (tetgenio*)NULL) { |
|
strcpy(outfilename, b->outfilename); |
|
strcat(outfilename, ".v.cell"); |
|
} |
|
|
|
if (!b->quiet) { |
|
if (out == (tetgenio*)NULL) { |
|
printf("Writing %s.\n", outfilename); |
|
} else { |
|
printf("Writing Voronoi cells.\n"); |
|
} |
|
} |
|
|
|
if (out == (tetgenio*)NULL) { |
|
outfile = fopen(outfilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", outfilename); |
|
terminatetetgen(this, 3); |
|
} |
|
// Number of Voronoi cells. |
|
fprintf(outfile, "%ld\n", points->items - unuverts - dupverts); |
|
} else { |
|
out->numberofvcells = points->items - unuverts - dupverts; |
|
out->vcelllist = new int*[out->numberofvcells]; |
|
if (out->vcelllist == (int**)NULL) { |
|
terminatetetgen(this, 1); |
|
} |
|
} |
|
|
|
// Output Voronoi cells. |
|
tetlist = cavetetlist; |
|
ptlist = cavetetvertlist; |
|
points->traversalinit(); |
|
ploop = pointtraverse(); |
|
vpointcount = 0; |
|
while (ploop != (point)NULL) { |
|
if ((pointtype(ploop) != UNUSEDVERTEX) && (pointtype(ploop) != DUPLICATEDVERTEX) && |
|
(pointtype(ploop) != NREGULARVERTEX)) { |
|
getvertexstar(1, ploop, tetlist, ptlist, NULL); |
|
// Mark all vertices. Check if it is a hull vertex. |
|
ishullvert = 0; |
|
for (i = 0; i < ptlist->objects; i++) { |
|
neipt = *(point*)fastlookup(ptlist, i); |
|
if (neipt != dummypoint) { |
|
pinfect(neipt); |
|
} else { |
|
ishullvert = 1; |
|
} |
|
} |
|
tcount = (int)ptlist->objects; |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "%4d %-2d ", vpointcount + shift, tcount); |
|
} else { |
|
arraysize = tcount; |
|
vertarray = new int[arraysize + 1]; |
|
out->vcelllist[vpointcount] = vertarray; |
|
vertarray[0] = tcount; |
|
index = 1; |
|
} |
|
// List Voronoi facets bounding this cell. |
|
for (i = 0; i < tetlist->objects; i++) { |
|
worktet = *(triface*)fastlookup(tetlist, i); |
|
// Let 'worktet' be [a,b,c,d] where d = ploop. |
|
for (j = 0; j < 3; j++) { |
|
neipt = org(worktet); // neipt is a, or b, or c |
|
// Skip the dummypoint. |
|
if (neipt != dummypoint) { |
|
if (pinfected(neipt)) { |
|
// It's not processed yet. |
|
puninfect(neipt); |
|
// Go to the DT edge [a,d], or [b,d], or [c,d]. |
|
esym(worktet, spintet); |
|
enextself(spintet); |
|
// Get the V-face dual to this edge. |
|
eidxs = (int*)spintet.tet[11]; |
|
vfacecount = eidxs[4 + ver2edge[spintet.ver]]; |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, " %d", vfacecount + shift); |
|
} else { |
|
vertarray[index++] = vfacecount + shift; |
|
} |
|
} |
|
} |
|
enextself(worktet); |
|
} // j |
|
} // i |
|
if (ishullvert) { |
|
// Add a hull facet (-1) to the facet list. |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, " -1"); |
|
} else { |
|
vertarray[index++] = -1; |
|
} |
|
} |
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "\n"); |
|
} |
|
tetlist->restart(); |
|
ptlist->restart(); |
|
vpointcount++; |
|
} |
|
ploop = pointtraverse(); |
|
} |
|
|
|
// Delete the space for face/edge indices. |
|
delete[] indexarray; |
|
|
|
if (out == (tetgenio*)NULL) { |
|
fprintf(outfile, "# Generated by %s\n", b->commandline); |
|
fclose(outfile); |
|
} |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// outsmesh() Write surface mesh to a .smesh file, which can be read and // |
|
// tetrahedralized by TetGen. // |
|
// // |
|
// You can specify a filename (without suffix) in 'smfilename'. If you don't // |
|
// supply a filename (let smfilename be NULL), the default name stored in // |
|
// 'tetgenbehavior' will be used. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::outsmesh(char* smfilename) { |
|
FILE* outfile; |
|
char nodfilename[FILENAMESIZE]; |
|
char smefilename[FILENAMESIZE]; |
|
face faceloop; |
|
point p1, p2, p3; |
|
int firstindex, shift; |
|
int bmark; |
|
int marker; |
|
int i; |
|
|
|
if (smfilename != (char*)NULL && smfilename[0] != '\0') { |
|
strcpy(smefilename, smfilename); |
|
} else if (b->outfilename[0] != '\0') { |
|
strcpy(smefilename, b->outfilename); |
|
} else { |
|
strcpy(smefilename, "unnamed"); |
|
} |
|
strcpy(nodfilename, smefilename); |
|
strcat(smefilename, ".smesh"); |
|
strcat(nodfilename, ".node"); |
|
|
|
if (!b->quiet) { |
|
printf("Writing %s.\n", smefilename); |
|
} |
|
outfile = fopen(smefilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", smefilename); |
|
return; |
|
} |
|
|
|
// Determine the first index (0 or 1). |
|
firstindex = b->zeroindex ? 0 : in->firstnumber; |
|
shift = 0; // Default no shiftment. |
|
if ((in->firstnumber == 1) && (firstindex == 0)) { |
|
shift = 1; // Shift the output indices by 1. |
|
} |
|
|
|
fprintf(outfile, "# %s. TetGen's input file.\n", smefilename); |
|
fprintf(outfile, "\n# part 1: node list.\n"); |
|
fprintf(outfile, "0 3 0 0 # nodes are found in %s.\n", nodfilename); |
|
|
|
marker = 0; // avoid compile warning. |
|
bmark = !b->nobound && (in->facetmarkerlist || in->trifacemarkerlist); |
|
|
|
fprintf(outfile, "\n# part 2: facet list.\n"); |
|
// Number of facets, boundary marker. |
|
fprintf(outfile, "%ld %d\n", subfaces->items, bmark); |
|
|
|
subfaces->traversalinit(); |
|
faceloop.sh = shellfacetraverse(subfaces); |
|
while (faceloop.sh != (shellface*)NULL) { |
|
p1 = sorg(faceloop); |
|
p2 = sdest(faceloop); |
|
p3 = sapex(faceloop); |
|
if (bmark) { |
|
marker = shellmark(faceloop); |
|
} |
|
fprintf(outfile, "3 %4d %4d %4d", pointmark(p1) - shift, pointmark(p2) - shift, |
|
pointmark(p3) - shift); |
|
if (bmark) { |
|
fprintf(outfile, " %d", marker); |
|
} |
|
fprintf(outfile, "\n"); |
|
faceloop.sh = shellfacetraverse(subfaces); |
|
} |
|
|
|
// Copy input holelist. |
|
fprintf(outfile, "\n# part 3: hole list.\n"); |
|
fprintf(outfile, "%d\n", in->numberofholes); |
|
for (i = 0; i < in->numberofholes; i++) { |
|
fprintf(outfile, "%d %g %g %g\n", i + in->firstnumber, in->holelist[i * 3], |
|
in->holelist[i * 3 + 1], in->holelist[i * 3 + 2]); |
|
} |
|
|
|
// Copy input regionlist. |
|
fprintf(outfile, "\n# part 4: region list.\n"); |
|
fprintf(outfile, "%d\n", in->numberofregions); |
|
for (i = 0; i < in->numberofregions; i++) { |
|
fprintf(outfile, "%d %g %g %g %d %g\n", i + in->firstnumber, in->regionlist[i * 5], |
|
in->regionlist[i * 5 + 1], in->regionlist[i * 5 + 2], |
|
(int)in->regionlist[i * 5 + 3], in->regionlist[i * 5 + 4]); |
|
} |
|
|
|
fprintf(outfile, "# Generated by %s\n", b->commandline); |
|
fclose(outfile); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// outmesh2medit() Write mesh to a .mesh file, which can be read and // |
|
// rendered by Medit (a free mesh viewer from INRIA). // |
|
// // |
|
// You can specify a filename (without suffix) in 'mfilename'. If you don't // |
|
// supply a filename (let mfilename be NULL), the default name stored in // |
|
// 'tetgenbehavior' will be used. The output file will have the suffix .mesh.// |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::outmesh2medit(char* mfilename) { |
|
FILE* outfile; |
|
char mefilename[FILENAMESIZE]; |
|
tetrahedron* tetptr; |
|
triface tface, tsymface; |
|
face segloop, checkmark; |
|
point ptloop, p1, p2, p3, p4; |
|
long ntets, faces; |
|
int pointnumber; |
|
int marker; |
|
int i; |
|
|
|
if (mfilename != (char*)NULL && mfilename[0] != '\0') { |
|
strcpy(mefilename, mfilename); |
|
} else if (b->outfilename[0] != '\0') { |
|
strcpy(mefilename, b->outfilename); |
|
} else { |
|
strcpy(mefilename, "unnamed"); |
|
} |
|
strcat(mefilename, ".mesh"); |
|
|
|
if (!b->quiet) { |
|
printf("Writing %s.\n", mefilename); |
|
} |
|
outfile = fopen(mefilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", mefilename); |
|
return; |
|
} |
|
|
|
fprintf(outfile, "MeshVersionFormatted 1\n"); |
|
fprintf(outfile, "\n"); |
|
fprintf(outfile, "Dimension\n"); |
|
fprintf(outfile, "3\n"); |
|
fprintf(outfile, "\n"); |
|
|
|
fprintf(outfile, "\n# Set of mesh vertices\n"); |
|
fprintf(outfile, "Vertices\n"); |
|
fprintf(outfile, "%ld\n", points->items); |
|
|
|
points->traversalinit(); |
|
ptloop = pointtraverse(); |
|
pointnumber = 1; // Medit need start number form 1. |
|
while (ptloop != (point)NULL) { |
|
// Point coordinates. |
|
fprintf(outfile, "%.17g %.17g %.17g", ptloop[0], ptloop[1], ptloop[2]); |
|
if (in->numberofpointattributes > 0) { |
|
// Write an attribute, ignore others if more than one. |
|
fprintf(outfile, " %.17g\n", ptloop[3]); |
|
} else { |
|
fprintf(outfile, " 0\n"); |
|
} |
|
setpointmark(ptloop, pointnumber); |
|
ptloop = pointtraverse(); |
|
pointnumber++; |
|
} |
|
|
|
// Compute the number of faces. |
|
ntets = tetrahedrons->items - hullsize; |
|
faces = (ntets * 4l + hullsize) / 2l; |
|
|
|
fprintf(outfile, "\n# Set of Triangles\n"); |
|
fprintf(outfile, "Triangles\n"); |
|
fprintf(outfile, "%ld\n", faces); |
|
|
|
tetrahedrons->traversalinit(); |
|
tface.tet = tetrahedrontraverse(); |
|
while (tface.tet != (tetrahedron*)NULL) { |
|
for (tface.ver = 0; tface.ver < 4; tface.ver++) { |
|
fsym(tface, tsymface); |
|
if (ishulltet(tsymface) || (elemindex(tface.tet) < elemindex(tsymface.tet))) { |
|
p1 = org(tface); |
|
p2 = dest(tface); |
|
p3 = apex(tface); |
|
fprintf(outfile, "%5d %5d %5d", pointmark(p1), pointmark(p2), pointmark(p3)); |
|
// Check if it is a subface. |
|
tspivot(tface, checkmark); |
|
if (checkmark.sh == NULL) { |
|
marker = 0; // It is an inner face. It's marker is 0. |
|
} else { |
|
marker = shellmark(checkmark); |
|
} |
|
fprintf(outfile, " %d\n", marker); |
|
} |
|
} |
|
tface.tet = tetrahedrontraverse(); |
|
} |
|
|
|
fprintf(outfile, "\n# Set of Tetrahedra\n"); |
|
fprintf(outfile, "Tetrahedra\n"); |
|
fprintf(outfile, "%ld\n", ntets); |
|
|
|
tetrahedrons->traversalinit(); |
|
tetptr = tetrahedrontraverse(); |
|
while (tetptr != (tetrahedron*)NULL) { |
|
if (!b->reversetetori) { |
|
p1 = (point)tetptr[4]; |
|
p2 = (point)tetptr[5]; |
|
} else { |
|
p1 = (point)tetptr[5]; |
|
p2 = (point)tetptr[4]; |
|
} |
|
p3 = (point)tetptr[6]; |
|
p4 = (point)tetptr[7]; |
|
fprintf(outfile, "%5d %5d %5d %5d", pointmark(p1), pointmark(p2), pointmark(p3), |
|
pointmark(p4)); |
|
if (numelemattrib > 0) { |
|
fprintf(outfile, " %.17g", elemattribute(tetptr, 0)); |
|
} else { |
|
fprintf(outfile, " 0"); |
|
} |
|
fprintf(outfile, "\n"); |
|
tetptr = tetrahedrontraverse(); |
|
} |
|
|
|
fprintf(outfile, "\nCorners\n"); |
|
fprintf(outfile, "%d\n", in->numberofpoints); |
|
|
|
for (i = 0; i < in->numberofpoints; i++) { |
|
fprintf(outfile, "%4d\n", i + 1); |
|
} |
|
|
|
if (b->plc || b->refine) { |
|
fprintf(outfile, "\nEdges\n"); |
|
fprintf(outfile, "%ld\n", subsegs->items); |
|
|
|
subsegs->traversalinit(); |
|
segloop.sh = shellfacetraverse(subsegs); |
|
while (segloop.sh != (shellface*)NULL) { |
|
p1 = sorg(segloop); |
|
p2 = sdest(segloop); |
|
fprintf(outfile, "%5d %5d", pointmark(p1), pointmark(p2)); |
|
marker = shellmark(segloop); |
|
fprintf(outfile, " %d\n", marker); |
|
segloop.sh = shellfacetraverse(subsegs); |
|
} |
|
} |
|
|
|
fprintf(outfile, "\nEnd\n"); |
|
fclose(outfile); |
|
} |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// outmesh2vtk() Save mesh to file in VTK Legacy format. // |
|
// // |
|
// This function was contributed by Bryn Llyod from ETH, 2007. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetgenmesh::outmesh2vtk(char* ofilename) { |
|
FILE* outfile; |
|
char vtkfilename[FILENAMESIZE]; |
|
point pointloop, p1, p2, p3, p4; |
|
tetrahedron* tptr; |
|
double x, y, z; |
|
int n1, n2, n3, n4; |
|
int nnodes = 4; |
|
int celltype = 10; |
|
|
|
if (b->order == 2) { |
|
printf(" Write VTK not implemented for order 2 elements \n"); |
|
return; |
|
} |
|
|
|
int NEL = tetrahedrons->items - hullsize; |
|
int NN = points->items; |
|
|
|
if (ofilename != (char*)NULL && ofilename[0] != '\0') { |
|
strcpy(vtkfilename, ofilename); |
|
} else if (b->outfilename[0] != '\0') { |
|
strcpy(vtkfilename, b->outfilename); |
|
} else { |
|
strcpy(vtkfilename, "unnamed"); |
|
} |
|
strcat(vtkfilename, ".vtk"); |
|
|
|
if (!b->quiet) { |
|
printf("Writing %s.\n", vtkfilename); |
|
} |
|
outfile = fopen(vtkfilename, "w"); |
|
if (outfile == (FILE*)NULL) { |
|
printf("File I/O Error: Cannot create file %s.\n", vtkfilename); |
|
return; |
|
} |
|
|
|
// always write big endian |
|
// bool ImALittleEndian = !testIsBigEndian(); |
|
|
|
fprintf(outfile, "# vtk DataFile Version 2.0\n"); |
|
fprintf(outfile, "Unstructured Grid\n"); |
|
fprintf(outfile, "ASCII\n"); // BINARY |
|
fprintf(outfile, "DATASET UNSTRUCTURED_GRID\n"); |
|
fprintf(outfile, "POINTS %d double\n", NN); |
|
|
|
points->traversalinit(); |
|
pointloop = pointtraverse(); |
|
for (int id = 0; id < NN && pointloop != (point)NULL; id++) { |
|
x = pointloop[0]; |
|
y = pointloop[1]; |
|
z = pointloop[2]; |
|
fprintf(outfile, "%.17g %.17g %.17g\n", x, y, z); |
|
pointloop = pointtraverse(); |
|
} |
|
fprintf(outfile, "\n"); |
|
|
|
fprintf(outfile, "CELLS %d %d\n", NEL, NEL * (4 + 1)); |
|
// NEL rows, each has 1 type id + 4 node id's |
|
|
|
tetrahedrons->traversalinit(); |
|
tptr = tetrahedrontraverse(); |
|
// elementnumber = firstindex; // in->firstnumber; |
|
while (tptr != (tetrahedron*)NULL) { |
|
if (!b->reversetetori) { |
|
p1 = (point)tptr[4]; |
|
p2 = (point)tptr[5]; |
|
} else { |
|
p1 = (point)tptr[5]; |
|
p2 = (point)tptr[4]; |
|
} |
|
p3 = (point)tptr[6]; |
|
p4 = (point)tptr[7]; |
|
n1 = pointmark(p1) - in->firstnumber; |
|
n2 = pointmark(p2) - in->firstnumber; |
|
n3 = pointmark(p3) - in->firstnumber; |
|
n4 = pointmark(p4) - in->firstnumber; |
|
fprintf(outfile, "%d %4d %4d %4d %4d\n", nnodes, n1, n2, n3, n4); |
|
tptr = tetrahedrontraverse(); |
|
} |
|
fprintf(outfile, "\n"); |
|
|
|
fprintf(outfile, "CELL_TYPES %d\n", NEL); |
|
for (int tid = 0; tid < NEL; tid++) { |
|
fprintf(outfile, "%d\n", celltype); |
|
} |
|
fprintf(outfile, "\n"); |
|
|
|
if (numelemattrib > 0) { |
|
// Output tetrahedra region attributes. |
|
fprintf(outfile, "CELL_DATA %d\n", NEL); |
|
fprintf(outfile, "SCALARS cell_scalars int 1\n"); |
|
fprintf(outfile, "LOOKUP_TABLE default\n"); |
|
tetrahedrons->traversalinit(); |
|
tptr = tetrahedrontraverse(); |
|
while (tptr != (tetrahedron*)NULL) { |
|
fprintf(outfile, "%d\n", (int)elemattribute(tptr, numelemattrib - 1)); |
|
tptr = tetrahedrontraverse(); |
|
} |
|
fprintf(outfile, "\n"); |
|
} |
|
|
|
fclose(outfile); |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// output_cxx /////////////////////////////////////////////////////////////// |
|
|
|
//// main_cxx ///////////////////////////////////////////////////////////////// |
|
//// //// |
|
//// //// |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// tetrahedralize() The interface for users using TetGen library to // |
|
// generate tetrahedral meshes with all features. // |
|
// // |
|
// The sequence is roughly as follows. Many of these steps can be skipped, // |
|
// depending on the command line switches. // |
|
// // |
|
// - Initialize constants and parse the command line. // |
|
// - Read the vertices from a file and either // |
|
// - tetrahedralize them (no -r), or // |
|
// - read an old mesh from files and reconstruct it (-r). // |
|
// - Insert the boundary segments and facets (-p or -Y). // |
|
// - Read the holes (-p), regional attributes (-pA), and regional volume // |
|
// constraints (-pa). Carve the holes and concavities, and spread the // |
|
// regional attributes and volume constraints. // |
|
// - Enforce the constraints on minimum quality bound (-q) and maximum // |
|
// volume (-a), and a mesh size function (-m). // |
|
// - Optimize the mesh wrt. specified quality measures (-O and -o). // |
|
// - Write the output files and print the statistics. // |
|
// - Check the consistency of the mesh (-C). // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetrahedralize(tetgenbehavior* b, tetgenio* in, tetgenio* out, tetgenio* addin, |
|
tetgenio* bgmin) { |
|
tetgenmesh m; |
|
clock_t tv[12], ts[5]; // Timing informations (defined in time.h) |
|
REAL cps = (REAL)CLOCKS_PER_SEC; |
|
|
|
tv[0] = clock(); |
|
|
|
m.b = b; |
|
m.in = in; |
|
m.addin = addin; |
|
|
|
if (b->metric && bgmin && (bgmin->numberofpoints > 0)) { |
|
m.bgm = new tetgenmesh(); // Create an empty background mesh. |
|
m.bgm->b = b; |
|
m.bgm->in = bgmin; |
|
} |
|
|
|
m.initializepools(); |
|
m.transfernodes(); |
|
|
|
exactinit(b->verbose, b->noexact, b->nostaticfilter, m.xmax - m.xmin, m.ymax - m.ymin, |
|
m.zmax - m.zmin); |
|
|
|
tv[1] = clock(); |
|
|
|
if (b->refine) { // -r |
|
m.reconstructmesh(); |
|
} else { // -p |
|
m.incrementaldelaunay(ts[0]); |
|
} |
|
|
|
tv[2] = clock(); |
|
|
|
if (!b->quiet) { |
|
if (b->refine) { |
|
printf("Mesh reconstruction seconds: %g\n", ((REAL)(tv[2] - tv[1])) / cps); |
|
} else { |
|
printf("Delaunay seconds: %g\n", ((REAL)(tv[2] - tv[1])) / cps); |
|
if (b->verbose) { |
|
printf(" Point sorting seconds: %g\n", ((REAL)(ts[0] - tv[1])) / cps); |
|
} |
|
} |
|
} |
|
|
|
if (b->plc && !b->refine) { // -p |
|
m.meshsurface(); |
|
|
|
ts[0] = clock(); |
|
|
|
if (!b->quiet) { |
|
printf("Surface mesh seconds: %g\n", ((REAL)(ts[0] - tv[2])) / cps); |
|
} |
|
|
|
if (b->diagnose) { // -d |
|
m.detectinterfaces(); |
|
|
|
ts[1] = clock(); |
|
|
|
if (!b->quiet) { |
|
printf("Self-intersection seconds: %g\n", ((REAL)(ts[1] - ts[0])) / cps); |
|
} |
|
|
|
// Only output when self-intersecting faces exist. |
|
if (m.subfaces->items > 0l) { |
|
m.outnodes(out); |
|
m.outsubfaces(out); |
|
} |
|
|
|
return; |
|
} |
|
} |
|
|
|
tv[3] = clock(); |
|
|
|
if ((b->metric) && (m.bgm != NULL)) { // -m |
|
m.bgm->initializepools(); |
|
m.bgm->transfernodes(); |
|
m.bgm->reconstructmesh(); |
|
|
|
ts[0] = clock(); |
|
|
|
if (!b->quiet) { |
|
printf("Background mesh reconstruct seconds: %g\n", ((REAL)(ts[0] - tv[3])) / cps); |
|
} |
|
|
|
if (b->metric) { // -m |
|
m.interpolatemeshsize(); |
|
|
|
ts[1] = clock(); |
|
|
|
if (!b->quiet) { |
|
printf("Size interpolating seconds: %g\n", ((REAL)(ts[1] - ts[0])) / cps); |
|
} |
|
} |
|
} |
|
|
|
tv[4] = clock(); |
|
|
|
if (b->plc && !b->refine) { // -p |
|
if (b->nobisect) { // -Y |
|
m.recoverboundary(ts[0]); |
|
} else { |
|
m.constraineddelaunay(ts[0]); |
|
} |
|
|
|
ts[1] = clock(); |
|
|
|
if (!b->quiet) { |
|
if (b->nobisect) { |
|
printf("Boundary recovery "); |
|
} else { |
|
printf("Constrained Delaunay "); |
|
} |
|
printf("seconds: %g\n", ((REAL)(ts[1] - tv[4])) / cps); |
|
if (b->verbose) { |
|
printf(" Segment recovery seconds: %g\n", ((REAL)(ts[0] - tv[4])) / cps); |
|
printf(" Facet recovery seconds: %g\n", ((REAL)(ts[1] - ts[0])) / cps); |
|
} |
|
} |
|
|
|
m.carveholes(); |
|
|
|
ts[2] = clock(); |
|
|
|
if (!b->quiet) { |
|
printf("Exterior tets removal seconds: %g\n", ((REAL)(ts[2] - ts[1])) / cps); |
|
} |
|
|
|
if (b->nobisect) { // -Y |
|
if (m.subvertstack->objects > 0l) { |
|
m.suppresssteinerpoints(); |
|
|
|
ts[3] = clock(); |
|
|
|
if (!b->quiet) { |
|
printf("Steiner suppression seconds: %g\n", ((REAL)(ts[3] - ts[2])) / cps); |
|
} |
|
} |
|
} |
|
} |
|
|
|
tv[5] = clock(); |
|
|
|
if (b->coarsen) { // -R |
|
m.meshcoarsening(); |
|
} |
|
|
|
tv[6] = clock(); |
|
|
|
if (!b->quiet) { |
|
if (b->coarsen) { |
|
printf("Mesh coarsening seconds: %g\n", ((REAL)(tv[6] - tv[5])) / cps); |
|
} |
|
} |
|
|
|
if ((b->plc && b->nobisect) || b->coarsen) { |
|
m.recoverdelaunay(); |
|
} |
|
|
|
tv[7] = clock(); |
|
|
|
if (!b->quiet) { |
|
if ((b->plc && b->nobisect) || b->coarsen) { |
|
printf("Delaunay recovery seconds: %g\n", ((REAL)(tv[7] - tv[6])) / cps); |
|
} |
|
} |
|
|
|
if ((b->plc || b->refine) && b->insertaddpoints) { // -i |
|
if ((addin != NULL) && (addin->numberofpoints > 0)) { |
|
m.insertconstrainedpoints(addin); |
|
} |
|
} |
|
|
|
tv[8] = clock(); |
|
|
|
if (!b->quiet) { |
|
if ((b->plc || b->refine) && b->insertaddpoints) { // -i |
|
if ((addin != NULL) && (addin->numberofpoints > 0)) { |
|
printf("Constrained points seconds: %g\n", ((REAL)(tv[8] - tv[7])) / cps); |
|
} |
|
} |
|
} |
|
|
|
if (b->quality) { |
|
m.delaunayrefinement(); |
|
} |
|
|
|
tv[9] = clock(); |
|
|
|
if (!b->quiet) { |
|
if (b->quality) { |
|
printf("Refinement seconds: %g\n", ((REAL)(tv[9] - tv[8])) / cps); |
|
} |
|
} |
|
|
|
if ((b->plc || b->refine) && (b->optlevel > 0)) { |
|
m.optimizemesh(); |
|
} |
|
|
|
tv[10] = clock(); |
|
|
|
if (!b->quiet) { |
|
if ((b->plc || b->refine) && (b->optlevel > 0)) { |
|
printf("Optimization seconds: %g\n", ((REAL)(tv[10] - tv[9])) / cps); |
|
} |
|
} |
|
|
|
if (!b->nojettison && |
|
((m.dupverts > 0) || (m.unuverts > 0) || (b->refine && (in->numberofcorners == 10)))) { |
|
m.jettisonnodes(); |
|
} |
|
|
|
if ((b->order == 2) && !b->convex) { |
|
m.highorder(); |
|
} |
|
|
|
if (!b->quiet) { |
|
printf("\n"); |
|
} |
|
|
|
if (out != (tetgenio*)NULL) { |
|
out->firstnumber = in->firstnumber; |
|
out->mesh_dim = in->mesh_dim; |
|
} |
|
|
|
if (b->nonodewritten || b->noiterationnum) { |
|
if (!b->quiet) { |
|
printf("NOT writing a .node file.\n"); |
|
} |
|
} else { |
|
m.outnodes(out); |
|
} |
|
|
|
if (b->noelewritten) { |
|
if (!b->quiet) { |
|
printf("NOT writing an .ele file.\n"); |
|
} |
|
m.indexelements(); |
|
} else { |
|
if (m.tetrahedrons->items > 0l) { |
|
m.outelements(out); |
|
} |
|
} |
|
|
|
if (b->nofacewritten) { |
|
if (!b->quiet) { |
|
printf("NOT writing an .face file.\n"); |
|
} |
|
} else { |
|
if (b->facesout) { |
|
if (m.tetrahedrons->items > 0l) { |
|
m.outfaces(out); // Output all faces. |
|
} |
|
} else { |
|
if (b->plc || b->refine) { |
|
if (m.subfaces->items > 0l) { |
|
m.outsubfaces(out); // Output boundary faces. |
|
} |
|
} else { |
|
if (m.tetrahedrons->items > 0l) { |
|
m.outhullfaces(out); // Output convex hull faces. |
|
} |
|
} |
|
} |
|
} |
|
|
|
if (b->nofacewritten) { |
|
if (!b->quiet) { |
|
printf("NOT writing an .edge file.\n"); |
|
} |
|
} else { |
|
if (b->edgesout) { // -e |
|
m.outedges(out); // output all mesh edges. |
|
} else { |
|
if (b->plc || b->refine) { |
|
m.outsubsegments(out); // output subsegments. |
|
} |
|
} |
|
} |
|
|
|
if ((b->plc || b->refine) && b->metric) { // -m |
|
m.outmetrics(out); |
|
} |
|
|
|
if (!out && b->plc && |
|
((b->object == tetgenbehavior::OFF) || (b->object == tetgenbehavior::PLY) || |
|
(b->object == tetgenbehavior::STL))) { |
|
m.outsmesh(b->outfilename); |
|
} |
|
|
|
if (!out && b->meditview) { |
|
m.outmesh2medit(b->outfilename); |
|
} |
|
|
|
if (!out && b->vtkview) { |
|
m.outmesh2vtk(b->outfilename); |
|
} |
|
|
|
if (b->neighout) { |
|
m.outneighbors(out); |
|
} |
|
|
|
if (b->voroout) { |
|
m.outvoronoi(out); |
|
} |
|
|
|
tv[11] = clock(); |
|
|
|
if (!b->quiet) { |
|
printf("\nOutput seconds: %g\n", ((REAL)(tv[11] - tv[10])) / cps); |
|
printf("Total running seconds: %g\n", ((REAL)(tv[11] - tv[0])) / cps); |
|
} |
|
|
|
if (b->docheck) { |
|
m.checkmesh(0); |
|
if (b->plc || b->refine) { |
|
m.checkshells(); |
|
m.checksegments(); |
|
} |
|
if (b->docheck > 1) { |
|
m.checkdelaunay(); |
|
} |
|
} |
|
|
|
if (!b->quiet) { |
|
m.statistics(); |
|
} |
|
} |
|
|
|
#ifndef TETLIBRARY |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// main() The command line interface of TetGen. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
int main(int argc, char* argv[]) |
|
|
|
#else // with TETLIBRARY |
|
|
|
/////////////////////////////////////////////////////////////////////////////// |
|
// // |
|
// tetrahedralize() The library interface of TetGen. // |
|
// // |
|
/////////////////////////////////////////////////////////////////////////////// |
|
|
|
void tetrahedralize(char* switches, tetgenio* in, tetgenio* out, tetgenio* addin, tetgenio* bgmin) |
|
|
|
#endif // not TETLIBRARY |
|
|
|
{ |
|
tetgenbehavior b; |
|
|
|
#ifndef TETLIBRARY |
|
|
|
tetgenio in, addin, bgmin; |
|
|
|
if (!b.parse_commandline(argc, argv)) { |
|
terminatetetgen(NULL, 10); |
|
} |
|
|
|
// Read input files. |
|
if (b.refine) { // -r |
|
if (!in.load_tetmesh(b.infilename, (int)b.object)) { |
|
terminatetetgen(NULL, 10); |
|
} |
|
} else { // -p |
|
if (!in.load_plc(b.infilename, (int)b.object)) { |
|
terminatetetgen(NULL, 10); |
|
} |
|
} |
|
if (b.insertaddpoints) { // -i |
|
// Try to read a .a.node file. |
|
addin.load_node(b.addinfilename); |
|
} |
|
if (b.metric) { // -m |
|
// Try to read a background mesh in files .b.node, .b.ele. |
|
bgmin.load_tetmesh(b.bgmeshfilename, (int)b.object); |
|
} |
|
|
|
tetrahedralize(&b, &in, NULL, &addin, &bgmin); |
|
|
|
return 0; |
|
|
|
#else // with TETLIBRARY |
|
|
|
if (!b.parse_commandline(switches)) { |
|
terminatetetgen(NULL, 10); |
|
} |
|
tetrahedralize(&b, in, out, addin, bgmin); |
|
|
|
#endif // not TETLIBRARY |
|
} |
|
|
|
//// //// |
|
//// //// |
|
//// main_cxx /////////////////////////////////////////////////////////////////
|