You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
4.8 KiB
125 lines
4.8 KiB
2 years ago
|
/*=========================================================================
|
||
|
|
||
|
Program: Visualization Toolkit
|
||
|
Module: $RCSfile: vtkQuadraticHexahedron.h,v $
|
||
|
|
||
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
||
|
All rights reserved.
|
||
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
||
|
|
||
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
||
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
||
|
PURPOSE. See the above copyright notice for more information.
|
||
|
|
||
|
=========================================================================*/
|
||
|
// .NAME vtkQuadraticHexahedron - cell represents a parabolic, 20-node isoparametric hexahedron
|
||
|
// .SECTION Description
|
||
|
// vtkQuadraticHexahedron is a concrete implementation of vtkNonLinearCell to
|
||
|
// represent a three-dimensional, 20-node isoparametric parabolic
|
||
|
// hexahedron. The interpolation is the standard finite element, quadratic
|
||
|
// isoparametric shape function. The cell includes a mid-edge node. The
|
||
|
// ordering of the twenty points defining the cell is point ids (0-7,8-19)
|
||
|
// where point ids 0-7 are the eight corner vertices of the cube; followed by
|
||
|
// twelve midedge nodes (8-19). Note that these midedge nodes correspond lie
|
||
|
// on the edges defined by (0,1), (1,2), (2,3), (3,0), (4,5), (5,6), (6,7),
|
||
|
// (7,4), (0,4), (1,5), (2,6), (3,7).
|
||
|
|
||
|
// .SECTION See Also
|
||
|
// vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
|
||
|
// vtkQuadraticQuad vtkQuadraticPyramid vtkQuadraticWedge
|
||
|
|
||
|
#ifndef __vtkQuadraticHexahedron_h
|
||
|
#define __vtkQuadraticHexahedron_h
|
||
|
|
||
|
#include "vtkNonLinearCell.h"
|
||
|
|
||
|
class vtkPolyData;
|
||
|
class vtkQuadraticEdge;
|
||
|
class vtkQuadraticQuad;
|
||
|
class vtkHexahedron;
|
||
|
class vtkDoubleArray;
|
||
|
|
||
|
class VTK_FILTERING_EXPORT vtkQuadraticHexahedron : public vtkNonLinearCell
|
||
|
{
|
||
|
public:
|
||
|
static vtkQuadraticHexahedron *New();
|
||
|
vtkTypeRevisionMacro(vtkQuadraticHexahedron,vtkNonLinearCell);
|
||
|
void PrintSelf(ostream& os, vtkIndent indent);
|
||
|
|
||
|
// Description:
|
||
|
// Implement the vtkCell API. See the vtkCell API for descriptions
|
||
|
// of these methods.
|
||
|
int GetCellType() {return VTK_QUADRATIC_HEXAHEDRON;}
|
||
|
int GetCellDimension() {return 3;}
|
||
|
int GetNumberOfEdges() {return 12;}
|
||
|
int GetNumberOfFaces() {return 6;}
|
||
|
vtkCell *GetEdge(int);
|
||
|
vtkCell *GetFace(int);
|
||
|
|
||
|
int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);
|
||
|
void Contour(double value, vtkDataArray *cellScalars,
|
||
|
vtkPointLocator *locator, vtkCellArray *verts,
|
||
|
vtkCellArray *lines, vtkCellArray *polys,
|
||
|
vtkPointData *inPd, vtkPointData *outPd,
|
||
|
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);
|
||
|
int EvaluatePosition(double x[3], double* closestPoint,
|
||
|
int& subId, double pcoords[3],
|
||
|
double& dist2, double *weights);
|
||
|
void EvaluateLocation(int& subId, double pcoords[3], double x[3],
|
||
|
double *weights);
|
||
|
int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);
|
||
|
void Derivatives(int subId, double pcoords[3], double *values,
|
||
|
int dim, double *derivs);
|
||
|
virtual double *GetParametricCoords();
|
||
|
|
||
|
// Description:
|
||
|
// Clip this quadratic hexahedron using scalar value provided. Like
|
||
|
// contouring, except that it cuts the hex to produce linear
|
||
|
// tetrahedron.
|
||
|
void Clip(double value, vtkDataArray *cellScalars,
|
||
|
vtkPointLocator *locator, vtkCellArray *tetras,
|
||
|
vtkPointData *inPd, vtkPointData *outPd,
|
||
|
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
|
||
|
int insideOut);
|
||
|
|
||
|
// Description:
|
||
|
// Line-edge intersection. Intersection has to occur within [0,1] parametric
|
||
|
// coordinates and with specified tolerance.
|
||
|
int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
|
||
|
double x[3], double pcoords[3], int& subId);
|
||
|
|
||
|
|
||
|
// Description:
|
||
|
// Quadratic hexahedron specific methods.
|
||
|
static void InterpolationFunctions(double pcoords[3], double weights[20]);
|
||
|
static void InterpolationDerivs(double pcoords[3], double derivs[60]);
|
||
|
|
||
|
// Description:
|
||
|
// Given parametric coordinates compute inverse Jacobian transformation
|
||
|
// matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
|
||
|
// function derivatives.
|
||
|
void JacobianInverse(double pcoords[3], double **inverse, double derivs[60]);
|
||
|
|
||
|
protected:
|
||
|
vtkQuadraticHexahedron();
|
||
|
~vtkQuadraticHexahedron();
|
||
|
|
||
|
vtkQuadraticEdge *Edge;
|
||
|
vtkQuadraticQuad *Face;
|
||
|
vtkHexahedron *Hex;
|
||
|
vtkPointData *PointData;
|
||
|
vtkCellData *CellData;
|
||
|
vtkDoubleArray *CellScalars;
|
||
|
vtkDoubleArray *Scalars;
|
||
|
|
||
|
void Subdivide(vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId, vtkDataArray *cellScalars);
|
||
|
|
||
|
private:
|
||
|
vtkQuadraticHexahedron(const vtkQuadraticHexahedron&); // Not implemented.
|
||
|
void operator=(const vtkQuadraticHexahedron&); // Not implemented.
|
||
|
};
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|