You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
589 lines
16 KiB
589 lines
16 KiB
2 years ago
|
/* $Header: /cvsroot/VTK/VTK/Utilities/vtktiff/tif_vms.c,v 1.1 2004/04/28 15:49:22 king Exp $ */
|
||
|
|
||
|
/*
|
||
|
* Copyright (c) 1988-1997 Sam Leffler
|
||
|
* Copyright (c) 1991-1997 Silicon Graphics, Inc.
|
||
|
*
|
||
|
* Permission to use, copy, modify, distribute, and sell this software and
|
||
|
* its documentation for any purpose is hereby granted without fee, provided
|
||
|
* that (i) the above copyright notices and this permission notice appear in
|
||
|
* all copies of the software and related documentation, and (ii) the names of
|
||
|
* Sam Leffler and Silicon Graphics may not be used in any advertising or
|
||
|
* publicity relating to the software without the specific, prior written
|
||
|
* permission of Sam Leffler and Silicon Graphics.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND,
|
||
|
* EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY
|
||
|
* WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
|
||
|
*
|
||
|
* IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
|
||
|
* ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
|
||
|
* OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
||
|
* WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF
|
||
|
* LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
||
|
* OF THIS SOFTWARE.
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* TIFF Library VMS-specific Routines.
|
||
|
*/
|
||
|
|
||
|
#include <stdlib.h>
|
||
|
#include <unixio.h>
|
||
|
#include "tiffiop.h"
|
||
|
#if !HAVE_IEEEFP
|
||
|
#include <math.h>
|
||
|
#endif
|
||
|
|
||
|
#ifdef VAXC
|
||
|
#define NOSHARE noshare
|
||
|
#else
|
||
|
#define NOSHARE
|
||
|
#endif
|
||
|
|
||
|
#ifdef __alpha
|
||
|
/* Dummy entry point for backwards compatibility */
|
||
|
void TIFFModeCCITTFax3(void){}
|
||
|
#endif
|
||
|
|
||
|
static tsize_t
|
||
|
_tiffReadProc(thandle_t fd, tdata_t buf, tsize_t size)
|
||
|
{
|
||
|
return (read((int) fd, buf, size));
|
||
|
}
|
||
|
|
||
|
static tsize_t
|
||
|
_tiffWriteProc(thandle_t fd, tdata_t buf, tsize_t size)
|
||
|
{
|
||
|
return (write((int) fd, buf, size));
|
||
|
}
|
||
|
|
||
|
static toff_t
|
||
|
_tiffSeekProc(thandle_t fd, toff_t off, int whence)
|
||
|
{
|
||
|
return ((toff_t) lseek((int) fd, (off_t) off, whence));
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
_tiffCloseProc(thandle_t fd)
|
||
|
{
|
||
|
return (close((int) fd));
|
||
|
}
|
||
|
|
||
|
#include <sys/stat.h>
|
||
|
|
||
|
static toff_t
|
||
|
_tiffSizeProc(thandle_t fd)
|
||
|
{
|
||
|
struct stat sb;
|
||
|
return (toff_t) (fstat((int) fd, &sb) < 0 ? 0 : sb.st_size);
|
||
|
}
|
||
|
|
||
|
#ifdef HAVE_MMAP
|
||
|
#include <starlet.h>
|
||
|
#include <fab.h>
|
||
|
#include <secdef.h>
|
||
|
|
||
|
/*
|
||
|
* Table for storing information on current open sections.
|
||
|
* (Should really be a linked list)
|
||
|
*/
|
||
|
#define MAX_MAPPED 100
|
||
|
static int no_mapped = 0;
|
||
|
static struct {
|
||
|
char *base;
|
||
|
char *top;
|
||
|
unsigned short channel;
|
||
|
} map_table[MAX_MAPPED];
|
||
|
|
||
|
/*
|
||
|
* This routine maps a file into a private section. Note that this
|
||
|
* method of accessing a file is by far the fastest under VMS.
|
||
|
* The routine may fail (i.e. return 0) for several reasons, for
|
||
|
* example:
|
||
|
* - There is no more room for storing the info on sections.
|
||
|
* - The process is out of open file quota, channels, ...
|
||
|
* - fd does not describe an opened file.
|
||
|
* - The file is already opened for write access by this process
|
||
|
* or another process
|
||
|
* - There is no free "hole" in virtual memory that fits the
|
||
|
* size of the file
|
||
|
*/
|
||
|
static int
|
||
|
_tiffMapProc(thandle_t fd, tdata_t* pbase, toff_t* psize)
|
||
|
{
|
||
|
char name[256];
|
||
|
struct FAB fab;
|
||
|
unsigned short channel;
|
||
|
char *inadr[2], *retadr[2];
|
||
|
unsigned long status;
|
||
|
long size;
|
||
|
|
||
|
if (no_mapped >= MAX_MAPPED)
|
||
|
return(0);
|
||
|
/*
|
||
|
* We cannot use a file descriptor, we
|
||
|
* must open the file once more.
|
||
|
*/
|
||
|
if (getname((int)fd, name, 1) == NULL)
|
||
|
return(0);
|
||
|
/* prepare the FAB for a user file open */
|
||
|
fab = cc$rms_fab;
|
||
|
fab.fab$l_fop |= FAB$V_UFO;
|
||
|
fab.fab$b_fac = FAB$M_GET;
|
||
|
fab.fab$b_shr = FAB$M_SHRGET;
|
||
|
fab.fab$l_fna = name;
|
||
|
fab.fab$b_fns = strlen(name);
|
||
|
status = sys$open(&fab); /* open file & get channel number */
|
||
|
if ((status&1) == 0)
|
||
|
return(0);
|
||
|
channel = (unsigned short)fab.fab$l_stv;
|
||
|
inadr[0] = inadr[1] = (char *)0; /* just an address in P0 space */
|
||
|
/*
|
||
|
* Map the blocks of the file up to
|
||
|
* the EOF block into virtual memory.
|
||
|
*/
|
||
|
size = _tiffSizeProc(fd);
|
||
|
status = sys$crmpsc(inadr, retadr, 0, SEC$M_EXPREG, 0,0,0, channel,
|
||
|
TIFFhowmany(size,512), 0,0,0);
|
||
|
if ((status&1) == 0){
|
||
|
sys$dassgn(channel);
|
||
|
return(0);
|
||
|
}
|
||
|
*pbase = (tdata_t) retadr[0]; /* starting virtual address */
|
||
|
/*
|
||
|
* Use the size of the file up to the
|
||
|
* EOF mark for UNIX compatibility.
|
||
|
*/
|
||
|
*psize = (toff_t) size;
|
||
|
/* Record the section in the table */
|
||
|
map_table[no_mapped].base = retadr[0];
|
||
|
map_table[no_mapped].top = retadr[1];
|
||
|
map_table[no_mapped].channel = channel;
|
||
|
no_mapped++;
|
||
|
|
||
|
return(1);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* This routine unmaps a section from the virtual address space of
|
||
|
* the process, but only if the base was the one returned from a
|
||
|
* call to TIFFMapFileContents.
|
||
|
*/
|
||
|
static void
|
||
|
_tiffUnmapProc(thandle_t fd, tdata_t base, toff_t size)
|
||
|
{
|
||
|
char *inadr[2];
|
||
|
int i, j;
|
||
|
|
||
|
/* Find the section in the table */
|
||
|
for (i = 0;i < no_mapped; i++) {
|
||
|
if (map_table[i].base == (char *) base) {
|
||
|
/* Unmap the section */
|
||
|
inadr[0] = (char *) base;
|
||
|
inadr[1] = map_table[i].top;
|
||
|
sys$deltva(inadr, 0, 0);
|
||
|
sys$dassgn(map_table[i].channel);
|
||
|
/* Remove this section from the list */
|
||
|
for (j = i+1; j < no_mapped; j++)
|
||
|
map_table[j-1] = map_table[j];
|
||
|
no_mapped--;
|
||
|
return;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
#else /* !HAVE_MMAP */
|
||
|
static int
|
||
|
_tiffMapProc(thandle_t fd, tdata_t* pbase, toff_t* psize)
|
||
|
{
|
||
|
return (0);
|
||
|
}
|
||
|
|
||
|
static void
|
||
|
_tiffUnmapProc(thandle_t fd, tdata_t base, toff_t size)
|
||
|
{
|
||
|
}
|
||
|
#endif /* !HAVE_MMAP */
|
||
|
|
||
|
/*
|
||
|
* Open a TIFF file descriptor for read/writing.
|
||
|
*/
|
||
|
TIFF*
|
||
|
TIFFFdOpen(int fd, const char* name, const char* mode)
|
||
|
{
|
||
|
TIFF* tif;
|
||
|
|
||
|
tif = TIFFClientOpen(name, mode,
|
||
|
(thandle_t) fd,
|
||
|
_tiffReadProc, _tiffWriteProc, _tiffSeekProc, _tiffCloseProc,
|
||
|
_tiffSizeProc, _tiffMapProc, _tiffUnmapProc);
|
||
|
if (tif)
|
||
|
tif->tif_fd = fd;
|
||
|
return (tif);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Open a TIFF file for read/writing.
|
||
|
*/
|
||
|
TIFF*
|
||
|
TIFFOpen(const char* name, const char* mode)
|
||
|
{
|
||
|
static const char module[] = "TIFFOpen";
|
||
|
int m, fd;
|
||
|
|
||
|
m = _TIFFgetMode(mode, module);
|
||
|
if (m == -1)
|
||
|
return ((TIFF*)0);
|
||
|
if (m&O_TRUNC){
|
||
|
/*
|
||
|
* There is a bug in open in VAXC. If you use
|
||
|
* open w/ m=O_RDWR|O_CREAT|O_TRUNC the
|
||
|
* wrong thing happens. On the other hand
|
||
|
* creat does the right thing.
|
||
|
*/
|
||
|
fd = creat((char *) /* bug in stdio.h */ name, 0666,
|
||
|
"alq = 128", "deq = 64", "mbc = 32",
|
||
|
"fop = tef");
|
||
|
} else if (m&O_RDWR) {
|
||
|
fd = open(name, m, 0666,
|
||
|
"deq = 64", "mbc = 32", "fop = tef", "ctx = stm");
|
||
|
} else
|
||
|
fd = open(name, m, 0666, "mbc = 32", "ctx = stm");
|
||
|
if (fd < 0) {
|
||
|
TIFFError(module, "%s: Cannot open", name);
|
||
|
return ((TIFF*)0);
|
||
|
}
|
||
|
return (TIFFFdOpen(fd, name, mode));
|
||
|
}
|
||
|
|
||
|
tdata_t
|
||
|
_TIFFmalloc(tsize_t s)
|
||
|
{
|
||
|
return (malloc((size_t) s));
|
||
|
}
|
||
|
|
||
|
void
|
||
|
_TIFFfree(tdata_t p)
|
||
|
{
|
||
|
free(p);
|
||
|
}
|
||
|
|
||
|
tdata_t
|
||
|
_TIFFrealloc(tdata_t p, tsize_t s)
|
||
|
{
|
||
|
return (realloc(p, (size_t) s));
|
||
|
}
|
||
|
|
||
|
void
|
||
|
_TIFFmemset(tdata_t p, int v, tsize_t c)
|
||
|
{
|
||
|
memset(p, v, (size_t) c);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
_TIFFmemcpy(tdata_t d, const tdata_t s, tsize_t c)
|
||
|
{
|
||
|
memcpy(d, s, (size_t) c);
|
||
|
}
|
||
|
|
||
|
int
|
||
|
_TIFFmemcmp(const tdata_t p1, const tdata_t p2, tsize_t c)
|
||
|
{
|
||
|
return (memcmp(p1, p2, (size_t) c));
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* On the VAX, we need to make those global, writable pointers
|
||
|
* non-shareable, otherwise they would be made shareable by default.
|
||
|
* On the AXP, this brain damage has been corrected.
|
||
|
*
|
||
|
* I (Karsten Spang, krs@kampsax.dk) have dug around in the GCC
|
||
|
* manual and the GAS code and have come up with the following
|
||
|
* construct, but I don't have GCC on my VAX, so it is untested.
|
||
|
* Please tell me if it does not work.
|
||
|
*/
|
||
|
|
||
|
static void
|
||
|
vmsWarningHandler(const char* module, const char* fmt, va_list ap)
|
||
|
{
|
||
|
if (module != NULL)
|
||
|
fprintf(stderr, "%s: ", module);
|
||
|
fprintf(stderr, "Warning, ");
|
||
|
vfprintf(stderr, fmt, ap);
|
||
|
fprintf(stderr, ".\n");
|
||
|
}
|
||
|
|
||
|
NOSHARE TIFFErrorHandler _TIFFwarningHandler = vmsWarningHandler
|
||
|
#if defined(VAX) && defined(__GNUC__)
|
||
|
asm("_$$PsectAttributes_NOSHR$$_TIFFwarningHandler")
|
||
|
#endif
|
||
|
;
|
||
|
|
||
|
static void
|
||
|
vmsErrorHandler(const char* module, const char* fmt, va_list ap)
|
||
|
{
|
||
|
if (module != NULL)
|
||
|
fprintf(stderr, "%s: ", module);
|
||
|
vfprintf(stderr, fmt, ap);
|
||
|
fprintf(stderr, ".\n");
|
||
|
}
|
||
|
|
||
|
NOSHARE TIFFErrorHandler _TIFFerrorHandler = vmsErrorHandler
|
||
|
#if defined(VAX) && defined(__GNUC__)
|
||
|
asm("_$$PsectAttributes_NOSHR$$_TIFFerrorHandler")
|
||
|
#endif
|
||
|
;
|
||
|
|
||
|
|
||
|
#if !HAVE_IEEEFP
|
||
|
/* IEEE floting point handling */
|
||
|
|
||
|
typedef struct ieeedouble {
|
||
|
u_long mant2; /* fix NDR: full 8-byte swap */
|
||
|
u_long mant : 20,
|
||
|
exp : 11,
|
||
|
sign : 1;
|
||
|
} ieeedouble;
|
||
|
typedef struct ieeefloat {
|
||
|
u_long mant : 23,
|
||
|
exp : 8,
|
||
|
sign : 1;
|
||
|
} ieeefloat;
|
||
|
|
||
|
/*
|
||
|
* NB: These are D_FLOAT's, not G_FLOAT's. A G_FLOAT is
|
||
|
* simply a reverse-IEEE float/double.
|
||
|
*/
|
||
|
|
||
|
typedef struct {
|
||
|
u_long mant1 : 7,
|
||
|
exp : 8,
|
||
|
sign : 1,
|
||
|
mant2 : 16,
|
||
|
mant3 : 16,
|
||
|
mant4 : 16;
|
||
|
} nativedouble;
|
||
|
typedef struct {
|
||
|
u_long mant1 : 7,
|
||
|
exp : 8,
|
||
|
sign : 1,
|
||
|
mant2 : 16;
|
||
|
} nativefloat;
|
||
|
|
||
|
typedef union {
|
||
|
ieeedouble ieee;
|
||
|
nativedouble native;
|
||
|
char b[8];
|
||
|
uint32 l[2];
|
||
|
double d;
|
||
|
} double_t;
|
||
|
|
||
|
typedef union {
|
||
|
ieeefloat ieee;
|
||
|
nativefloat native;
|
||
|
char b[4];
|
||
|
uint32 l;
|
||
|
float f;
|
||
|
} float_t;
|
||
|
|
||
|
#if defined(VAXC) || defined(DECC)
|
||
|
#pragma inline(ieeetod,dtoieee)
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* Convert an IEEE double precision number to native double precision.
|
||
|
* The source is contained in two longwords, the second holding the sign,
|
||
|
* exponent and the higher order bits of the mantissa, and the first
|
||
|
* holding the rest of the mantissa as follows:
|
||
|
* (Note: It is assumed that the number has been eight-byte swapped to
|
||
|
* LSB first.)
|
||
|
*
|
||
|
* First longword:
|
||
|
* 32 least significant bits of mantissa
|
||
|
* Second longword:
|
||
|
* 0-19: 20 most significant bits of mantissa
|
||
|
* 20-30: exponent
|
||
|
* 31: sign
|
||
|
* The exponent is stored as excess 1023.
|
||
|
* The most significant bit of the mantissa is implied 1, and not stored.
|
||
|
* If the exponent and mantissa are zero, the number is zero.
|
||
|
* If the exponent is 0 (i.e. -1023) and the mantissa is non-zero, it is an
|
||
|
* unnormalized number with the most significant bit NOT implied.
|
||
|
* If the exponent is 2047, the number is invalid, in case the mantissa is zero,
|
||
|
* this means overflow (+/- depending of the sign bit), otherwise
|
||
|
* it simply means invalid number.
|
||
|
*
|
||
|
* If the number is too large for the machine or was specified as overflow,
|
||
|
* +/-HUGE_VAL is returned.
|
||
|
*/
|
||
|
INLINE static void
|
||
|
ieeetod(double *dp)
|
||
|
{
|
||
|
double_t source;
|
||
|
long sign,exp,mant;
|
||
|
double dmant;
|
||
|
|
||
|
source.ieee = ((double_t*)dp)->ieee;
|
||
|
sign = source.ieee.sign;
|
||
|
exp = source.ieee.exp;
|
||
|
mant = source.ieee.mant;
|
||
|
|
||
|
if (exp == 2047) {
|
||
|
if (mant) /* Not a Number (NAN) */
|
||
|
*dp = HUGE_VAL;
|
||
|
else /* +/- infinity */
|
||
|
*dp = (sign ? -HUGE_VAL : HUGE_VAL);
|
||
|
return;
|
||
|
}
|
||
|
if (!exp) {
|
||
|
if (!(mant || source.ieee.mant2)) { /* zero */
|
||
|
*dp=0;
|
||
|
return;
|
||
|
} else { /* Unnormalized number */
|
||
|
/* NB: not -1023, the 1 bit is not implied */
|
||
|
exp= -1022;
|
||
|
}
|
||
|
} else {
|
||
|
mant |= 1<<20;
|
||
|
exp -= 1023;
|
||
|
}
|
||
|
dmant = (((double) mant) +
|
||
|
((double) source.ieee.mant2) / (((double) (1<<16)) *
|
||
|
((double) (1<<16)))) / (double) (1<<20);
|
||
|
dmant = ldexp(dmant, exp);
|
||
|
if (sign)
|
||
|
dmant= -dmant;
|
||
|
*dp = dmant;
|
||
|
}
|
||
|
|
||
|
INLINE static void
|
||
|
dtoieee(double *dp)
|
||
|
{
|
||
|
double_t num;
|
||
|
double x;
|
||
|
int exp;
|
||
|
|
||
|
num.d = *dp;
|
||
|
if (!num.d) { /* Zero is just binary all zeros */
|
||
|
num.l[0] = num.l[1] = 0;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (num.d < 0) { /* Sign is encoded separately */
|
||
|
num.d = -num.d;
|
||
|
num.ieee.sign = 1;
|
||
|
} else {
|
||
|
num.ieee.sign = 0;
|
||
|
}
|
||
|
|
||
|
/* Now separate the absolute value into mantissa and exponent */
|
||
|
x = frexp(num.d, &exp);
|
||
|
|
||
|
/*
|
||
|
* Handle cases where the value is outside the
|
||
|
* range for IEEE floating point numbers.
|
||
|
* (Overflow cannot happen on a VAX, but underflow
|
||
|
* can happen for G float.)
|
||
|
*/
|
||
|
if (exp < -1022) { /* Unnormalized number */
|
||
|
x = ldexp(x, -1023-exp);
|
||
|
exp = 0;
|
||
|
} else if (exp > 1023) { /* +/- infinity */
|
||
|
x = 0;
|
||
|
exp = 2047;
|
||
|
} else { /* Get rid of most significant bit */
|
||
|
x *= 2;
|
||
|
x -= 1;
|
||
|
exp += 1022; /* fix NDR: 1.0 -> x=0.5, exp=1 -> ieee.exp = 1023 */
|
||
|
}
|
||
|
num.ieee.exp = exp;
|
||
|
|
||
|
x *= (double) (1<<20);
|
||
|
num.ieee.mant = (long) x;
|
||
|
x -= (double) num.ieee.mant;
|
||
|
num.ieee.mant2 = (long) (x*((double) (1<<16)*(double) (1<<16)));
|
||
|
|
||
|
if (!(num.ieee.mant || num.ieee.exp || num.ieee.mant2)) {
|
||
|
/* Avoid negative zero */
|
||
|
num.ieee.sign = 0;
|
||
|
}
|
||
|
((double_t*)dp)->ieee = num.ieee;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Beware, these do not handle over/under-flow
|
||
|
* during conversion from ieee to native format.
|
||
|
*/
|
||
|
#define NATIVE2IEEEFLOAT(fp) { \
|
||
|
float_t t; \
|
||
|
if (t.ieee.exp = (fp)->native.exp) \
|
||
|
t.ieee.exp += -129 + 127; \
|
||
|
t.ieee.sign = (fp)->native.sign; \
|
||
|
t.ieee.mant = ((fp)->native.mant1<<16)|(fp)->native.mant2; \
|
||
|
*(fp) = t; \
|
||
|
}
|
||
|
#define IEEEFLOAT2NATIVE(fp) { \
|
||
|
float_t t; int v = (fp)->ieee.exp; \
|
||
|
if (v) v += -127 + 129; /* alter bias of exponent */\
|
||
|
t.native.exp = v; /* implicit truncation of exponent */\
|
||
|
t.native.sign = (fp)->ieee.sign; \
|
||
|
v = (fp)->ieee.mant; \
|
||
|
t.native.mant1 = v >> 16; \
|
||
|
t.native.mant2 = v;\
|
||
|
*(fp) = t; \
|
||
|
}
|
||
|
|
||
|
#define IEEEDOUBLE2NATIVE(dp) ieeetod(dp)
|
||
|
|
||
|
#define NATIVE2IEEEDOUBLE(dp) dtoieee(dp)
|
||
|
|
||
|
|
||
|
/*
|
||
|
* These unions are used during floating point
|
||
|
* conversions. The above macros define the
|
||
|
* conversion operations.
|
||
|
*/
|
||
|
void
|
||
|
TIFFCvtIEEEFloatToNative(TIFF* tif, u_int n, float* f)
|
||
|
{
|
||
|
float_t* fp = (float_t*) f;
|
||
|
|
||
|
while (n-- > 0) {
|
||
|
IEEEFLOAT2NATIVE(fp);
|
||
|
fp++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
TIFFCvtNativeToIEEEFloat(TIFF* tif, u_int n, float* f)
|
||
|
{
|
||
|
float_t* fp = (float_t*) f;
|
||
|
|
||
|
while (n-- > 0) {
|
||
|
NATIVE2IEEEFLOAT(fp);
|
||
|
fp++;
|
||
|
}
|
||
|
}
|
||
|
void
|
||
|
TIFFCvtIEEEDoubleToNative(TIFF* tif, u_int n, double* f)
|
||
|
{
|
||
|
double_t* fp = (double_t*) f;
|
||
|
|
||
|
while (n-- > 0) {
|
||
|
IEEEDOUBLE2NATIVE(fp);
|
||
|
fp++;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void
|
||
|
TIFFCvtNativeToIEEEDouble(TIFF* tif, u_int n, double* f)
|
||
|
{
|
||
|
double_t* fp = (double_t*) f;
|
||
|
|
||
|
while (n-- > 0) {
|
||
|
NATIVE2IEEEDOUBLE(fp);
|
||
|
fp++;
|
||
|
}
|
||
|
}
|
||
|
#endif
|