Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

95 lines
3.0 KiB

2 years ago
# This example demonstrates the use of glyphing. We also use a mask filter
# to select a subset of points to glyph.
#
# First we include the VTK Tcl packages which will make available
# all of the vtk commands from Tcl. The vtkinteraction package defines
# a simple Tcl/Tk interactor widget.
#
package require vtk
package require vtkinteraction
package require vtktesting
# Read a data file. This originally was a Cyberware laser digitizer scan
# of Fran J.'s face. Surface normals are generated based on local geometry
# (i.e., the polygon normals surrounding eash point are averaged). We flip
# the normals because we want them to point out from Fran's face.
#
vtkPolyDataReader fran
fran SetFileName "$VTK_DATA_ROOT/Data/fran_cut.vtk"
vtkPolyDataNormals normals
normals SetInputConnection [fran GetOutputPort]
normals FlipNormalsOn
vtkPolyDataMapper franMapper
franMapper SetInputConnection [normals GetOutputPort]
vtkActor franActor
franActor SetMapper franMapper
eval [franActor GetProperty] SetColor 1.0 0.49 0.25
# We subsample the dataset because we want to glyph just a subset of
# the points. Otherwise the display is cluttered and cannot be easily
# read. The RandonModeOn and SetOnRatio combine to random select one out
# of every 10 points in the dataset.
#
vtkMaskPoints ptMask
ptMask SetInputConnection [normals GetOutputPort]
ptMask SetOnRatio 10
ptMask RandomModeOn
# In this case we are using a cone as a glyph. We transform the cone so
# its base is at 0,0,0. This is the point where glyph rotation occurs.
vtkConeSource cone
cone SetResolution 6
vtkTransform transform
transform Translate 0.5 0.0 0.0
vtkTransformPolyDataFilter transformF
transformF SetInputConnection [cone GetOutputPort]
transformF SetTransform transform
# vtkGlyph3D takes two inputs: the input point set (SetInputConnection)
# which can be any vtkDataSet; and the glyph (SetSourceConnection) which
# must be a vtkPolyData. We are interested in orienting the glyphs by the
# surface normals that we previosuly generated.
vtkGlyph3D glyph
glyph SetInputConnection [ptMask GetOutputPort]
glyph SetSourceConnection [transformF GetOutputPort]
glyph SetVectorModeToUseNormal
glyph SetScaleModeToScaleByVector
glyph SetScaleFactor 0.004
vtkPolyDataMapper spikeMapper
spikeMapper SetInputConnection [glyph GetOutputPort]
vtkActor spikeActor
spikeActor SetMapper spikeMapper
eval [spikeActor GetProperty] SetColor 0.0 0.79 0.34
# Create the RenderWindow, Renderer and both Actors
#
vtkRenderer ren1
vtkRenderWindow renWin
renWin AddRenderer ren1
vtkRenderWindowInteractor iren
iren SetRenderWindow renWin
# Add the actors to the renderer, set the background and size
#
ren1 AddActor franActor
ren1 AddActor spikeActor
renWin SetSize 500 500
ren1 SetBackground 0.1 0.2 0.4
# render the image
#
iren AddObserver UserEvent {wm deiconify .vtkInteract}
renWin Render
set cam1 [ren1 GetActiveCamera]
$cam1 Zoom 1.4
$cam1 Azimuth 110
iren Initialize
# prevent the tk window from showing up then start the event loop
wm withdraw .