Cloned library of VTK-5.0.0 with extra build files for internal package management.
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

705 lines
19 KiB

2 years ago
/*=========================================================================
Program: Visualization Toolkit
Module: $RCSfile: vtkMapper.cxx,v $
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
#include "vtkMapper.h"
#include "vtkDataSet.h"
#include "vtkExecutive.h"
#include "vtkLookupTable.h"
#include "vtkFloatArray.h"
#include "vtkImageData.h"
#include "vtkPointData.h"
#include "vtkMath.h"
vtkCxxRevisionMacro(vtkMapper, "$Revision: 1.120 $");
// Initialize static member that controls global immediate mode rendering
static int vtkMapperGlobalImmediateModeRendering = 0;
// Initialize static member that controls global coincidence resolution
static int vtkMapperGlobalResolveCoincidentTopology = VTK_RESOLVE_OFF;
static double vtkMapperGlobalResolveCoincidentTopologyZShift = 0.01;
static double vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFactor = 1.0;
static double vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetUnits = 1.0;
// Construct with initial range (0,1).
vtkMapper::vtkMapper()
{
this->Colors = 0;
this->Static = 0;
this->LookupTable = 0;
this->ScalarVisibility = 1;
this->ScalarRange[0] = 0.0; this->ScalarRange[1] = 1.0;
this->UseLookupTableScalarRange = 0;
this->ImmediateModeRendering = 0;
this->ColorMode = VTK_COLOR_MODE_DEFAULT;
this->ScalarMode = VTK_SCALAR_MODE_DEFAULT;
this->ScalarMaterialMode = VTK_MATERIALMODE_DEFAULT;
vtkMath::UninitializeBounds(this->Bounds);
this->Center[0] = this->Center[1] = this->Center[2] = 0.0;
this->RenderTime = 0.0;
strcpy(this->ArrayName, "");
this->ArrayId = -1;
this->ArrayComponent = 0;
this->ArrayAccessMode = VTK_GET_ARRAY_BY_ID;
this->InterpolateScalarsBeforeMapping = 0;
this->ColorCoordinates = 0;
this->ColorTextureMap = 0;
}
vtkMapper::~vtkMapper()
{
if (this->LookupTable)
{
this->LookupTable->UnRegister(this);
}
if ( this->Colors != 0 )
{
this->Colors->UnRegister(this);
}
if ( this->ColorCoordinates != 0 )
{
this->ColorCoordinates->UnRegister(this);
}
if ( this->ColorTextureMap != 0 )
{
this->ColorTextureMap->UnRegister(this);
}
}
// Get the bounds for the input of this mapper as
// (Xmin,Xmax,Ymin,Ymax,Zmin,Zmax).
double *vtkMapper::GetBounds()
{
static double bounds[] = {-1.0,1.0, -1.0,1.0, -1.0,1.0};
vtkDataSet *input = this->GetInput();
if ( ! input )
{
return bounds;
}
else
{
if (!this->Static)
{
this->Update();
}
input->GetBounds(this->Bounds);
return this->Bounds;
}
}
vtkDataSet *vtkMapper::GetInput()
{
if (this->GetNumberOfInputConnections(0) < 1)
{
return 0;
}
return vtkDataSet::SafeDownCast(
this->GetExecutive()->GetInputData(0, 0));
}
void vtkMapper::SetGlobalImmediateModeRendering(int val)
{
if (val == vtkMapperGlobalImmediateModeRendering)
{
return;
}
vtkMapperGlobalImmediateModeRendering = val;
}
int vtkMapper::GetGlobalImmediateModeRendering()
{
return vtkMapperGlobalImmediateModeRendering;
}
void vtkMapper::SetResolveCoincidentTopology(int val)
{
if (val == vtkMapperGlobalResolveCoincidentTopology)
{
return;
}
vtkMapperGlobalResolveCoincidentTopology = val;
}
int vtkMapper::GetResolveCoincidentTopology()
{
return vtkMapperGlobalResolveCoincidentTopology;
}
void vtkMapper::SetResolveCoincidentTopologyToDefault()
{
vtkMapperGlobalResolveCoincidentTopology = VTK_RESOLVE_OFF;
}
void vtkMapper::SetResolveCoincidentTopologyZShift(double val)
{
if (val == vtkMapperGlobalResolveCoincidentTopologyZShift)
{
return;
}
vtkMapperGlobalResolveCoincidentTopologyZShift = val;
}
double vtkMapper::GetResolveCoincidentTopologyZShift()
{
return vtkMapperGlobalResolveCoincidentTopologyZShift;
}
void vtkMapper::SetResolveCoincidentTopologyPolygonOffsetParameters(
double factor, double units)
{
if (factor == vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFactor &&
units == vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetUnits )
{
return;
}
vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFactor = factor;
vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetUnits = units;
}
void vtkMapper::GetResolveCoincidentTopologyPolygonOffsetParameters(
double& factor, double& units)
{
factor = vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetFactor;
units = vtkMapperGlobalResolveCoincidentTopologyPolygonOffsetUnits;
}
// Overload standard modified time function. If lookup table is modified,
// then this object is modified as well.
unsigned long vtkMapper::GetMTime()
{
//unsigned long mTime=this->MTime.GetMTime();
unsigned long mTime=vtkAbstractMapper::GetMTime();
unsigned long lutMTime;
if ( this->LookupTable != NULL )
{
lutMTime = this->LookupTable->GetMTime();
mTime = ( lutMTime > mTime ? lutMTime : mTime );
}
return mTime;
}
void vtkMapper::ShallowCopy(vtkAbstractMapper *mapper)
{
vtkMapper *m = vtkMapper::SafeDownCast(mapper);
if ( m != NULL )
{
this->SetLookupTable(m->GetLookupTable());
this->SetScalarVisibility(m->GetScalarVisibility());
this->SetScalarRange(m->GetScalarRange());
this->SetColorMode(m->GetColorMode());
this->SetScalarMode(m->GetScalarMode());
this->SetScalarMaterialMode(m->GetScalarMaterialMode());
this->SetImmediateModeRendering(m->GetImmediateModeRendering());
this->SetUseLookupTableScalarRange(m->GetUseLookupTableScalarRange());
if ( m->GetArrayAccessMode() == VTK_GET_ARRAY_BY_ID )
{
this->ColorByArrayComponent(m->GetArrayId(),m->GetArrayComponent());
}
else
{
this->ColorByArrayComponent(m->GetArrayName(),m->GetArrayComponent());
}
}
// Now do superclass
this->vtkAbstractMapper3D::ShallowCopy(mapper);
}
// a side effect of this is that this->Colors is also set
// to the return value
vtkUnsignedCharArray *vtkMapper::MapScalars(double alpha)
{
int cellFlag = 0;
vtkDataArray *scalars = vtkAbstractMapper::
GetScalars(this->GetInput(), this->ScalarMode, this->ArrayAccessMode,
this->ArrayId, this->ArrayName, cellFlag);
// This is for a legacy feature: selection of the array component to color by
// from the mapper. It is now in the lookuptable. When this feature
// is removed, we can remove this condition.
if (scalars == 0 || scalars->GetNumberOfComponents() <= this->ArrayComponent)
{
this->ArrayComponent = 0;
}
if ( !this->ScalarVisibility || scalars==0 || this->GetInput()==0)
{ // No scalar colors.
if ( this->ColorCoordinates )
{
this->ColorCoordinates->UnRegister(this);
this->ColorCoordinates = 0;
}
if ( this->ColorTextureMap )
{
this->ColorTextureMap->UnRegister(this);
this->ColorTextureMap = 0;
}
if ( this->Colors )
{
this->Colors->UnRegister(this);
this->Colors = 0;
}
return 0;
}
// Get the lookup table.
if ( scalars->GetLookupTable() )
{
this->SetLookupTable(scalars->GetLookupTable());
}
else
{
// make sure we have a lookup table
if ( this->LookupTable == 0 )
{
this->CreateDefaultLookupTable();
}
this->LookupTable->Build();
}
if ( !this->UseLookupTableScalarRange )
{
this->LookupTable->SetRange(this->ScalarRange);
}
// Decide betweeen texture color or vertex color.
// Cell data always uses vertext color.
// Only point data can use both texture and vertext coloring.
if (this->InterpolateScalarsBeforeMapping && ! cellFlag)
{
// Only use texture color if we are mapping scalars.
// Directly coloring with RGB unsigned chars should not use texture.
if ( this->ColorMode != VTK_COLOR_MODE_DEFAULT ||
(vtkUnsignedCharArray::SafeDownCast(scalars)) == 0 )
{ // Texture color option.
this->MapScalarsToTexture(scalars, alpha);
return 0;
}
}
// Vertex colors are being used.
// Get rid of texure Color arrays. Only texture or vertex coloring
// can be active at one time. The existence of the array is the
// signal to use that technique.
if ( this->ColorCoordinates )
{
this->ColorCoordinates->UnRegister(this);
this->ColorCoordinates = 0;
}
if ( this->ColorTextureMap )
{
this->ColorTextureMap->UnRegister(this);
this->ColorTextureMap = 0;
}
// Lets try to resuse the old colors.
if (this->Colors)
{
if (this->LookupTable && this->LookupTable->GetAlpha() == alpha)
{
if (this->GetMTime() < this->Colors->GetMTime() &&
this->GetInput()->GetMTime() < this->Colors->GetMTime() &&
this->LookupTable->GetMTime() < this->Colors->GetMTime())
{
return this->Colors;
}
}
}
// Get rid of old colors
if ( this->Colors )
{
this->Colors->UnRegister(this);
this->Colors = 0;
}
// map scalars
this->LookupTable->SetAlpha(alpha);
this->Colors = this->LookupTable->
MapScalars(scalars, this->ColorMode, this->ArrayComponent);
// Consistent register and unregisters
this->Colors->Register(this);
this->Colors->Delete();
return this->Colors;
}
void vtkMapper::SelectColorArray(int arrayNum)
{
this->ColorByArrayComponent(arrayNum, -1);
}
void vtkMapper::SelectColorArray(const char* arrayName)
{
this->ColorByArrayComponent(arrayName, -1);
}
void vtkMapper::ColorByArrayComponent(int arrayNum, int component)
{
if (this->ArrayId == arrayNum && component == this->ArrayComponent &&
this->ArrayAccessMode == VTK_GET_ARRAY_BY_ID)
{
return;
}
this->Modified();
this->ArrayId = arrayNum;
this->ArrayComponent = component;
this->ArrayAccessMode = VTK_GET_ARRAY_BY_ID;
}
void vtkMapper::ColorByArrayComponent(const char* arrayName, int component)
{
if (!arrayName ||
( strcmp(this->ArrayName, arrayName) == 0 &&
component == this->ArrayComponent &&
this->ArrayAccessMode == VTK_GET_ARRAY_BY_NAME ))
{
return;
}
this->Modified();
strcpy(this->ArrayName, arrayName);
this->ArrayComponent = component;
this->ArrayAccessMode = VTK_GET_ARRAY_BY_NAME;
}
// Specify a lookup table for the mapper to use.
void vtkMapper::SetLookupTable(vtkScalarsToColors *lut)
{
if ( this->LookupTable != lut )
{
if ( this->LookupTable)
{
this->LookupTable->UnRegister(this);
}
this->LookupTable = lut;
if (lut)
{
lut->Register(this);
}
this->Modified();
}
}
vtkScalarsToColors *vtkMapper::GetLookupTable()
{
if ( this->LookupTable == 0 )
{
this->CreateDefaultLookupTable();
}
return this->LookupTable;
}
void vtkMapper::CreateDefaultLookupTable()
{
if ( this->LookupTable)
{
this->LookupTable->UnRegister(this);
}
this->LookupTable = vtkLookupTable::New();
// Consistent Register/UnRegisters.
this->LookupTable->Register(this);
this->LookupTable->Delete();
}
// Return the method of coloring scalar data.
const char *vtkMapper::GetColorModeAsString(void)
{
if ( this->ColorMode == VTK_COLOR_MODE_MAP_SCALARS )
{
return "MapScalars";
}
else
{
return "Default";
}
}
// Return the method for obtaining scalar data.
const char *vtkMapper::GetScalarModeAsString(void)
{
if ( this->ScalarMode == VTK_SCALAR_MODE_USE_CELL_DATA )
{
return "UseCellData";
}
else if ( this->ScalarMode == VTK_SCALAR_MODE_USE_POINT_DATA )
{
return "UsePointData";
}
else if ( this->ScalarMode == VTK_SCALAR_MODE_USE_POINT_FIELD_DATA )
{
return "UsePointFieldData";
}
else if ( this->ScalarMode == VTK_SCALAR_MODE_USE_CELL_FIELD_DATA )
{
return "UseCellFieldData";
}
else
{
return "Default";
}
}
const char *vtkMapper::GetScalarMaterialModeAsString(void)
{
if ( this->ScalarMaterialMode == VTK_MATERIALMODE_AMBIENT )
{
return "Ambient";
}
else if ( this->ScalarMaterialMode == VTK_MATERIALMODE_DIFFUSE )
{
return "Diffuse";
}
else if ( this->ScalarMaterialMode == VTK_MATERIALMODE_AMBIENT_AND_DIFFUSE )
{
return "Ambient and Diffuse";
}
else
{
return "Default";
}
}
template<class T>
void vtkMapperCreateColorTextureCoordinates(T* input, float* output,
vtkIdType num, int numComps,
int component, double* range)
{
double tmp, sum;
double k = 1.0 / (range[1]-range[0]);
vtkIdType i;
int j;
if (component < 0 || component >= numComps)
{
for (i = 0; i < num; ++i)
{
sum = 0;
for (j = 0; j < numComps; ++j)
{
tmp = (double)(*input);
sum += (tmp * tmp);
++input;
}
output[i] = k * (sqrt(sum) - range[0]);
if (output[i] > 1.0)
{
output[i] = 1.0;
}
if (output[i] < 0.0)
{
output[i] = 0.0;
}
}
}
else
{
input += component;
for (i = 0; i < num; ++i)
{
output[i] = k * ((float)(*input) - range[0]);
if (output[i] > 1.0)
{
output[i] = 1.0;
}
if (output[i] < 0.0)
{
output[i] = 0.0;
}
input = input + numComps;
}
}
}
#define ColorTextureMapSize 256
// a side effect of this is that this->ColorCoordinates and
// this->ColorTexture are set.
void vtkMapper::MapScalarsToTexture(vtkDataArray* scalars, double alpha)
{
double* range = this->LookupTable->GetRange();
// Get rid of vertex color array. Only texture or vertex coloring
// can be active at one time. The existence of the array is the
// signal to use that technique.
if ( this->Colors )
{
this->Colors->UnRegister(this);
this->Colors = 0;
}
// If the lookup table has changed, the recreate the color texture map.
// Set a new lookup table changes this->MTime.
if (this->ColorTextureMap == 0 ||
this->GetMTime() > this->ColorTextureMap->GetMTime() ||
this->LookupTable->GetMTime() > this->ColorTextureMap->GetMTime() ||
this->LookupTable->GetAlpha() != alpha)
{
this->LookupTable->SetAlpha(alpha);
if ( this->ColorTextureMap )
{
this->ColorTextureMap->UnRegister(this);
this->ColorTextureMap = 0;
}
// Get the texture map from the lookup table.
// Create a dummy ramp of scalars.
// In the future, we could extend vtkScalarsToColors.
double k = (range[1]-range[0]) / (double)(ColorTextureMapSize-1);
vtkFloatArray* tmp = vtkFloatArray::New();
tmp->SetNumberOfTuples(ColorTextureMapSize);
float* ptr = tmp->GetPointer(0);
for (int i = 0; i < ColorTextureMapSize; ++i)
{
*ptr = range[0] + ((float)(i)) * k;
++ptr;
}
this->ColorTextureMap = vtkImageData::New();
this->ColorTextureMap->SetExtent(0,ColorTextureMapSize-1,
0,0, 0,0);
this->ColorTextureMap->SetNumberOfScalarComponents(4);
this->ColorTextureMap->SetScalarTypeToUnsignedChar();
this->ColorTextureMap->GetPointData()->SetScalars(
this->LookupTable->MapScalars(tmp, this->ColorMode, 0));
// Do we need to delete the scalars?
this->ColorTextureMap->GetPointData()->GetScalars()->Delete();
// Consistent register and unregisters
this->ColorTextureMap->Register(this);
this->ColorTextureMap->Delete();
tmp->Delete();
}
// Create new coordinates if necessary.
// Need to compare lookup table incase the range has changed.
if (this->ColorCoordinates == 0 ||
this->GetMTime() > this->ColorCoordinates->GetMTime() ||
this->GetInput()->GetMTime() > this->ColorCoordinates->GetMTime() ||
this->LookupTable->GetMTime() > this->ColorCoordinates->GetMTime())
{
// Get rid of old colors
if ( this->ColorCoordinates )
{
this->ColorCoordinates->UnRegister(this);
this->ColorCoordinates = 0;
}
// Now create the color texture coordinates.
int numComps = scalars->GetNumberOfComponents();
void* input = scalars->GetVoidPointer(0);
vtkIdType num = scalars->GetNumberOfTuples();
this->ColorCoordinates = vtkFloatArray::New();
this->ColorCoordinates->SetNumberOfTuples(num);
float* output = this->ColorCoordinates->GetPointer(0);
int scalarComponent;
// Although I like the feature of applying magnitude to single component
// scalars, it is not how the old MapScalars for vertex coloring works.
if (this->LookupTable->GetVectorMode() == vtkScalarsToColors::MAGNITUDE &&
scalars->GetNumberOfComponents() > 1)
{
scalarComponent = -1;
}
else
{
scalarComponent = this->LookupTable->GetVectorComponent();
}
switch (scalars->GetDataType())
{
vtkTemplateMacro(
vtkMapperCreateColorTextureCoordinates(static_cast<VTK_TT*>(input),
output, num, numComps,
scalarComponent, range)
);
case VTK_BIT:
vtkErrorMacro("Cannot color by bit array.");
break;
default:
vtkErrorMacro(<< "Unknown input ScalarType");
return;
}
}
}
void vtkMapper::PrintSelf(ostream& os, vtkIndent indent)
{
this->Superclass::PrintSelf(os,indent);
if ( this->LookupTable )
{
os << indent << "Lookup Table:\n";
this->LookupTable->PrintSelf(os,indent.GetNextIndent());
}
else
{
os << indent << "Lookup Table: (none)\n";
}
os << indent << "Immediate Mode Rendering: "
<< (this->ImmediateModeRendering ? "On\n" : "Off\n");
os << indent << "Global Immediate Mode Rendering: " <<
(vtkMapperGlobalImmediateModeRendering ? "On\n" : "Off\n");
os << indent << "Scalar Visibility: "
<< (this->ScalarVisibility ? "On\n" : "Off\n");
os << indent << "Static: "
<< (this->Static ? "On\n" : "Off\n");
double *range = this->GetScalarRange();
os << indent << "Scalar Range: (" << range[0] << ", " << range[1] << ")\n";
os << indent << "UseLookupTableScalarRange: "
<< this->UseLookupTableScalarRange << "\n";
os << indent << "Color Mode: " << this->GetColorModeAsString() << endl;
os << indent << "InterpolateScalarsBeforeMapping: "
<< (this->InterpolateScalarsBeforeMapping ? "On\n" : "Off\n");
os << indent << "Scalar Mode: " << this->GetScalarModeAsString() << endl;
os << indent << "LM Color Mode: "
<< this->GetScalarMaterialModeAsString() << endl;
os << indent << "RenderTime: " << this->RenderTime << endl;
os << indent << "Resolve Coincident Topology: ";
if ( vtkMapperGlobalResolveCoincidentTopology == VTK_RESOLVE_OFF )
{
os << "Off" << endl;
}
else if ( vtkMapperGlobalResolveCoincidentTopology == VTK_RESOLVE_POLYGON_OFFSET )
{
os << "Polygon Offset" << endl;
}
else
{
os << "Shift Z-Buffer" << endl;
}
}