You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
126 lines
4.7 KiB
126 lines
4.7 KiB
2 years ago
|
/*=========================================================================
|
||
|
|
||
|
Program: Visualization Toolkit
|
||
|
Module: $RCSfile: vtkLine.h,v $
|
||
|
|
||
|
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
|
||
|
All rights reserved.
|
||
|
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
|
||
|
|
||
|
This software is distributed WITHOUT ANY WARRANTY; without even
|
||
|
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
|
||
|
PURPOSE. See the above copyright notice for more information.
|
||
|
|
||
|
=========================================================================*/
|
||
|
// .NAME vtkLine - cell represents a 1D line
|
||
|
// .SECTION Description
|
||
|
// vtkLine is a concrete implementation of vtkCell to represent a 1D line.
|
||
|
|
||
|
#ifndef __vtkLine_h
|
||
|
#define __vtkLine_h
|
||
|
|
||
|
#include "vtkCell.h"
|
||
|
|
||
|
class VTK_FILTERING_EXPORT vtkLine : public vtkCell
|
||
|
{
|
||
|
public:
|
||
|
static vtkLine *New();
|
||
|
vtkTypeRevisionMacro(vtkLine,vtkCell);
|
||
|
void PrintSelf(ostream& os, vtkIndent indent);
|
||
|
|
||
|
// Description:
|
||
|
// See the vtkCell API for descriptions of these methods.
|
||
|
int GetCellType() {return VTK_LINE;};
|
||
|
int GetCellDimension() {return 1;};
|
||
|
int GetNumberOfEdges() {return 0;};
|
||
|
int GetNumberOfFaces() {return 0;};
|
||
|
vtkCell *GetEdge(int) {return 0;};
|
||
|
vtkCell *GetFace(int) {return 0;};
|
||
|
int CellBoundary(int subId, double pcoords[3], vtkIdList *pts);
|
||
|
void Contour(double value, vtkDataArray *cellScalars,
|
||
|
vtkPointLocator *locator, vtkCellArray *verts,
|
||
|
vtkCellArray *lines, vtkCellArray *polys,
|
||
|
vtkPointData *inPd, vtkPointData *outPd,
|
||
|
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd);
|
||
|
int EvaluatePosition(double x[3], double* closestPoint,
|
||
|
int& subId, double pcoords[3],
|
||
|
double& dist2, double *weights);
|
||
|
void EvaluateLocation(int& subId, double pcoords[3], double x[3],
|
||
|
double *weights);
|
||
|
int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts);
|
||
|
void Derivatives(int subId, double pcoords[3], double *values,
|
||
|
int dim, double *derivs);
|
||
|
virtual double *GetParametricCoords();
|
||
|
|
||
|
// Description:
|
||
|
// Clip this line using scalar value provided. Like contouring, except
|
||
|
// that it cuts the line to produce other lines.
|
||
|
void Clip(double value, vtkDataArray *cellScalars,
|
||
|
vtkPointLocator *locator, vtkCellArray *lines,
|
||
|
vtkPointData *inPd, vtkPointData *outPd,
|
||
|
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
|
||
|
int insideOut);
|
||
|
|
||
|
// Description:
|
||
|
// Return the center of the triangle in parametric coordinates.
|
||
|
int GetParametricCenter(double pcoords[3]);
|
||
|
|
||
|
// Description:
|
||
|
// Line-line intersection. Intersection has to occur within [0,1] parametric
|
||
|
// coordinates and with specified tolerance.
|
||
|
int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
|
||
|
double x[3], double pcoords[3], int& subId);
|
||
|
|
||
|
|
||
|
// Description:
|
||
|
// Performs intersection of two finite 3D lines. An intersection is found if
|
||
|
// the projection of the two lines onto the plane perpendicular to the cross
|
||
|
// product of the two lines intersect. The parameters (u,v) are the
|
||
|
// parametric coordinates of the lines at the position of closest approach.
|
||
|
static int Intersection(double p1[3], double p2[3],
|
||
|
double x1[3], double x2[3],
|
||
|
double& u, double& v);
|
||
|
|
||
|
|
||
|
// Description:
|
||
|
// Compute the distance of a point x to a finite line (p1,p2). The method
|
||
|
// computes the parametric coordinate t and the point location on the
|
||
|
// line. Note that t is unconstrained (i.e., it may lie outside the range
|
||
|
// [0,1]) but the closest point will lie within the finite line
|
||
|
// [p1,p2]. Also, the method returns the distance squared between x and the
|
||
|
// line (p1,p2).
|
||
|
static double DistanceToLine(double x[3], double p1[3], double p2[3],
|
||
|
double &t, double closestPoint[3]);
|
||
|
|
||
|
|
||
|
// Description:
|
||
|
// Determine the distance of the current vertex to the edge defined by
|
||
|
// the vertices provided. Returns distance squared. Note: line is assumed
|
||
|
// infinite in extent.
|
||
|
static double DistanceToLine(double x[3], double p1[3], double p2[3]);
|
||
|
|
||
|
// Description:
|
||
|
// Line specific methods.
|
||
|
static void InterpolationFunctions(double pcoords[3], double weights[2]);
|
||
|
|
||
|
protected:
|
||
|
vtkLine();
|
||
|
~vtkLine() {};
|
||
|
|
||
|
private:
|
||
|
vtkLine(const vtkLine&); // Not implemented.
|
||
|
void operator=(const vtkLine&); // Not implemented.
|
||
|
};
|
||
|
|
||
|
//----------------------------------------------------------------------------
|
||
|
inline int vtkLine::GetParametricCenter(double pcoords[3])
|
||
|
{
|
||
|
pcoords[0] = 0.5;
|
||
|
pcoords[1] = pcoords[2] = 0.0;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|
||
|
|