/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkHexahedron.h,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // .NAME vtkHexahedron - a cell that represents a linear 3D hexahedron // .SECTION Description // vtkHexahedron is a concrete implementation of vtkCell to represent a // linear, 3D rectangular hexahedron (e.g., "brick" topology). vtkHexahedron // uses the standard isoparametric shape functions for a linear // hexahedron. The hexahedron is defined by the eight points (0-7) where // (0,1,2,3) is the base of the hexahedron which, using the right hand rule, // forms a quadrilaterial whose normal points in the direction of the // opposite face (4,5,6,7). // .SECTION See Also // vtkConvexPointSet vtkPyramid vtkTetra vtkVoxel vtkWedge #ifndef __vtkHexahedron_h #define __vtkHexahedron_h #include "vtkCell3D.h" class vtkLine; class vtkQuad; class VTK_FILTERING_EXPORT vtkHexahedron : public vtkCell3D { public: static vtkHexahedron *New(); vtkTypeRevisionMacro(vtkHexahedron,vtkCell3D); void PrintSelf(ostream& os, vtkIndent indent); // Description: // See vtkCell3D API for description of these methods. virtual void GetEdgePoints(int edgeId, int* &pts); virtual void GetFacePoints(int faceId, int* &pts); // Description: // See the vtkCell API for descriptions of these methods. int GetCellType() {return VTK_HEXAHEDRON;} int GetNumberOfEdges() {return 12;} int GetNumberOfFaces() {return 6;} vtkCell *GetEdge(int edgeId); vtkCell *GetFace(int faceId); int CellBoundary(int subId, double pcoords[3], vtkIdList *pts); void Contour(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd); int EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights); void EvaluateLocation(int& subId, double pcoords[3], double x[3], double *weights); int IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId); int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts); void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs); virtual double *GetParametricCoords(); // Description: // Hexahedron specific. static void InterpolationFunctions(double pcoords[3], double weights[8]); static void InterpolationDerivs(double pcoords[3], double derivs[24]); static int *GetEdgeArray(int edgeId); static int *GetFaceArray(int faceId); // Description: // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. void JacobianInverse(double pcoords[3], double **inverse, double derivs[24]); protected: vtkHexahedron(); ~vtkHexahedron(); vtkLine *Line; vtkQuad *Quad; private: vtkHexahedron(const vtkHexahedron&); // Not implemented. void operator=(const vtkHexahedron&); // Not implemented. }; #endif