/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkPyramid.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkPyramid.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkLine.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkPointLocator.h" #include "vtkQuad.h" #include "vtkTriangle.h" #include "vtkUnstructuredGrid.h" vtkCxxRevisionMacro(vtkPyramid, "$Revision: 1.3 $"); vtkStandardNewMacro(vtkPyramid); static const double VTK_DIVERGED = 1.e6; //---------------------------------------------------------------------------- // // Construct the pyramid with five points. // vtkPyramid::vtkPyramid() { this->Points->SetNumberOfPoints(5); this->PointIds->SetNumberOfIds(5); for (int i = 0; i < 5; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i,0); } this->Line = vtkLine::New(); this->Triangle = vtkTriangle::New(); this->Quad = vtkQuad::New(); } //---------------------------------------------------------------------------- vtkPyramid::~vtkPyramid() { this->Line->Delete(); this->Triangle->Delete(); this->Quad->Delete(); } static const int VTK_MAX_ITERATION=10; static const double VTK_CONVERGED=1.e-03; //---------------------------------------------------------------------------- int vtkPyramid::EvaluatePosition(double x[3], double closestPoint[3], int& subId, double pcoords[3], double& dist2, double *weights) { int iteration, converged; double params[3]; double fcol[3], rcol[3], scol[3], tcol[3]; int i, j; double d, pt[3]; double derivs[15]; // set initial position for Newton's method subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = 0.5; params[0] = params[1] = params[2] = 0.3333333; // enter iteration loop for (iteration=converged=0; !converged && (iteration < VTK_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives this->InterpolationFunctions(pcoords, weights); this->InterpolationDerivs(pcoords, derivs); // calculate newton functions for (i=0; i<3; i++) { fcol[i] = rcol[i] = scol[i] = tcol[i] = 0.0; } for (i=0; i<5; i++) { this->Points->GetPoint(i, pt); for (j=0; j<3; j++) { fcol[j] += pt[j] * weights[i]; rcol[j] += pt[j] * derivs[i]; scol[j] += pt[j] * derivs[i+5]; tcol[j] += pt[j] * derivs[i+10]; } } for (i=0; i<3; i++) { fcol[i] -= x[i]; } // compute determinants and generate improvements d=vtkMath::Determinant3x3(rcol,scol,tcol); if ( fabs(d) < 1.e-20) { return -1; } pcoords[0] = params[0] - vtkMath::Determinant3x3 (fcol,scol,tcol) / d; pcoords[1] = params[1] - vtkMath::Determinant3x3 (rcol,fcol,tcol) / d; pcoords[2] = params[2] - vtkMath::Determinant3x3 (rcol,scol,fcol) / d; // check for convergence if ( ((fabs(pcoords[0]-params[0])) < VTK_CONVERGED) && ((fabs(pcoords[1]-params[1])) < VTK_CONVERGED) && ((fabs(pcoords[2]-params[2])) < VTK_CONVERGED) ) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) || (fabs(pcoords[2]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if ( !converged ) { return -1; } this->InterpolationFunctions(pcoords, weights); if ( pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001 ) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; dist2 = 0.0; //inside pyramid } return 1; } else { double pc[3], w[5]; if (closestPoint) { for (i=0; i<3; i++) //only approximate, not really true for warped hexa { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, (double *)w); dist2 = vtkMath::Distance2BetweenPoints(closestPoint,x); } return 0; } } //---------------------------------------------------------------------------- void vtkPyramid::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3], double x[3], double *weights) { int i, j; double pt[3]; this->InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i=0; i<5; i++) { this->Points->GetPoint(i, pt); for (j=0; j<3; j++) { x[j] += pt[j] * weights[i]; } } } //---------------------------------------------------------------------------- // Returns the closest face to the point specified. Closeness is measured // parametrically. int vtkPyramid::CellBoundary(int vtkNotUsed(subId), double pcoords[3], vtkIdList *pts) { int i; // define 6 planes that separate regions static double normals[6][3] = { {0.0,-0.5547002,0.8320503}, {0.5547002,0.0,0.8320503}, {0.0,0.5547002,0.8320503}, {-0.5547002,0.0,0.8320503}, {0.70710670,-0.70710670,0.0}, {0.70710670,0.70710670,0.0} }; static double point[3] = {0.5,0.5,0.3333333}; double vals[6]; // evaluate 6 plane equations for (i=0; i<6; i++) { vals[i] = normals[i][0]*(pcoords[0]-point[0]) + normals[i][1]*(pcoords[1]-point[1]) + normals[i][2]*(pcoords[2]-point[2]); } // compare against six planes in parametric space that divide element // into five pieces (each corresponding to a face). if ( vals[4] >= 0.0 && vals[5] <= 0.0 && vals[0] >= 0.0 ) { pts->SetNumberOfIds(3); //triangle face pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(1)); pts->SetId(2,this->PointIds->GetId(4)); } else if ( vals[4] >= 0.0 && vals[5] >= 0.0 && vals[1] >= 0.0 ) { pts->SetNumberOfIds(3); //triangle face pts->SetId(0,this->PointIds->GetId(1)); pts->SetId(1,this->PointIds->GetId(2)); pts->SetId(2,this->PointIds->GetId(4)); } else if ( vals[4] <= 0.0 && vals[5] >= 0.0 && vals[2] >= 0.0 ) { pts->SetNumberOfIds(3); //triangle face pts->SetId(0,this->PointIds->GetId(2)); pts->SetId(1,this->PointIds->GetId(3)); pts->SetId(2,this->PointIds->GetId(4)); } else if ( vals[4] <= 0.0 && vals[5] <= 0.0 && vals[3] >= 0.0 ) { pts->SetNumberOfIds(3); //triangle face pts->SetId(0,this->PointIds->GetId(3)); pts->SetId(1,this->PointIds->GetId(0)); pts->SetId(2,this->PointIds->GetId(4)); } else { pts->SetNumberOfIds(4); //quad face pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(1)); pts->SetId(2,this->PointIds->GetId(2)); pts->SetId(3,this->PointIds->GetId(3)); } if ( pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 || pcoords[2] < 0.0 || pcoords[2] > 1.0 ) { return 0; } else { return 1; } } //---------------------------------------------------------------------------- // Marching pyramids (contouring) // static int edges[8][2] = { {0,1}, {1,2}, {2,3}, {3,0}, {0,4}, {1,4}, {2,4}, {3,4} }; static int faces[5][4] = { {0,3,2,1}, {0,1,4,-1}, {1,2,4,-1}, {2,3,4,-1}, {3,0,4,-1} }; typedef int EDGE_LIST; typedef struct { EDGE_LIST edges[13]; } TRIANGLE_CASES; static TRIANGLE_CASES triCases[] = { {{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //0 {{ 3, 4, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //1 {{ 5, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //2 {{ 5, 1, 4, 1, 3, 4, -1, -1, -1, -1, -1, -1, -1}}, //3 {{ 6, 2, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //4 {{ 3, 4, 0, 6, 2, 1, -1, -1, -1, -1, -1, -1, -1}}, //5 {{ 5, 2, 0, 6, 2, 5, -1, -1, -1, -1, -1, -1, -1}}, //6 {{ 2, 3, 4, 2, 4, 6, 4, 5, 6, -1, -1, -1, -1}}, //7 {{ 2, 7, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //8 {{ 2, 7, 4, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1}}, //9 {{ 5, 1, 0, 2, 7, 3, -1, -1, -1, -1, -1, -1, -1}}, //10 {{ 5, 7, 4, 1, 7, 5, 2, 7, 1, -1, -1, -1, -1}}, //11 {{ 6, 3, 1, 7, 3, 6, -1, -1, -1, -1, -1, -1, -1}}, //12 {{ 4, 6, 7, 0, 6, 4, 1, 6, 0, -1, -1, -1, -1}}, //13 {{ 7, 5, 6, 3, 5, 7, 0, 5, 3, -1, -1, -1, -1}}, //14 {{ 7, 4, 5, 7, 5, 6, -1, -1, -1, -1, -1, -1, -1}}, //15 {{ 5, 7, 4, 6, 7, 5, -1, -1, -1, -1, -1, -1, -1}}, //16 {{ 0, 5, 3, 5, 6, 3, 6, 7, 3, -1, -1, -1, -1}}, //17 {{ 0, 1, 4, 1, 7, 4, 1, 6, 7, -1, -1, -1, -1}}, //18 {{ 1, 6, 3, 6, 7, 3, -1, -1, -1, -1, -1, -1, -1}}, //19 {{ 7, 5, 4, 7, 1, 5, 7, 2, 1, -1, -1, -1, -1}}, //20 {{ 3, 7, 0, 7, 5, 0, 7, 2, 5, 2, 1, 5, -1}}, //21 {{ 4, 2, 0, 7, 2, 4, -1, -1, -1, -1, -1, -1, -1}}, //22 {{ 7, 2, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //23 {{ 2, 4, 3, 5, 4, 2, 6, 5, 2, -1, -1, -1, -1}}, //24 {{ 2, 5, 0, 2, 6, 5, -1, -1, -1, -1, -1, -1, -1}}, //25 {{ 6, 1, 0, 4, 6, 0, 3, 6, 4, 3, 2, 6, -1}}, //26 {{ 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //27 {{ 1, 4, 3, 1, 5, 4, -1, -1, -1, -1, -1, -1, -1}}, //28 {{ 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //29 {{ 4, 3, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //30 {{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}} //31 }; //---------------------------------------------------------------------------- void vtkPyramid::Contour(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) { static int CASE_MASK[5] = {1,2,4,8,16}; TRIANGLE_CASES *triCase; EDGE_LIST *edge; int i, j, index, *vert, v1, v2, newCellId; vtkIdType pts[3]; double t, x1[3], x2[3], x[3], deltaScalar; vtkIdType offset = verts->GetNumberOfCells() + lines->GetNumberOfCells(); // Build the case table for ( i=0, index = 0; i < 5; i++) { if (cellScalars->GetComponent(i,0) >= value) { index |= CASE_MASK[i]; } } triCase = triCases + index; edge = triCase->edges; for ( ; edge[0] > -1; edge += 3 ) { for (i=0; i<3; i++) // insert triangle { vert = edges[edge[i]]; // calculate a preferred interpolation direction deltaScalar = (cellScalars->GetComponent(vert[1],0) - cellScalars->GetComponent(vert[0],0)); if (deltaScalar > 0) { v1 = vert[0]; v2 = vert[1]; } else { v1 = vert[1]; v2 = vert[0]; deltaScalar = -deltaScalar; } // linear interpolation t = ( deltaScalar == 0.0 ? 0.0 : (value - cellScalars->GetComponent(v1,0)) / deltaScalar ); this->Points->GetPoint(v1, x1); this->Points->GetPoint(v2, x2); for (j=0; j<3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if ( locator->InsertUniquePoint(x, pts[i]) ) { if ( outPd ) { vtkIdType p1 = this->PointIds->GetId(v1); vtkIdType p2 = this->PointIds->GetId(v2); outPd->InterpolateEdge(inPd,pts[i],p1,p2,t); } } } // check for degenerate triangle if ( pts[0] != pts[1] && pts[0] != pts[2] && pts[1] != pts[2] ) { newCellId = offset + polys->InsertNextCell(3,pts); outCd->CopyData(inCd,cellId,newCellId); } } } //---------------------------------------------------------------------------- int *vtkPyramid::GetEdgeArray(int edgeId) { return edges[edgeId]; } //---------------------------------------------------------------------------- vtkCell *vtkPyramid::GetEdge(int edgeId) { int *verts; verts = edges[edgeId]; // load point id's this->Line->PointIds->SetId(0,this->PointIds->GetId(verts[0])); this->Line->PointIds->SetId(1,this->PointIds->GetId(verts[1])); // load coordinates this->Line->Points->SetPoint(0,this->Points->GetPoint(verts[0])); this->Line->Points->SetPoint(1,this->Points->GetPoint(verts[1])); return this->Line; } //---------------------------------------------------------------------------- int *vtkPyramid::GetFaceArray(int faceId) { return faces[faceId]; } //---------------------------------------------------------------------------- vtkCell *vtkPyramid::GetFace(int faceId) { int *verts; verts = faces[faceId]; if ( verts[3] != -1 ) // quad cell { // load point id's this->Quad->PointIds->SetId(0,this->PointIds->GetId(verts[0])); this->Quad->PointIds->SetId(1,this->PointIds->GetId(verts[1])); this->Quad->PointIds->SetId(2,this->PointIds->GetId(verts[2])); this->Quad->PointIds->SetId(3,this->PointIds->GetId(verts[3])); // load coordinates this->Quad->Points->SetPoint(0,this->Points->GetPoint(verts[0])); this->Quad->Points->SetPoint(1,this->Points->GetPoint(verts[1])); this->Quad->Points->SetPoint(2,this->Points->GetPoint(verts[2])); this->Quad->Points->SetPoint(3,this->Points->GetPoint(verts[3])); return this->Quad; } else { // load point id's this->Triangle->PointIds->SetId(0,this->PointIds->GetId(verts[0])); this->Triangle->PointIds->SetId(1,this->PointIds->GetId(verts[1])); this->Triangle->PointIds->SetId(2,this->PointIds->GetId(verts[2])); // load coordinates this->Triangle->Points->SetPoint(0,this->Points->GetPoint(verts[0])); this->Triangle->Points->SetPoint(1,this->Points->GetPoint(verts[1])); this->Triangle->Points->SetPoint(2,this->Points->GetPoint(verts[2])); return this->Triangle; } } //---------------------------------------------------------------------------- // Intersect faces against line. // int vtkPyramid::IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) { int intersection=0; double pt1[3], pt2[3], pt3[3], pt4[3]; double tTemp; double pc[3], xTemp[3], dist2, weights[5]; int faceNum; t = VTK_DOUBLE_MAX; //first intersect the triangle faces for (faceNum=1; faceNum<5; faceNum++) { this->Points->GetPoint(faces[faceNum][0], pt1); this->Points->GetPoint(faces[faceNum][1], pt2); this->Points->GetPoint(faces[faceNum][2], pt3); this->Triangle->Points->SetPoint(0,pt1); this->Triangle->Points->SetPoint(1,pt2); this->Triangle->Points->SetPoint(2,pt3); if ( this->Triangle->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId) ) { intersection = 1; if ( tTemp < t ) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; this->EvaluatePosition(x, xTemp, subId, pcoords, dist2, weights); } } } //now intersect the quad face this->Points->GetPoint(faces[0][0], pt1); this->Points->GetPoint(faces[0][1], pt2); this->Points->GetPoint(faces[0][2], pt3); this->Points->GetPoint(faces[0][3], pt4); this->Quad->Points->SetPoint(0,pt1); this->Quad->Points->SetPoint(1,pt2); this->Quad->Points->SetPoint(2,pt3); this->Quad->Points->SetPoint(3,pt4); if ( this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId) ) { intersection = 1; if ( tTemp < t ) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 0.0; } } return intersection; } //---------------------------------------------------------------------------- int vtkPyramid::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds, vtkPoints *pts) { int p[4], i; ptIds->Reset(); pts->Reset(); // The base of the pyramid must be split into two triangles. There are two // ways to do this (across either diagonal). Pick the shorter diagonal. double base_points[4][3]; for (i = 0; i < 4; i++) { this->Points->GetPoint(i, base_points[i]); } double diagonal1, diagonal2; diagonal1 = vtkMath::Distance2BetweenPoints(base_points[0], base_points[2]); diagonal2 = vtkMath::Distance2BetweenPoints(base_points[1], base_points[3]); if (diagonal1 < diagonal2) { for (i=0; i < 4; i++) { p[0] = 0; p[1] = 1; p[2] = 2; p[3] = 4; ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } for (i=0; i < 4; i++) { p[0] = 0; p[1] = 2; p[2] = 3; p[3] = 4; ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } } else { for (i=0; i < 4; i++) { p[0] = 0; p[1] = 1; p[2] = 3; p[3] = 4; ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } for (i=0; i < 4; i++) { p[0] = 1; p[1] = 2; p[2] = 3; p[3] = 4; ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } } return !(diagonal1 == diagonal2); } //---------------------------------------------------------------------------- void vtkPyramid::Derivatives(int vtkNotUsed(subId), double pcoords[3], double *values, int dim, double *derivs) { double *jI[3], j0[3], j1[3], j2[3]; double functionDerivs[15], sum[3], value; int i, j, k; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(pcoords, jI, functionDerivs); // now compute derivates of values provided for (k=0; k < dim; k++) //loop over values per vertex { sum[0] = sum[1] = sum[2] = 0.0; for ( i=0; i < 5; i++) //loop over interp. function derivatives { value = values[dim*i + k]; sum[0] += functionDerivs[i] * value; sum[1] += functionDerivs[5 + i] * value; sum[2] += functionDerivs[10 + i] * value; } for (j=0; j < 3; j++) //loop over derivative directions { derivs[3*k + j] = sum[0]*jI[0][j] + sum[1]*jI[1][j] + sum[2]*jI[2][j]; } } } //---------------------------------------------------------------------------- // Compute iso-parametric interpolation functions for pyramid // void vtkPyramid::InterpolationFunctions(double pcoords[3], double sf[5]) { double rm, sm, tm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; tm = 1. - pcoords[2]; sf[0] = rm*sm*tm; sf[1] = pcoords[0]*sm*tm; sf[2] = pcoords[0]*pcoords[1]*tm; sf[3] = rm*pcoords[1]*tm; sf[4] = pcoords[2]; } //---------------------------------------------------------------------------- void vtkPyramid::InterpolationDerivs(double pcoords[3], double derivs[15]) { double rm, sm, tm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; tm = 1. - pcoords[2]; // r-derivatives derivs[0] = -sm*tm; derivs[1] = sm*tm; derivs[2] = pcoords[1]*tm; derivs[3] = -pcoords[1]*tm; derivs[4] = 0.0; // s-derivatives derivs[5] = -rm*tm; derivs[6] = -pcoords[0]*tm; derivs[7] = pcoords[0]*tm; derivs[8] = rm*tm; derivs[9] = 0.0; // t-derivatives derivs[10] = -rm*sm; derivs[11] = -pcoords[0]*sm; derivs[12] = -pcoords[0]*pcoords[1]; derivs[13] = -rm*pcoords[1]; derivs[14] = 1.0; } //---------------------------------------------------------------------------- // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. Returns 0 if no inverse exists. // Note for pyramid: the inverse Jacobian is undefined at the apex. int vtkPyramid::JacobianInverse(double pcoords[3], double **inverse, double derivs[15]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives this->InterpolationDerivs(pcoords,derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i=0; i < 3; i++) //initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for ( j=0; j < 5; j++ ) { this->Points->GetPoint(j, x); for ( i=0; i < 3; i++ ) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[5 + j]; m2[i] += x[i] * derivs[10 + j]; } } // now find the inverse if ( vtkMath::InvertMatrix(m,inverse,3) == 0 ) { #define VTK_MAX_WARNS 3 static int numWarns=0; if ( numWarns++ < VTK_MAX_WARNS ) { vtkErrorMacro(<<"Jacobian inverse not found"); vtkErrorMacro(<<"Matrix:" << m[0][0] << " " << m[0][1] << " " << m[0][2] << m[1][0] << " " << m[1][1] << " " << m[1][2] << m[2][0] << " " << m[2][1] << " " << m[2][2] ); return 0; } } return 1; } //---------------------------------------------------------------------------- void vtkPyramid::GetEdgePoints(int edgeId, int* &pts) { pts = this->GetEdgeArray(edgeId); } //---------------------------------------------------------------------------- void vtkPyramid::GetFacePoints(int faceId, int* &pts) { pts = this->GetFaceArray(faceId); } static double vtkPyramidCellPCoords[15] = {0.0,0.0,0.0, 1.0,0.0,0.0, 1.0,1.0,0.0, 0.0,1.0,0.0, 0.0,0.0,1.0}; //---------------------------------------------------------------------------- double *vtkPyramid::GetParametricCoords() { return vtkPyramidCellPCoords; } //---------------------------------------------------------------------------- void vtkPyramid::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Line:\n"; this->Line->PrintSelf(os,indent.GetNextIndent()); os << indent << "Triangle:\n"; this->Triangle->PrintSelf(os,indent.GetNextIndent()); os << indent << "Quad:\n"; this->Quad->PrintSelf(os,indent.GetNextIndent()); }