/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkTetra.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkTetra.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkLine.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkPointLocator.h" #include "vtkTriangle.h" #include "vtkUnstructuredGrid.h" vtkCxxRevisionMacro(vtkTetra, "$Revision: 1.4 $"); vtkStandardNewMacro(vtkTetra); //---------------------------------------------------------------------------- // Construct the tetra with four points. vtkTetra::vtkTetra() { int i; this->Points->SetNumberOfPoints(4); this->PointIds->SetNumberOfIds(4); for (i = 0; i < 4; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); } for (i = 0; i < 4; i++) { this->PointIds->SetId(i,0); } this->Line = vtkLine::New(); this->Triangle = vtkTriangle::New(); } //---------------------------------------------------------------------------- vtkTetra::~vtkTetra() { this->Triangle->Delete(); this->Line->Delete(); } //---------------------------------------------------------------------------- int vtkTetra::EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& minDist2, double *weights) { double pt1[3], pt2[3], pt3[3], pt4[3]; int i; double rhs[3], c1[3], c2[3], c3[3]; double det, p4; subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = 0.0; this->Points->GetPoint(1, pt1); this->Points->GetPoint(2, pt2); this->Points->GetPoint(3, pt3); this->Points->GetPoint(0, pt4); for (i=0; i<3; i++) { rhs[i] = x[i] - pt4[i]; c1[i] = pt1[i] - pt4[i]; c2[i] = pt2[i] - pt4[i]; c3[i] = pt3[i] - pt4[i]; } if ( (det = vtkMath::Determinant3x3(c1,c2,c3)) == 0.0 ) { return -1; } pcoords[0] = vtkMath::Determinant3x3 (rhs,c2,c3) / det; pcoords[1] = vtkMath::Determinant3x3 (c1,rhs,c3) / det; pcoords[2] = vtkMath::Determinant3x3 (c1,c2,rhs) / det; p4 = 1.0 - pcoords[0] - pcoords[1] - pcoords[2]; weights[0] = p4; weights[1] = pcoords[0]; weights[2] = pcoords[1]; weights[3] = pcoords[2]; if ( pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001 && p4 >= -0.001 && p4 <= 1.001 ) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; minDist2 = 0.0; //inside tetra } return 1; } else { //could easily be sped up using parametric localization - next release double dist2, w[3], closest[3], pc[3]; int sub; vtkTriangle *triangle; if (closestPoint) { for (minDist2=VTK_DOUBLE_MAX,i=0; i<4; i++) { triangle = (vtkTriangle *) this->GetFace (i); triangle->EvaluatePosition(x,closest,sub,pc,dist2,(double *)w); if ( dist2 < minDist2 ) { closestPoint[0] = closest[0]; closestPoint[1] = closest[1]; closestPoint[2] = closest[2]; minDist2 = dist2; } } } return 0; } } //---------------------------------------------------------------------------- void vtkTetra::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3], double x[3], double *weights) { double u4; double pt1[3], pt2[3], pt3[3], pt4[3]; int i; this->Points->GetPoint(1, pt1); this->Points->GetPoint(2, pt2); this->Points->GetPoint(3, pt3); this->Points->GetPoint(0, pt4); u4 = 1.0 - pcoords[0] - pcoords[1] - pcoords[2]; for (i=0; i<3; i++) { x[i] = pt1[i]*pcoords[0] + pt2[i]*pcoords[1] + pt3[i]*pcoords[2] + pt4[i]*u4; } weights[0] = u4; weights[1] = pcoords[0]; weights[2] = pcoords[1]; weights[3] = pcoords[2]; } //---------------------------------------------------------------------------- // Returns the set of points that are on the boundary of the tetrahedron that // are closest parametrically to the point specified. This may include faces, // edges, or vertices. int vtkTetra::CellBoundary(int vtkNotUsed(subId), double pcoords[3], vtkIdList *pts) { double minPCoord = 1.0 - pcoords[0] - pcoords[1] - pcoords[2]; int i, idx=3; for ( i=0; i < 3; i++ ) { if ( pcoords[i] < minPCoord ) { minPCoord = pcoords[i]; idx = i; } } pts->SetNumberOfIds(3); switch (idx) //find the face closest to the point { case 0: pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(2)); pts->SetId(2,this->PointIds->GetId(3)); break; case 1: pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(1)); pts->SetId(2,this->PointIds->GetId(3)); break; case 2: pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(1)); pts->SetId(2,this->PointIds->GetId(2)); break; case 3: pts->SetId(0,this->PointIds->GetId(1)); pts->SetId(1,this->PointIds->GetId(2)); pts->SetId(2,this->PointIds->GetId(3)); break; } if ( pcoords[0] < 0.0 || pcoords[1] < 0.0 || pcoords[2] < 0.0 || pcoords[0] > 1.0 || pcoords[1] > 1.0 || pcoords[2] > 1.0 || (1.0 - pcoords[0] - pcoords[1] - pcoords[2]) < 0.0 ) { return 0; } else { return 1; } } //---------------------------------------------------------------------------- // Marching tetrahedron // static int edges[6][2] = { {0,1}, {1,2}, {2,0}, {0,3}, {1,3}, {2,3} }; static int faces[4][3] = { {0,1,3}, {1,2,3}, {2,0,3}, {0,2,1} }; typedef int EDGE_LIST; typedef struct { EDGE_LIST edges[7]; } TRIANGLE_CASES; static TRIANGLE_CASES triCases[] = { {{-1, -1, -1, -1, -1, -1, -1}}, {{ 0, 3, 2, -1, -1, -1, -1}}, {{ 0, 1, 4, -1, -1, -1, -1}}, {{ 3, 2, 4, 4, 2, 1, -1}}, {{ 1, 2, 5, -1, -1, -1, -1}}, {{ 3, 5, 1, 3, 1, 0, -1}}, {{ 0, 2, 5, 0, 5, 4, -1}}, {{ 3, 5, 4, -1, -1, -1, -1}}, {{ 3, 4, 5, -1, -1, -1, -1}}, {{ 0, 4, 5, 0, 5, 2, -1}}, {{ 0, 5, 3, 0, 1, 5, -1}}, {{ 5, 2, 1, -1, -1, -1, -1}}, {{ 3, 4, 1, 3, 1, 2, -1}}, {{ 0, 4, 1, -1, -1, -1, -1}}, {{ 0, 2, 3, -1, -1, -1, -1}}, {{-1, -1, -1, -1, -1, -1, -1}} }; //---------------------------------------------------------------------------- void vtkTetra::Contour(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) { static int CASE_MASK[4] = {1,2,4,8}; TRIANGLE_CASES *triCase; EDGE_LIST *edge; int i, j, index, *vert, v1, v2, newCellId; vtkIdType pts[3]; double t, x1[3], x2[3], x[3], deltaScalar; vtkIdType offset = verts->GetNumberOfCells() + lines->GetNumberOfCells(); // Build the case table for ( i=0, index = 0; i < 4; i++) { if (cellScalars->GetComponent(i,0) >= value) { index |= CASE_MASK[i]; } } triCase = triCases + index; edge = triCase->edges; for ( ; edge[0] > -1; edge += 3 ) { for (i=0; i<3; i++) // insert triangle { vert = edges[edge[i]]; // calculate a preferred interpolation direction deltaScalar = (cellScalars->GetComponent(vert[1],0) - cellScalars->GetComponent(vert[0],0)); if (deltaScalar > 0) { v1 = vert[0]; v2 = vert[1]; } else { v1 = vert[1]; v2 = vert[0]; deltaScalar = -deltaScalar; } // linear interpolation across edge t = ( deltaScalar == 0.0 ? 0.0 : (value - cellScalars->GetComponent(v1,0)) / deltaScalar ); this->Points->GetPoint(v1, x1); this->Points->GetPoint(v2, x2); for (j=0; j<3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if ( locator->InsertUniquePoint(x, pts[i]) ) { if ( outPd ) { vtkIdType p1 = this->PointIds->GetId(v1); vtkIdType p2 = this->PointIds->GetId(v2); outPd->InterpolateEdge(inPd,pts[i],p1,p2,t); } } } // check for degenerate triangle if ( pts[0] != pts[1] && pts[0] != pts[2] && pts[1] != pts[2] ) { newCellId = offset + polys->InsertNextCell(3,pts); outCd->CopyData(inCd,cellId,newCellId); } } } //---------------------------------------------------------------------------- int *vtkTetra::GetEdgeArray(int edgeId) { return edges[edgeId]; } //---------------------------------------------------------------------------- vtkCell *vtkTetra::GetEdge(int edgeId) { int *verts; verts = edges[edgeId]; // load point id's this->Line->PointIds->SetId(0,this->PointIds->GetId(verts[0])); this->Line->PointIds->SetId(1,this->PointIds->GetId(verts[1])); // load coordinates this->Line->Points->SetPoint(0,this->Points->GetPoint(verts[0])); this->Line->Points->SetPoint(1,this->Points->GetPoint(verts[1])); return this->Line; } //---------------------------------------------------------------------------- int *vtkTetra::GetFaceArray(int faceId) { return faces[faceId]; } //---------------------------------------------------------------------------- vtkCell *vtkTetra::GetFace(int faceId) { int *verts; verts = faces[faceId]; // load point id's this->Triangle->PointIds->SetId(0,this->PointIds->GetId(verts[0])); this->Triangle->PointIds->SetId(1,this->PointIds->GetId(verts[1])); this->Triangle->PointIds->SetId(2,this->PointIds->GetId(verts[2])); // load coordinates this->Triangle->Points->SetPoint(0,this->Points->GetPoint(verts[0])); this->Triangle->Points->SetPoint(1,this->Points->GetPoint(verts[1])); this->Triangle->Points->SetPoint(2,this->Points->GetPoint(verts[2])); return this->Triangle; } //---------------------------------------------------------------------------- // // Intersect triangle faces against line. // int vtkTetra::IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) { int intersection=0; double pt1[3], pt2[3], pt3[3]; double tTemp; double pc[3], xTemp[3]; int faceNum; t = VTK_DOUBLE_MAX; for (faceNum=0; faceNum<4; faceNum++) { this->Points->GetPoint(faces[faceNum][0], pt1); this->Points->GetPoint(faces[faceNum][1], pt2); this->Points->GetPoint(faces[faceNum][2], pt3); this->Triangle->Points->SetPoint(0,pt1); this->Triangle->Points->SetPoint(1,pt2); this->Triangle->Points->SetPoint(2,pt3); if ( this->Triangle->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId) ) { intersection = 1; if ( tTemp < t ) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 0: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 0.0; break; case 1: pcoords[0] = 0.0; pcoords[1] = pc[1]; pcoords[2] = 0.0; break; case 2: pcoords[0] = pc[0]; pcoords[1] = 0.0; pcoords[2] = 0.0; break; case 3: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = pc[2]; break; } } } } return intersection; } //---------------------------------------------------------------------------- int vtkTetra::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds, vtkPoints *pts) { ptIds->Reset(); pts->Reset(); for ( int i=0; i < 4; i++ ) { ptIds->InsertId(i,this->PointIds->GetId(i)); pts->InsertPoint(i,this->Points->GetPoint(i)); } return 1; } //---------------------------------------------------------------------------- void vtkTetra::Derivatives(int vtkNotUsed(subId), double vtkNotUsed(pcoords)[3], double *values, int dim, double *derivs) { double *jI[3], j0[3], j1[3], j2[3]; double functionDerivs[12], sum[3], value; int i, j, k; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(jI, functionDerivs); // now compute derivates of values provided for (k=0; k < dim; k++) //loop over values per vertex { sum[0] = sum[1] = sum[2] = 0.0; for ( i=0; i < 4; i++) //loop over interp. function derivatives { value = values[dim*i + k]; sum[0] += functionDerivs[i] * value; sum[1] += functionDerivs[4 + i] * value; sum[2] += functionDerivs[8 + i] * value; } for (j=0; j < 3; j++) //loop over derivative directions { derivs[3*k + j] = sum[0]*jI[j][0] + sum[1]*jI[j][1] + sum[2]*jI[j][2]; } } } //---------------------------------------------------------------------------- // Compute the center of the tetrahedron, void vtkTetra::TetraCenter(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]) { center[0] = (p1[0]+p2[0]+p3[0]+p4[0]) / 4.0; center[1] = (p1[1]+p2[1]+p3[1]+p4[1]) / 4.0; center[2] = (p1[2]+p2[2]+p3[2]+p4[2]) / 4.0; } //---------------------------------------------------------------------------- double vtkTetra::ComputeVolume(double p1[3], double p2[3], double p3[3], double p4[3]) { return (vtkMath::Determinant3x3(p2[0]-p1[0], p3[0]-p1[0], p4[0]-p1[0], p2[1]-p1[1], p3[1]-p1[1], p4[1]-p1[1], p2[2]-p1[2], p3[2]-p1[2], p4[2]-p1[2])/6.0); } //---------------------------------------------------------------------------- // Compute the circumcenter (center[3]) and radius squared (method // return value) of a tetrahedron defined by the four points x1, x2, // x3, and x4. double vtkTetra::Circumsphere(double x1[3], double x2[3], double x3[3], double x4[3], double center[3]) { double n12[3], n13[3], n14[3], x12[3], x13[3], x14[3]; double *A[3], rhs[3], sum, diff; int i; // calculate normals and intersection points of bisecting planes. // for (i=0; i<3; i++) { n12[i] = x2[i] - x1[i]; n13[i] = x3[i] - x1[i]; n14[i] = x4[i] - x1[i]; x12[i] = (x2[i] + x1[i]) / 2.0; x13[i] = (x3[i] + x1[i]) / 2.0; x14[i] = (x4[i] + x1[i]) / 2.0; } // Compute solutions to the intersection of two bisecting lines // (3-eqns. in 3-unknowns). // // form system matrices // A[0] = n12; A[1] = n13; A[2] = n14; rhs[0] = vtkMath::Dot(n12,x12); rhs[1] = vtkMath::Dot(n13,x13); rhs[2] = vtkMath::Dot(n14,x14); // Solve system of equations // if ( vtkMath::SolveLinearSystem(A,rhs,3) == 0 ) { center[0] = center[1] = center[2] = 0.0; return VTK_DOUBLE_MAX; } else { for (i=0; i<3; i++) { center[i] = rhs[i]; } } //determine average value of radius squared for (sum=0, i=0; i<3; i++) { diff = x1[i] - rhs[i]; sum += diff*diff; diff = x2[i] - rhs[i]; sum += diff*diff; diff = x3[i] - rhs[i]; sum += diff*diff; diff = x4[i] - rhs[i]; sum += diff*diff; } if ( (sum /= 4.0) > VTK_DOUBLE_MAX ) { return VTK_DOUBLE_MAX; } else { return sum; } } //---------------------------------------------------------------------------- // Compute the incenter (center[3]) and radius (method return value) of // a tetrahedron defined by the four points p1, p2, p3, and p4. double vtkTetra::Insphere(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]) { double u[3], v[3], w[3]; double p[3], q[3], r[3]; double O1[3],O2[3]; double y[3], s[3], t; u[0] = p2[0]-p1[0]; u[1] = p2[1]-p1[1]; u[2] = p2[2]-p1[2]; v[0] = p3[0]-p1[0]; v[1] = p3[1]-p1[1]; v[2] = p3[2]-p1[2]; w[0] = p4[0]-p1[0]; w[1] = p4[1]-p1[1]; w[2] = p4[2]-p1[2]; vtkMath::Cross(u,v,p); vtkMath::Normalize(p); vtkMath::Cross(v,w,q); vtkMath::Normalize(q); vtkMath::Cross(w,u,r); vtkMath::Normalize(r); O1[0] = p[0]-q[0]; O1[1] = p[1]-q[1]; O1[2] = p[2]-q[2]; O2[0] = q[0]-r[0]; O2[1] = q[1]-r[1]; O2[2] = q[2]-r[2]; vtkMath::Cross(O1,O2,y); O1[0] = u[0]-w[0]; O1[1] = u[1]-w[1]; O1[2] = u[2]-w[2]; O2[0] = v[0]-w[0]; O2[1] = v[1]-w[1]; O2[2] = v[2]-w[2]; vtkMath::Cross(O1,O2,s); vtkMath::Normalize(s); s[0] = -1 * s[0]; s[1] = -1 * s[1]; s[2] = -1 * s[2]; O1[0] = s[0]-p[0]; O1[1] = s[1]-p[1]; O1[2] = s[2]-p[2]; t = vtkMath::Dot(w,s)/vtkMath::Dot(y,O1); center[0] = p1[0] + (t * y[0]); center[1] = p1[1] + (t * y[1]); center[2] = p1[2] + (t * y[2]); return (fabs(t* vtkMath::Dot(y,p))); } //---------------------------------------------------------------------------- // Given a 3D point x[3], determine the barycentric coordinates of the point. // Barycentric coordinates are a natural coordinate system for simplices that // express a position as a linear combination of the vertices. For a // tetrahedron, there are four barycentric coordinates (because there are // four vertices), and the sum of the coordinates must equal 1. If a // point x is inside a simplex, then all four coordinates will be strictly // positive. If three coordinates are zero (so the fourth =1), then the // point x is on a vertex. If two coordinates are zero, the point x is on an // edge (and so on). In this method, you must specify the vertex coordinates // x1->x4. Returns 0 if tetrahedron is degenerate. int vtkTetra::BarycentricCoords(double x[3], double x1[3], double x2[3], double x3[3], double x4[3], double bcoords[4]) { double *A[4], p[4], a1[4], a2[4], a3[4], a4[4]; int i; // Homogenize the variables; load into arrays. // a1[0] = x1[0]; a1[1] = x2[0]; a1[2] = x3[0]; a1[3] = x4[0]; a2[0] = x1[1]; a2[1] = x2[1]; a2[2] = x3[1]; a2[3] = x4[1]; a3[0] = x1[2]; a3[1] = x2[2]; a3[2] = x3[2]; a3[3] = x4[2]; a4[0] = 1.0; a4[1] = 1.0; a4[2] = 1.0; a4[3] = 1.0; p[0] = x[0]; p[1] = x[1]; p[2] = x[2]; p[3] = 1.0; // Now solve system of equations for barycentric coordinates // A[0] = a1; A[1] = a2; A[2] = a3; A[3] = a4; if ( vtkMath::SolveLinearSystem(A,p,4) ) { for (i=0; i<4; i++) { bcoords[i] = p[i]; } return 1; } else { return 0; } } //---------------------------------------------------------------------------- // // Compute iso-parametric interpolation functions // void vtkTetra::InterpolationFunctions(double pcoords[3], double sf[4]) { sf[0] = 1.0 - pcoords[0] - pcoords[1] - pcoords[2]; sf[1] = pcoords[0]; sf[2] = pcoords[1]; sf[3] = pcoords[2]; } //---------------------------------------------------------------------------- void vtkTetra::InterpolationDerivs(double derivs[12]) { // r-derivatives derivs[0] = -1.0; derivs[1] = 1.0; derivs[2] = 0.0; derivs[3] = 0.0; // s-derivatives derivs[4] = -1.0; derivs[5] = 0.0; derivs[6] = 1.0; derivs[7] = 0.0; // t-derivatives derivs[8] = -1.0; derivs[9] = 0.0; derivs[10] = 0.0; derivs[11] = 1.0; } //---------------------------------------------------------------------------- // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. Returns 0 if no inverse exists. int vtkTetra::JacobianInverse(double **inverse, double derivs[12]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives this->InterpolationDerivs(derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i=0; i < 3; i++) //initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for ( j=0; j < 4; j++ ) { this->Points->GetPoint(j, x); for ( i=0; i < 3; i++ ) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[4 + j]; m2[i] += x[i] * derivs[8 + j]; } } // now find the inverse if ( vtkMath::InvertMatrix(m,inverse,3) == 0 ) { #define VTK_MAX_WARNS 3 static int numWarns=0; if ( numWarns++ < VTK_MAX_WARNS ) { vtkErrorMacro(<<"Jacobian inverse not found"); vtkErrorMacro(<<"Matrix:" << m[0][0] << " " << m[0][1] << " " << m[0][2] << m[1][0] << " " << m[1][1] << " " << m[1][2] << m[2][0] << " " << m[2][1] << " " << m[2][2] ); return 0; } } return 1; } //---------------------------------------------------------------------------- void vtkTetra::GetEdgePoints(int edgeId, int* &pts) { pts = this->GetEdgeArray(edgeId); } //---------------------------------------------------------------------------- void vtkTetra::GetFacePoints(int faceId, int* &pts) { pts = this->GetFaceArray(faceId); } //---------------------------------------------------------------------------- // The clip table produces either a single tetrahedron or a single wedge as // output. The format of the case table is #pts, ptids. Points >= 100 are // existing vertices; otherwise the number is an edge number requiring that // an intersection is produced. // support tetra clipping typedef int TETRA_EDGE_LIST; typedef struct { TETRA_EDGE_LIST edges[7]; } TETRA_CASES; static TETRA_CASES tetraCases[] = { {{ 0, 0, 0, 0, 0, 0, 0}}, // 0 {{ 4, 0, 3, 2, 100, 0, 0}}, // 1 {{ 4, 0, 1, 4, 101, 0, 0}}, // 2 {{ 6, 101, 1, 4, 100, 2, 3}}, // 3 {{ 4, 1, 2, 5, 102, 0, 0}}, // 4 {{ 6, 102, 5, 1, 100, 3, 0}}, // 5 {{ 6, 102, 2, 5, 101, 0, 4}}, // 6 {{ 6, 3, 4, 5, 100, 101, 102}}, // 7 {{ 4, 3, 4, 5, 103, 0, 0}}, // 8 {{ 6, 103, 4, 5, 100, 0, 2}}, // 9 {{ 6, 103, 5, 3, 101, 1, 0}}, // 10 {{ 6, 100, 101, 103, 2, 1, 5}}, // 11 {{ 6, 2, 102, 1, 3, 103, 4}}, // 12 {{ 6, 0, 1, 4, 100, 102, 103}}, // 13 {{ 6, 0, 3, 2, 101, 103, 102}}, // 14 {{ 4, 100, 101, 102, 103, 0, 0}} // 15 }; //---------------------------------------------------------------------------- // Clip this tetra using scalar value provided. Like contouring, except that // it cuts the tetra to produce other 3D cells (note that this method will // produce a single tetrahedra or a single wedge). The table has been // carefully designed to insure that face neighbors--after clipping--are // remain compatible. void vtkTetra::Clip(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *tets, vtkPointData *inPD, vtkPointData *outPD, vtkCellData *inCD, vtkIdType cellId, vtkCellData *outCD, int insideOut) { static int CASE_MASK[4] = {1,2,4,8}; TETRA_CASES *tetraCase; TETRA_EDGE_LIST *edge; int i, j, index, *vert, newCellId; vtkIdType pts[6]; int vertexId; double t, x1[3], x2[3], x[3]; // Build the case table if ( insideOut ) { for ( i=0, index=0; i < 4; i++) { if (cellScalars->GetComponent(i,0) <= value) { index |= CASE_MASK[i]; } } } else { for ( i=0, index=0; i < 4; i++) { if (cellScalars->GetComponent(i,0) > value) { index |= CASE_MASK[i]; } } } // Select the case based on the index and get the list of edges for this case tetraCase = tetraCases + index; edge = tetraCase->edges; // produce the clipped cell for (i=1; i<=edge[0]; i++) // insert tetra { // vertex exists, and need not be interpolated if (edge[i] >= 100) { vertexId = edge[i] - 100; this->Points->GetPoint(vertexId, x); if ( locator->InsertUniquePoint(x, pts[i-1]) ) { outPD->CopyData(inPD,this->PointIds->GetId(vertexId),pts[i-1]); } } else //new vertex, interpolate { int v1, v2; vert = edges[edge[i]]; // calculate a preferred interpolation direction double deltaScalar = (cellScalars->GetComponent(vert[1],0) - cellScalars->GetComponent(vert[0],0)); if (deltaScalar > 0) { v1 = vert[0]; v2 = vert[1]; } else { v1 = vert[1]; v2 = vert[0]; deltaScalar = -deltaScalar; } // linear interpolation across edge t = ( deltaScalar == 0.0 ? 0.0 : (value - cellScalars->GetComponent(v1,0)) / deltaScalar ); this->Points->GetPoint(v1, x1); this->Points->GetPoint(v2, x2); for (j=0; j<3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if ( locator->InsertUniquePoint(x, pts[i-1]) ) { vtkIdType p1 = this->PointIds->GetId(v1); vtkIdType p2 = this->PointIds->GetId(v2); outPD->InterpolateEdge(inPD,pts[i-1],p1,p2,t); } } } int allDifferent, numUnique=1; for (i=0; i<(edge[0]-1); i++) { for (allDifferent=1, j=i+1; jInsertNextCell(edge[0],pts); outCD->CopyData(inCD,cellId,newCellId); } else if ( edge[0] == 6 && numUnique > 3 ) // check for degenerate wedge { newCellId = tets->InsertNextCell(edge[0],pts); outCD->CopyData(inCD,cellId,newCellId); } } //---------------------------------------------------------------------------- static double vtkTetraCellPCoords[12] = {0.0,0.0,0.0, 1.0,0.0,0.0, 0.0,1.0,0.0, 0.0,0.0,1.0}; double *vtkTetra::GetParametricCoords() { return vtkTetraCellPCoords; } //---------------------------------------------------------------------------- double vtkTetra::GetParametricDistance(double pcoords[3]) { int i; double pDist, pDistMax=0.0; double pc[4]; pc[0] = pcoords[0]; pc[1] = pcoords[1]; pc[2] = pcoords[2]; pc[3] = 1.0 - pcoords[0] - pcoords[1] - pcoords[2]; for (i=0; i<4; i++) { if ( pc[i] < 0.0 ) { pDist = -pc[i]; } else if ( pc[i] > 1.0 ) { pDist = pc[i] - 1.0; } else //inside the cell in the parametric direction { pDist = 0.0; } if ( pDist > pDistMax ) { pDistMax = pDist; } } return pDistMax; } //---------------------------------------------------------------------------- void vtkTetra::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Line:\n"; this->Line->PrintSelf(os,indent.GetNextIndent()); os << indent << "Triangle:\n"; this->Triangle->PrintSelf(os,indent.GetNextIndent()); }