/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkWedge.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkWedge.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkLine.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkPointLocator.h" #include "vtkQuad.h" #include "vtkTriangle.h" #include "vtkUnstructuredGrid.h" vtkCxxRevisionMacro(vtkWedge, "$Revision: 1.4 $"); vtkStandardNewMacro(vtkWedge); static const double VTK_DIVERGED = 1.e6; //---------------------------------------------------------------------------- // Construct the wedge with six points. vtkWedge::vtkWedge() { this->Points->SetNumberOfPoints(6); this->PointIds->SetNumberOfIds(6); for (int i = 0; i < 6; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i,0); } this->Line = vtkLine::New(); this->Triangle = vtkTriangle::New(); this->Quad = vtkQuad::New(); } //---------------------------------------------------------------------------- vtkWedge::~vtkWedge() { this->Line->Delete(); this->Triangle->Delete(); this->Quad->Delete(); } static const int VTK_WEDGE_MAX_ITERATION=10; static const double VTK_WEDGE_CONVERGED=1.e-03; //---------------------------------------------------------------------------- int vtkWedge::EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights) { int iteration, converged; double params[3]; double fcol[3], rcol[3], scol[3], tcol[3]; int i, j; double d, pt[3]; double derivs[18]; // set initial position for Newton's method subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = 0.5; params[0] = params[1] = params[2] = 0.5; // enter iteration loop for (iteration=converged=0; !converged && (iteration < VTK_WEDGE_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives this->InterpolationFunctions(pcoords, weights); this->InterpolationDerivs(pcoords, derivs); // calculate newton functions for (i=0; i<3; i++) { fcol[i] = rcol[i] = scol[i] = tcol[i] = 0.0; } for (i=0; i<6; i++) { this->Points->GetPoint(i, pt); for (j=0; j<3; j++) { fcol[j] += pt[j] * weights[i]; rcol[j] += pt[j] * derivs[i]; scol[j] += pt[j] * derivs[i+6]; tcol[j] += pt[j] * derivs[i+12]; } } for (i=0; i<3; i++) { fcol[i] -= x[i]; } // compute determinants and generate improvements d=vtkMath::Determinant3x3(rcol,scol,tcol); if ( fabs(d) < 1.e-20) { return -1; } pcoords[0] = params[0] - vtkMath::Determinant3x3 (fcol,scol,tcol) / d; pcoords[1] = params[1] - vtkMath::Determinant3x3 (rcol,fcol,tcol) / d; pcoords[2] = params[2] - vtkMath::Determinant3x3 (rcol,scol,fcol) / d; // check for convergence if ( ((fabs(pcoords[0]-params[0])) < VTK_WEDGE_CONVERGED) && ((fabs(pcoords[1]-params[1])) < VTK_WEDGE_CONVERGED) && ((fabs(pcoords[2]-params[2])) < VTK_WEDGE_CONVERGED) ) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) || (fabs(pcoords[2]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if ( !converged ) { return -1; } this->InterpolationFunctions(pcoords, weights); if ( pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001 ) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; dist2 = 0.0; //inside wedge } return 1; } else { double pc[3], w[6]; if (closestPoint) { for (i=0; i<3; i++) //only approximate, not really true for warped hexa { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, (double *)w); dist2 = vtkMath::Distance2BetweenPoints(closestPoint,x); } return 0; } } //---------------------------------------------------------------------------- void vtkWedge::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3], double x[3], double *weights) { int i, j; double pt[3]; this->InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i=0; i<6; i++) { this->Points->GetPoint(i, pt); for (j=0; j<3; j++) { x[j] += pt[j] * weights[i]; } } } //---------------------------------------------------------------------------- // Returns the closest face to the point specified. Closeness is measured // parametrically. int vtkWedge::CellBoundary(int vtkNotUsed(subId), double pcoords[3], vtkIdList *pts) { int i; // define 9 planes that separate regions static double normals[9][3] = { {0.0,0.83205,-0.5547}, {-0.639602,-0.639602,-0.426401}, {0.83205,0.0,-0.5547}, {0.0,0.83205,0.5547}, {-0.639602,-0.639602,0.426401}, {0.83205,0.0,0.5547}, {-0.707107,0.707107,0.0}, {0.447214,0.894427,0.0}, {0.894427,0.447214,0.0} }; static double point[3] = {0.333333,0.333333,0.5}; double vals[9]; // evaluate 9 plane equations for (i=0; i<9; i++) { vals[i] = normals[i][0]*(pcoords[0]-point[0]) + normals[i][1]*(pcoords[1]-point[1]) + normals[i][2]*(pcoords[2]-point[2]); } // compare against nine planes in parametric space that divide element // into five pieces (each corresponding to a face). if ( vals[0] >= 0.0 && vals[1] >= 0.0 && vals[2] >= 0.0 ) { pts->SetNumberOfIds(3); //triangle face pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(1)); pts->SetId(2,this->PointIds->GetId(2)); } else if ( vals[3] >= 0.0 && vals[4] >= 0.0 && vals[5] >= 0.0 ) { pts->SetNumberOfIds(3); //triangle face pts->SetId(0,this->PointIds->GetId(3)); pts->SetId(1,this->PointIds->GetId(4)); pts->SetId(2,this->PointIds->GetId(5)); } else if ( vals[0] <= 0.0 && vals[3] <= 0.0 && vals[6] <= 0.0 && vals[7] <= 0.0 ) { pts->SetNumberOfIds(4); //quad face pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(1)); pts->SetId(2,this->PointIds->GetId(4)); pts->SetId(3,this->PointIds->GetId(3)); } else if ( vals[1] <= 0.0 && vals[4] <= 0.0 && vals[7] >= 0.0 && vals[8] >= 0.0 ) { pts->SetNumberOfIds(4); //quad face pts->SetId(0,this->PointIds->GetId(1)); pts->SetId(1,this->PointIds->GetId(2)); pts->SetId(2,this->PointIds->GetId(5)); pts->SetId(3,this->PointIds->GetId(4)); } else //vals[2] <= 0.0 && vals[5] <= 0.0 && vals[8] <= 0.0 && vals[6] >= 0.0 { pts->SetNumberOfIds(4); //quad face pts->SetId(0,this->PointIds->GetId(2)); pts->SetId(1,this->PointIds->GetId(0)); pts->SetId(2,this->PointIds->GetId(3)); pts->SetId(3,this->PointIds->GetId(5)); } if ( pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 || pcoords[2] < 0.0 || pcoords[2] > 1.0 ) { return 0; } else { return 1; } } //---------------------------------------------------------------------------- // Marching (convex) wedge // static int edges[9][2] = { {0,1}, {1,2}, {2,0}, {3,4}, {4,5}, {5,3}, {0,3}, {1,4}, {2,5} }; static int faces[5][4] = { {0,1,2,-1}, {3,5,4,-1}, {0,3,4,1}, {1,4,5,2}, {2,5,3,0} }; typedef int EDGE_LIST; typedef struct { EDGE_LIST edges[13]; } TRIANGLE_CASES; static TRIANGLE_CASES triCases[] = { {{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //0 {{ 0, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //1 {{ 0, 1, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //2 {{ 6, 1, 7, 6, 2, 1, -1, -1, -1, -1, -1, -1, -1}}, //3 {{ 1, 2, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //4 {{ 6, 1, 0, 6, 8, 1, -1, -1, -1, -1, -1, -1, -1}}, //5 {{ 0, 2, 8, 7, 0, 8, -1, -1, -1, -1, -1, -1, -1}}, //6 {{ 7, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //7 {{ 3, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //8 {{ 3, 5, 0, 5, 2, 0, -1, -1, -1, -1, -1, -1, -1}}, //9 {{ 0, 1, 7, 6, 3, 5, -1, -1, -1, -1, -1, -1, -1}}, //10 {{ 1, 7, 3, 1, 3, 5, 1, 5, 2, -1, -1, -1, -1}}, //11 {{ 2, 8, 1, 6, 3, 5, -1, -1, -1, -1, -1, -1, -1}}, //12 {{ 0, 3, 1, 1, 3, 5, 1, 5, 8, -1, -1, -1, -1}}, //13 {{ 6, 3, 5, 0, 8, 7, 0, 2, 8, -1, -1, -1, -1}}, //14 {{ 7, 3, 5, 7, 5, 8, -1, -1, -1, -1, -1, -1, -1}}, //15 {{ 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //16 {{ 7, 4, 3, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1}}, //17 {{ 0, 1, 3, 1, 4, 3, -1, -1, -1, -1, -1, -1, -1}}, //18 {{ 1, 4, 3, 1, 3, 6, 1, 6, 2, -1, -1, -1, -1}}, //19 {{ 7, 4, 3, 2, 8, 1, -1, -1, -1, -1, -1, -1, -1}}, //20 {{ 7, 4, 3, 6, 1, 0, 6, 8, 1, -1, -1, -1, -1}}, //21 {{ 0, 4, 3, 0, 8, 4, 0, 2, 8, -1, -1, -1, -1}}, //22 {{ 6, 8, 3, 3, 8, 4, -1, -1, -1, -1, -1, -1, -1}}, //23 {{ 6, 7, 4, 6, 4, 5, -1, -1, -1, -1, -1, -1, -1}}, //24 {{ 0, 7, 5, 7, 4, 5, 2, 0, 5, -1, -1, -1, -1}}, //25 {{ 1, 6, 0, 1, 5, 6, 1, 4, 5, -1, -1, -1, -1}}, //26 {{ 2, 1, 5, 5, 1, 4, -1, -1, -1, -1, -1, -1, -1}}, //27 {{ 2, 8, 1, 6, 7, 5, 7, 4, 5, -1, -1, -1, -1}}, //28 {{ 0, 7, 5, 7, 4, 5, 0, 5, 1, 1, 5, 8, -1}}, //29 {{ 0, 2, 8, 0, 8, 4, 0, 4, 5, 0, 5, 6, -1}}, //30 {{ 8, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //31 {{ 4, 8, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //32 {{ 4, 8, 5, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1}}, //33 {{ 4, 8, 5, 0, 1, 7, -1, -1, -1, -1, -1, -1, -1}}, //34 {{ 4, 8, 5, 6, 1, 7, 6, 2, 1, -1, -1, -1, -1}}, //35 {{ 1, 5, 4, 2, 5, 1, -1, -1, -1, -1, -1, -1, -1}}, //36 {{ 1, 5, 4, 1, 6, 5, 1, 0, 6, -1, -1, -1, -1}}, //37 {{ 5, 4, 7, 5, 7, 0, 5, 0, 2, -1, -1, -1, -1}}, //38 {{ 6, 4, 7, 6, 5, 4, -1, -1, -1, -1, -1, -1, -1}}, //39 {{ 6, 3, 8, 3, 4, 8, -1, -1, -1, -1, -1, -1, -1}}, //40 {{ 0, 3, 4, 0, 4, 8, 0, 8, 2, -1, -1, -1, -1}}, //41 {{ 7, 0, 1, 6, 3, 4, 6, 4, 8, -1, -1, -1, -1}}, //42 {{ 1, 7, 3, 1, 3, 2, 2, 3, 8, 8, 3, 4, -1}}, //43 {{ 2, 6, 1, 6, 3, 1, 3, 4, 1, -1, -1, -1, -1}}, //44 {{ 0, 3, 1, 1, 3, 4, -1, -1, -1, -1, -1, -1, -1}}, //45 {{ 7, 0, 4, 4, 0, 2, 4, 2, 3, 3, 2, 6, -1}}, //46 {{ 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //47 {{ 7, 8, 5, 7, 5, 3, -1, -1, -1, -1, -1, -1, -1}}, //48 {{ 0, 6, 2, 7, 8, 5, 7, 5, 3, -1, -1, -1, -1}}, //49 {{ 0, 1, 3, 1, 5, 3, 1, 8, 5, -1, -1, -1, -1}}, //50 {{ 2, 1, 6, 6, 1, 3, 5, 1, 8, 3, 1, 5, -1}}, //51 {{ 1, 3, 7, 1, 5, 3, 1, 2, 5, -1, -1, -1, -1}}, //52 {{ 1, 0, 6, 1, 6, 5, 1, 5, 7, 7, 5, 3, -1}}, //53 {{ 0, 2, 5, 0, 5, 3, -1, -1, -1, -1, -1, -1, -1}}, //54 {{ 3, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //55 {{ 7, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //56 {{ 0, 7, 8, 0, 8, 2, -1, -1, -1, -1, -1, -1, -1}}, //57 {{ 0, 1, 6, 1, 8, 6, -1, -1, -1, -1, -1, -1, -1}}, //58 {{ 2, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //59 {{ 6, 7, 1, 6, 1, 2, -1, -1, -1, -1, -1, -1, -1}}, //60 {{ 0, 7, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //61 {{ 0, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, //62 {{-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}} //63 }; //---------------------------------------------------------------------------- void vtkWedge::Contour(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) { static int CASE_MASK[6] = {1,2,4,8,16,32}; TRIANGLE_CASES *triCase; EDGE_LIST *edge; int i, j, index, *vert, v1, v2, newCellId; vtkIdType pts[3]; double t, x1[3], x2[3], x[3], deltaScalar; vtkIdType offset = verts->GetNumberOfCells() + lines->GetNumberOfCells(); // Build the case table for ( i=0, index = 0; i < 6; i++) { if (cellScalars->GetComponent(i,0) >= value) { index |= CASE_MASK[i]; } } triCase = triCases + index; edge = triCase->edges; for ( ; edge[0] > -1; edge += 3 ) { for (i=0; i<3; i++) // insert triangle { vert = edges[edge[i]]; // calculate a preferred interpolation direction deltaScalar = (cellScalars->GetComponent(vert[1],0) - cellScalars->GetComponent(vert[0],0)); if (deltaScalar > 0) { v1 = vert[0]; v2 = vert[1]; } else { v1 = vert[1]; v2 = vert[0]; deltaScalar = -deltaScalar; } // linear interpolation t = ( deltaScalar == 0.0 ? 0.0 : (value - cellScalars->GetComponent(v1,0)) / deltaScalar ); this->Points->GetPoint(v1, x1); this->Points->GetPoint(v2, x2); for (j=0; j<3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if ( locator->InsertUniquePoint(x, pts[i]) ) { if ( outPd ) { vtkIdType p1 = this->PointIds->GetId(v1); vtkIdType p2 = this->PointIds->GetId(v2); outPd->InterpolateEdge(inPd,pts[i],p1,p2,t); } } } // check for degenerate triangle if ( pts[0] != pts[1] && pts[0] != pts[2] && pts[1] != pts[2] ) { newCellId = offset + polys->InsertNextCell(3,pts); outCd->CopyData(inCd,cellId,newCellId); } } } //---------------------------------------------------------------------------- int *vtkWedge::GetEdgeArray(int edgeId) { return edges[edgeId]; } //---------------------------------------------------------------------------- vtkCell *vtkWedge::GetEdge(int edgeId) { int *verts; verts = edges[edgeId]; // load point id's this->Line->PointIds->SetId(0,this->PointIds->GetId(verts[0])); this->Line->PointIds->SetId(1,this->PointIds->GetId(verts[1])); // load coordinates this->Line->Points->SetPoint(0,this->Points->GetPoint(verts[0])); this->Line->Points->SetPoint(1,this->Points->GetPoint(verts[1])); return this->Line; } //---------------------------------------------------------------------------- int *vtkWedge::GetFaceArray(int faceId) { return faces[faceId]; } //---------------------------------------------------------------------------- vtkCell *vtkWedge::GetFace(int faceId) { int *verts = faces[faceId]; if ( verts[3] != -1 ) // quad cell { // load point id's this->Quad->PointIds->SetId(0,this->PointIds->GetId(verts[0])); this->Quad->PointIds->SetId(1,this->PointIds->GetId(verts[1])); this->Quad->PointIds->SetId(2,this->PointIds->GetId(verts[2])); this->Quad->PointIds->SetId(3,this->PointIds->GetId(verts[3])); // load coordinates this->Quad->Points->SetPoint(0,this->Points->GetPoint(verts[0])); this->Quad->Points->SetPoint(1,this->Points->GetPoint(verts[1])); this->Quad->Points->SetPoint(2,this->Points->GetPoint(verts[2])); this->Quad->Points->SetPoint(3,this->Points->GetPoint(verts[3])); return this->Quad; } else { // load point id's this->Triangle->PointIds->SetId(0,this->PointIds->GetId(verts[0])); this->Triangle->PointIds->SetId(1,this->PointIds->GetId(verts[1])); this->Triangle->PointIds->SetId(2,this->PointIds->GetId(verts[2])); // load coordinates this->Triangle->Points->SetPoint(0,this->Points->GetPoint(verts[0])); this->Triangle->Points->SetPoint(1,this->Points->GetPoint(verts[1])); this->Triangle->Points->SetPoint(2,this->Points->GetPoint(verts[2])); return this->Triangle; } } //---------------------------------------------------------------------------- // Intersect faces against line. // int vtkWedge::IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) { int intersection=0; double pt1[3], pt2[3], pt3[3], pt4[3]; double tTemp; double pc[3], xTemp[3]; int faceNum; t = VTK_DOUBLE_MAX; //first intersect the triangle faces for (faceNum=0; faceNum<2; faceNum++) { this->Points->GetPoint(faces[faceNum][0], pt1); this->Points->GetPoint(faces[faceNum][1], pt2); this->Points->GetPoint(faces[faceNum][2], pt3); this->Triangle->Points->SetPoint(0,pt1); this->Triangle->Points->SetPoint(1,pt2); this->Triangle->Points->SetPoint(2,pt3); if ( this->Triangle->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId) ) { intersection = 1; if ( tTemp < t ) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 0: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 0.0; break; case 1: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 1.0; break; } } } } //now intersect the quad faces for (faceNum=2; faceNum<5; faceNum++) { this->Points->GetPoint(faces[faceNum][0], pt1); this->Points->GetPoint(faces[faceNum][1], pt2); this->Points->GetPoint(faces[faceNum][2], pt3); this->Points->GetPoint(faces[faceNum][3], pt4); this->Quad->Points->SetPoint(0,pt1); this->Quad->Points->SetPoint(1,pt2); this->Quad->Points->SetPoint(2,pt3); this->Quad->Points->SetPoint(3,pt4); if ( this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId) ) { intersection = 1; if ( tTemp < t ) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 2: pcoords[0] = pc[1]; pcoords[1] = 0.0; pcoords[2] = pc[0]; break; case 3: pcoords[0] = 1.0-pc[1]; pcoords[1] = pc[1]; pcoords[2] = pc[0]; break; case 4: pcoords[0] = 0.0; pcoords[1] = pc[1]; pcoords[2] = pc[0]; break; } } } } return intersection; } //---------------------------------------------------------------------------- int vtkWedge::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds, vtkPoints *pts) { ptIds->Reset(); pts->Reset(); for ( int i=0; i < 4; i++ ) { ptIds->InsertId(i,this->PointIds->GetId(i)); pts->InsertPoint(i,this->Points->GetPoint(i)); } return 1; } //---------------------------------------------------------------------------- void vtkWedge::Derivatives(int vtkNotUsed(subId), double pcoords[3], double *values, int dim, double *derivs) { double *jI[3], j0[3], j1[3], j2[3]; double functionDerivs[18], sum[3], value; int i, j, k; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(pcoords, jI, functionDerivs); // now compute derivates of values provided for (k=0; k < dim; k++) //loop over values per vertex { sum[0] = sum[1] = sum[2] = 0.0; for ( i=0; i < 6; i++) //loop over interp. function derivatives { value = values[dim*i + k]; sum[0] += functionDerivs[i] * value; sum[1] += functionDerivs[6 + i] * value; sum[2] += functionDerivs[12 + i] * value; } for (j=0; j < 3; j++) //loop over derivative directions { derivs[3*k + j] = sum[0]*jI[j][0] + sum[1]*jI[j][1] + sum[2]*jI[j][2]; } } } //---------------------------------------------------------------------------- // Compute iso-parametric interpolation functions // void vtkWedge::InterpolationFunctions(double pcoords[3], double sf[6]) { sf[0] = (1.0 - pcoords[0] - pcoords[1]) * (1.0 - pcoords[2]); sf[1] = pcoords[0] * (1.0 - pcoords[2]); sf[2] = pcoords[1] * (1.0 - pcoords[2]); sf[3] = (1.0 - pcoords[0] - pcoords[1]) * pcoords[2]; sf[4] = pcoords[0] * pcoords[2]; sf[5] = pcoords[1] * pcoords[2]; } //---------------------------------------------------------------------------- void vtkWedge::InterpolationDerivs(double pcoords[3], double derivs[18]) { // r-derivatives derivs[0] = -1.0 + pcoords[2]; derivs[1] = 1.0 - pcoords[2]; derivs[2] = 0.0; derivs[3] = -pcoords[2]; derivs[4] = pcoords[2]; derivs[5] = 0.0; // s-derivatives derivs[6] = -1.0 + pcoords[2]; derivs[7] = 0.0; derivs[8] = 1.0 - pcoords[2]; derivs[9] = -pcoords[2]; derivs[10] = 0.0; derivs[11] = pcoords[2]; // t-derivatives derivs[12] = -1.0 + pcoords[0] + pcoords[1]; derivs[13] = -pcoords[0]; derivs[14] = -pcoords[1]; derivs[15] = 1.0 - pcoords[0] - pcoords[1]; derivs[16] = pcoords[0]; derivs[17] = pcoords[1]; } //---------------------------------------------------------------------------- // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. Returns 0 if no inverse exists. int vtkWedge::JacobianInverse(double pcoords[3], double **inverse, double derivs[18]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives this->InterpolationDerivs(pcoords,derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i=0; i < 3; i++) //initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for ( j=0; j < 6; j++ ) { this->Points->GetPoint(j, x); for ( i=0; i < 3; i++ ) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[6 + j]; m2[i] += x[i] * derivs[12 + j]; } } // now find the inverse if ( vtkMath::InvertMatrix(m,inverse,3) == 0 ) { #define VTK_MAX_WARNS 3 static int numWarns=0; if ( numWarns++ < VTK_MAX_WARNS ) { vtkErrorMacro(<<"Jacobian inverse not found"); vtkErrorMacro(<<"Matrix:" << m[0][0] << " " << m[0][1] << " " << m[0][2] << m[1][0] << " " << m[1][1] << " " << m[1][2] << m[2][0] << " " << m[2][1] << " " << m[2][2] ); return 0; } } return 1; } //---------------------------------------------------------------------------- void vtkWedge::GetEdgePoints(int edgeId, int* &pts) { pts = this->GetEdgeArray(edgeId); } //---------------------------------------------------------------------------- void vtkWedge::GetFacePoints(int faceId, int* &pts) { pts = this->GetFaceArray(faceId); } static double vtkWedgeCellPCoords[18] = {0.0,0.0,0.0, 1.0,0.0,0.0, 0.0,1.0,0.0, 0.0,0.0,1.0, 1.0,0.0,1.0, 0.0,1.0,1.0}; //---------------------------------------------------------------------------- double *vtkWedge::GetParametricCoords() { return vtkWedgeCellPCoords; } //---------------------------------------------------------------------------- void vtkWedge::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Line:\n"; this->Line->PrintSelf(os,indent.GetNextIndent()); os << indent << "Triangle:\n"; this->Triangle->PrintSelf(os,indent.GetNextIndent()); os << indent << "Quad:\n"; this->Quad->PrintSelf(os,indent.GetNextIndent()); }