/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkSuperquadricSource.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ /* vtkSuperquadric originally written by Michael Halle, Brigham and Women's Hospital, July 1998. Based on "Rigid physically based superquadrics", A. H. Barr, in "Graphics Gems III", David Kirk, ed., Academic Press, 1992. */ #include "vtkSuperquadricSource.h" #include "vtkCellArray.h" #include "vtkFloatArray.h" #include "vtkMath.h" #include "vtkInformation.h" #include "vtkInformationVector.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkPoints.h" #include "vtkPolyData.h" #include vtkCxxRevisionMacro(vtkSuperquadricSource, "$Revision: 1.23 $"); vtkStandardNewMacro(vtkSuperquadricSource); static void evalSuperquadric(double u, double v, double du, double dv, double n, double e, double dims[3], double alpha, double xyz[3], double nrm[3]); // Description: vtkSuperquadricSource::vtkSuperquadricSource(int res) { res = res < 4 ? 4 : res; this->Toroidal = 0; this->Thickness = 0.3333; this->PhiRoundness = 0.0; this->SetPhiRoundness(1.0); this->ThetaRoundness = 0.0; this->SetThetaRoundness(1.0); this->Center[0] = this->Center[1] = this->Center[2] = 0.0; this->Scale[0] = this->Scale[1] = this->Scale[2] = 1.0; this->Size = .5; this->ThetaResolution = 0; this->SetThetaResolution(res); this->PhiResolution = 0; this->SetPhiResolution(res); this->SetNumberOfInputPorts(0); } void vtkSuperquadricSource::SetPhiResolution(int i) { if(i < 4) { i = 4; } i = (i+3)/4*4; // make it divisible by 4 if(i > VTK_MAX_SUPERQUADRIC_RESOLUTION) { i = VTK_MAX_SUPERQUADRIC_RESOLUTION; } if (this->PhiResolution != i) { this->PhiResolution = i; this->Modified (); } } void vtkSuperquadricSource::SetThetaResolution(int i) { if(i < 8) { i = 8; } i = (i+7)/8*8; // make it divisible by 8 if(i > VTK_MAX_SUPERQUADRIC_RESOLUTION) { i = VTK_MAX_SUPERQUADRIC_RESOLUTION; } if (this->ThetaResolution != i) { this->ThetaResolution = i; this->Modified (); } } void vtkSuperquadricSource::SetThetaRoundness(double e) { if(e < VTK_MIN_SUPERQUADRIC_ROUNDNESS) { e = VTK_MIN_SUPERQUADRIC_ROUNDNESS; } if (this->ThetaRoundness != e) { this->ThetaRoundness = e; this->Modified(); } } void vtkSuperquadricSource::SetPhiRoundness(double e) { if(e < VTK_MIN_SUPERQUADRIC_ROUNDNESS) { e = VTK_MIN_SUPERQUADRIC_ROUNDNESS; } if (this->PhiRoundness != e) { this->PhiRoundness = e; this->Modified(); } } static const double SQ_SMALL_OFFSET = 0.01; int vtkSuperquadricSource::RequestData( vtkInformation *vtkNotUsed(request), vtkInformationVector **vtkNotUsed(inputVector), vtkInformationVector *outputVector) { // get the info object vtkInformation *outInfo = outputVector->GetInformationObject(0); // get the ouptut vtkPolyData *output = vtkPolyData::SafeDownCast( outInfo->Get(vtkDataObject::DATA_OBJECT())); int i, j; vtkIdType numPts; vtkPoints *newPoints; vtkFloatArray *newNormals; vtkFloatArray *newTCoords; vtkCellArray *newPolys; vtkIdType *ptidx; double pt[3], nv[3], dims[3]; double len; double alpha; double deltaPhi, deltaTheta, phi, theta; double phiLim[2], thetaLim[2]; double deltaPhiTex, deltaThetaTex; int base, pbase; vtkIdType numStrips; int ptsPerStrip; int phiSubsegs, thetaSubsegs, phiSegs, thetaSegs; int iq, jq, rowOffset; double thetaOffset, phiOffset; double texCoord[2]; dims[0] = this->Scale[0] * this->Size; dims[1] = this->Scale[1] * this->Size; dims[2] = this->Scale[2] * this->Size; if(this->Toroidal) { phiLim[0] = -vtkMath::Pi(); phiLim[1] = vtkMath::Pi(); thetaLim[0] = -vtkMath::Pi(); thetaLim[1] = vtkMath::Pi(); alpha = (1.0 / this->Thickness); dims[0] /= (alpha + 1.0); dims[1] /= (alpha + 1.0); dims[2] /= (alpha + 1.0); } else { //Ellipsoidal phiLim[0] = -vtkMath::Pi() / 2.0; phiLim[1] = vtkMath::Pi() / 2.0; thetaLim[0] = -vtkMath::Pi(); thetaLim[1] = vtkMath::Pi(); alpha = 0.0; } deltaPhi = (phiLim[1] - phiLim[0]) / this->PhiResolution; deltaPhiTex = 1.0 / this->PhiResolution; deltaTheta = (thetaLim[1] - thetaLim[0]) / this->ThetaResolution; deltaThetaTex = 1.0 / this->ThetaResolution; phiSegs = 4; thetaSegs = 8; phiSubsegs = this->PhiResolution / phiSegs; thetaSubsegs = this->ThetaResolution / thetaSegs; numPts = (this->PhiResolution + phiSegs)*(this->ThetaResolution + thetaSegs); // creating triangles numStrips = this->PhiResolution * thetaSegs; ptsPerStrip = thetaSubsegs*2 + 2; // // Set things up; allocate memory // newPoints = vtkPoints::New(); newPoints->Allocate(numPts); newNormals = vtkFloatArray::New(); newNormals->SetNumberOfComponents(3); newNormals->Allocate(3*numPts); newNormals->SetName("Normals"); newTCoords = vtkFloatArray::New(); newTCoords->SetNumberOfComponents(2); newTCoords->Allocate(2*numPts); newTCoords->SetName("TextureCoords"); newPolys = vtkCellArray::New(); newPolys->Allocate(newPolys->EstimateSize(numStrips,ptsPerStrip)); // generate! for(iq = 0; iq < phiSegs; iq++) { for(i = 0; i <= phiSubsegs; i++) { phi = phiLim[0] + deltaPhi*(i + iq*phiSubsegs); texCoord[1] = deltaPhiTex*(i + iq*phiSubsegs); // SQ_SMALL_OFFSET makes sure that the normal vector isn't // evaluated exactly on a crease; if that were to happen, // large shading errors can occur. if(i == 0) { phiOffset = SQ_SMALL_OFFSET*deltaPhi; } else if (i == phiSubsegs) { phiOffset = -SQ_SMALL_OFFSET*deltaPhi; } else { phiOffset = 0.0; } for(jq = 0; jq < thetaSegs; jq++) { for(j = 0; j <= thetaSubsegs; j++) { theta = thetaLim[0] + deltaTheta*(j + jq*thetaSubsegs); texCoord[0] = deltaThetaTex*(j + jq*thetaSubsegs); if(j == 0) { thetaOffset = SQ_SMALL_OFFSET*deltaTheta; } else if (j == thetaSubsegs) { thetaOffset = -SQ_SMALL_OFFSET*deltaTheta; } else { thetaOffset = 0.0; } evalSuperquadric(theta, phi, thetaOffset, phiOffset, this->PhiRoundness, this->ThetaRoundness, dims, alpha, pt, nv); if((len = vtkMath::Norm(nv)) == 0.0) { len = 1.0; } nv[0] /= len; nv[1] /= len; nv[2] /= len; if(!this->Toroidal && ((iq == 0 && i == 0) || (iq == (phiSegs-1) && i == phiSubsegs))) { // we're at a pole: // make sure the pole is at the same location for all evals // (the superquadric evaluation is numerically unstable // at the poles) pt[0] = pt[2] = 0.0; } pt[0] += this->Center[0]; pt[1] += this->Center[1]; pt[2] += this->Center[2]; newPoints->InsertNextPoint(pt); newNormals->InsertNextTuple(nv); newTCoords->InsertNextTuple(texCoord); } } } } // mesh! // build triangle strips for efficiency.... ptidx = new vtkIdType[ptsPerStrip]; rowOffset = this->ThetaResolution+thetaSegs; for(iq = 0; iq < phiSegs; iq++) { for(i = 0; i < phiSubsegs; i++) { pbase = rowOffset*(i +iq*(phiSubsegs+1)); for(jq = 0; jq < thetaSegs; jq++) { base = pbase + jq*(thetaSubsegs+1); for(j = 0; j <= thetaSubsegs; j++) { ptidx[2*j] = base + rowOffset + j; ptidx[2*j+1] = base + j; } newPolys->InsertNextCell(ptsPerStrip, ptidx); } } } delete[] ptidx; output->SetPoints(newPoints); newPoints->Delete(); output->GetPointData()->SetNormals(newNormals); newNormals->Delete(); output->GetPointData()->SetTCoords(newTCoords); newTCoords->Delete(); output->SetStrips(newPolys); newPolys->Delete(); return 1; } void vtkSuperquadricSource::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Toroidal: " << (this->Toroidal ? "On\n" : "Off\n"); os << indent << "Size: " << this->Size << "\n"; os << indent << "Thickness: " << this->Thickness << "\n"; os << indent << "Theta Resolution: " << this->ThetaResolution << "\n"; os << indent << "Theta Roundness: " << this->ThetaRoundness << "\n"; os << indent << "Phi Resolution: " << this->PhiResolution << "\n"; os << indent << "Phi Roundness: " << this->PhiRoundness << "\n"; os << indent << "Center: (" << this->Center[0] << ", " << this->Center[1] << ", " << this->Center[2] << ")\n"; os << indent << "Scale: (" << this->Scale[0] << ", " << this->Scale[1] << ", " << this->Scale[2] << ")\n"; } static double cf(double w, double m, double a) { double c; double sgn; c = cos(w); sgn = c < 0.0 ? -1.0 : 1.0; return a + sgn*pow(sgn*c, m); } static double sf(double w, double m) { double s; double sgn; s = sin(w); sgn = s < 0.0 ? -1.0 : 1.0; return sgn*pow(sgn*s, m); } static void evalSuperquadric(double u, double v, // parametric coords double du, double dv, // offsets for normals double n, double e, // roundness params double dims[3], // x, y, z dimensions double alpha, // hole size double xyz[3], // output coords double nrm[3]) // output normals { double cf1, cf2; cf1 = cf(v, n, alpha); xyz[0] = dims[0] * cf1 * sf(u, e); xyz[1] = dims[1] * sf(v, n); xyz[2] = dims[2] * cf1 * cf(u, e, 0.0); cf2 = cf(v+dv, 2.0-n, 0.0); nrm[0] = 1.0/dims[0] * cf2 * sf(u+du, 2.0-e); nrm[1] = 1.0/dims[1] * sf(v+dv, 2.0-n); nrm[2] = 1.0/dims[2] * cf2 * cf(u+du, 2.0-e, 0.0); }