/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkGeneralTransform.h,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // .NAME vtkGeneralTransform - allows operations on any transforms // .SECTION Description // vtkGeneralTransform is like vtkTransform and vtkPerspectiveTransform, // but it will work with any vtkAbstractTransform as input. It is // not as efficient as the other two, however, because arbitrary // transformations cannot be concatenated by matrix multiplication. // Transform concatenation is simulated by passing each input point // through each transform in turn. // .SECTION see also // vtkTransform vtkPerspectiveTransform #ifndef __vtkGeneralTransform_h #define __vtkGeneralTransform_h #include "vtkAbstractTransform.h" #include "vtkMatrix4x4.h" // Needed for inline methods class VTK_COMMON_EXPORT vtkGeneralTransform : public vtkAbstractTransform { public: static vtkGeneralTransform *New(); vtkTypeRevisionMacro(vtkGeneralTransform,vtkAbstractTransform); void PrintSelf(ostream& os, vtkIndent indent); // Description: // Set this transformation to the identity transformation. If // the transform has an Input, then the transformation will be // reset so that it is the same as the Input. void Identity() { this->Concatenation->Identity(); this->Modified(); }; // Description: // Invert the transformation. This will also set a flag so that // the transformation will use the inverse of its Input, if an Input // has been set. void Inverse() { this->Concatenation->Inverse(); this->Modified(); }; // Description: // Create a translation matrix and concatenate it with the current // transformation according to PreMultiply or PostMultiply semantics. void Translate(double x, double y, double z) { this->Concatenation->Translate(x,y,z); }; void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); }; void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); }; // Description: // Create a rotation matrix and concatenate it with the current // transformation according to PreMultiply or PostMultiply semantics. // The angle is in degrees, and (x,y,z) specifies the axis that the // rotation will be performed around. void RotateWXYZ(double angle, double x, double y, double z) { this->Concatenation->Rotate(angle,x,y,z); }; void RotateWXYZ(double angle, const double axis[3]) { this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); }; void RotateWXYZ(double angle, const float axis[3]) { this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); }; // Description: // Create a rotation matrix about the X, Y, or Z axis and concatenate // it with the current transformation according to PreMultiply or // PostMultiply semantics. The angle is expressed in degrees. void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); }; void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); }; void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); }; // Description: // Create a scale matrix (i.e. set the diagonal elements to x, y, z) // and concatenate it with the current transformation according to // PreMultiply or PostMultiply semantics. void Scale(double x, double y, double z) { this->Concatenation->Scale(x,y,z); }; void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); }; void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); }; // Description: // Concatenates the matrix with the current transformation according // to PreMultiply or PostMultiply semantics. void Concatenate(vtkMatrix4x4 *matrix) { this->Concatenate(*matrix->Element); }; void Concatenate(const double elements[16]) { this->Concatenation->Concatenate(elements); }; // Description: // Concatenate the specified transform with the current transformation // according to PreMultiply or PostMultiply semantics. // The concatenation is pipelined, meaning that if any of the // transformations are changed, even after Concatenate() is called, // those changes will be reflected when you call TransformPoint(). void Concatenate(vtkAbstractTransform *transform); // Description: // Sets the internal state of the transform to PreMultiply. All subsequent // operations will occur before those already represented in the // current transformation. In homogeneous matrix notation, M = M*A where // M is the current transformation matrix and A is the applied matrix. // The default is PreMultiply. void PreMultiply() { if (this->Concatenation->GetPreMultiplyFlag()) { return; } this->Concatenation->SetPreMultiplyFlag(1); this->Modified(); }; // Description: // Sets the internal state of the transform to PostMultiply. All subsequent // operations will occur after those already represented in the // current transformation. In homogeneous matrix notation, M = A*M where // M is the current transformation matrix and A is the applied matrix. // The default is PreMultiply. void PostMultiply() { if (!this->Concatenation->GetPreMultiplyFlag()) { return; } this->Concatenation->SetPreMultiplyFlag(0); this->Modified(); }; // Description: // Get the total number of transformations that are linked into this // one via Concatenate() operations or via SetInput(). int GetNumberOfConcatenatedTransforms() { return this->Concatenation->GetNumberOfTransforms() + (this->Input == NULL ? 0 : 1); }; // Description // Get one of the concatenated transformations as a vtkAbstractTransform. // These transformations are applied, in series, every time the // transformation of a coordinate occurs. This method is provided // to make it possible to decompose a transformation into its // constituents, for example to save a transformation to a file. vtkAbstractTransform *GetConcatenatedTransform(int i) { if (this->Input == NULL) { return this->Concatenation->GetTransform(i); } else if (i < this->Concatenation->GetNumberOfPreTransforms()) { return this->Concatenation->GetTransform(i); } else if (i > this->Concatenation->GetNumberOfPreTransforms()) { return this->Concatenation->GetTransform(i-1); } else if (this->GetInverseFlag()) { return this->Input->GetInverse(); } else { return this->Input; } }; // Description: // Set the input for this transformation. This will be used as the // base transformation if it is set. This method allows you to build // a transform pipeline: if the input is modified, then this transformation // will automatically update accordingly. Note that the InverseFlag, // controlled via Inverse(), determines whether this transformation // will use the Input or the inverse of the Input. void SetInput(vtkAbstractTransform *input); vtkAbstractTransform *GetInput() { return this->Input; }; // Description: // Get the inverse flag of the transformation. This controls // whether it is the Input or the inverse of the Input that // is used as the base transformation. The InverseFlag is // flipped every time Inverse() is called. The InverseFlag // is off when a transform is first created. int GetInverseFlag() { return this->Concatenation->GetInverseFlag(); }; // Description: // Pushes the current transformation onto the transformation stack. void Push() { if (this->Stack == NULL) { this->Stack = vtkTransformConcatenationStack::New(); } this->Stack->Push(&this->Concatenation); this->Modified(); }; // Description: // Deletes the transformation on the top of the stack and sets the top // to the next transformation on the stack. void Pop() { if (this->Stack == NULL) { return; } this->Stack->Pop(&this->Concatenation); this->Modified(); }; // Description: // This will calculate the transformation without calling Update. // Meant for use only within other VTK classes. void InternalTransformPoint(const float in[3], float out[3]); void InternalTransformPoint(const double in[3], double out[3]); // Description: // This will calculate the transformation as well as its derivative // without calling Update. Meant for use only within other VTK // classes. void InternalTransformDerivative(const float in[3], float out[3], float derivative[3][3]); void InternalTransformDerivative(const double in[3], double out[3], double derivative[3][3]); // Description: // Check for self-reference. Will return true if concatenating // with the specified transform, setting it to be our inverse, // or setting it to be our input will create a circular reference. // CircuitCheck is automatically called by SetInput(), SetInverse(), // and Concatenate(vtkXTransform *). Avoid using this function, // it is experimental. int CircuitCheck(vtkAbstractTransform *transform); // Description: // Make another transform of the same type. vtkAbstractTransform *MakeTransform(); // Description: // Override GetMTime to account for input and concatenation. unsigned long GetMTime(); protected: vtkGeneralTransform(); ~vtkGeneralTransform(); void InternalDeepCopy(vtkAbstractTransform *t); void InternalUpdate(); vtkAbstractTransform *Input; vtkTransformConcatenation *Concatenation; vtkTransformConcatenationStack *Stack; private: vtkGeneralTransform(const vtkGeneralTransform&); // Not implemented. void operator=(const vtkGeneralTransform&); // Not implemented. }; #endif