/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkPlane.h,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // .NAME vtkPlane - perform various plane computations // .SECTION Description // vtkPlane provides methods for various plane computations. These include // projecting points onto a plane, evaluating the plane equation, and // returning plane normal. vtkPlane is a concrete implementation of the // abstract class vtkImplicitFunction. #ifndef __vtkPlane_h #define __vtkPlane_h #include "vtkImplicitFunction.h" class VTK_COMMON_EXPORT vtkPlane : public vtkImplicitFunction { public: // Description // Construct plane passing through origin and normal to z-axis. static vtkPlane *New(); vtkTypeRevisionMacro(vtkPlane,vtkImplicitFunction); void PrintSelf(ostream& os, vtkIndent indent); // Description // Evaluate plane equation for point x[3]. double EvaluateFunction(double x[3]); double EvaluateFunction(double x, double y, double z) {return this->vtkImplicitFunction::EvaluateFunction(x, y, z); } ; // Description // Evaluate function gradient at point x[3]. void EvaluateGradient(double x[3], double g[3]); // Description: // Set/get plane normal. Plane is defined by point and normal. vtkSetVector3Macro(Normal,double); vtkGetVectorMacro(Normal,double,3); // Description: // Set/get point through which plane passes. Plane is defined by point // and normal. vtkSetVector3Macro(Origin,double); vtkGetVectorMacro(Origin,double,3); // Description: // Translate the plane in the direction of the normal by the // distance specified. Negative values move the plane in the // opposite direction. void Push(double distance); // Description // Project a point x onto plane defined by origin and normal. The // projected point is returned in xproj. NOTE : normal assumed to // have magnitude 1. static void ProjectPoint(double x[3], double origin[3], double normal[3], double xproj[3]); // Description // Project a point x onto plane defined by origin and normal. The // projected point is returned in xproj. NOTE : normal does NOT have to // have magnitude 1. static void GeneralizedProjectPoint(double x[3], double origin[3], double normal[3], double xproj[3]); // Description: // Quick evaluation of plane equation n(x-origin)=0. static double Evaluate(double normal[3], double origin[3], double x[3]); // Description: // Return the distance of a point x to a plane defined by n(x-p0) = 0. The // normal n[3] must be magnitude=1. static double DistanceToPlane(double x[3], double n[3], double p0[3]); // Description: // Given a line defined by the two points p1,p2; and a plane defined by the // normal n and point p0, compute an intersection. The parametric // coordinate along the line is returned in t, and the coordinates of // intersection are returned in x. A zero is returned if the plane and line // do not intersect between (0<=t<=1). If the plane and line are parallel, // zero is returned and t is set to VTK_LARGE_DOUBLE. static int IntersectWithLine(double p1[3], double p2[3], double n[3], double p0[3], double& t, double x[3]); protected: vtkPlane(); ~vtkPlane() {}; double Normal[3]; double Origin[3]; private: vtkPlane(const vtkPlane&); // Not implemented. void operator=(const vtkPlane&); // Not implemented. }; inline double vtkPlane::Evaluate(double normal[3], double origin[3], double x[3]) { return normal[0]*(x[0]-origin[0]) + normal[1]*(x[1]-origin[1]) + normal[2]*(x[2]-origin[2]); } inline double vtkPlane::DistanceToPlane(double x[3], double n[3], double p0[3]) { #define vtkPlaneAbs(x) ((x)<0?-(x):(x)) return (vtkPlaneAbs(n[0]*(x[0]-p0[0]) + n[1]*(x[1]-p0[1]) + n[2]*(x[2]-p0[2]))); } #endif