/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkTransform.h,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // .NAME vtkTransform - describes linear transformations via a 4x4 matrix // .SECTION Description // A vtkTransform can be used to describe the full range of linear (also // known as affine) coordinate transformations in three dimensions, // which are internally represented as a 4x4 homogeneous transformation // matrix. When you create a new vtkTransform, it is always initialized // to the identity transformation. //

The SetInput() method allows you to set another transform, // instead of the identity transform, to be the base transformation. // There is a pipeline mechanism to ensure that when the input is // modified, the current transformation will be updated accordingly. // This pipeline mechanism is also supported by the Concatenate() method. //

Most of the methods for manipulating this transformation, // e.g. Translate, Rotate, and Concatenate, can operate in either // PreMultiply (the default) or PostMultiply mode. In PreMultiply // mode, the translation, concatenation, etc. will occur before any // transformations which are represented by the current matrix. In // PostMultiply mode, the additional transformation will occur after // any transformations represented by the current matrix. //

This class performs all of its operations in a right handed // coordinate system with right handed rotations. Some other graphics // libraries use left handed coordinate systems and rotations. // .SECTION See Also // vtkPerspectiveTransform vtkGeneralTransform vtkMatrix4x4 // vtkTransformCollection vtkTransformFilter vtkTransformPolyDataFilter // vtkImageReslice #ifndef __vtkTransform_h #define __vtkTransform_h #include "vtkLinearTransform.h" #include "vtkMatrix4x4.h" // Needed for inline methods class VTK_COMMON_EXPORT vtkTransform : public vtkLinearTransform { public: static vtkTransform *New(); vtkTypeRevisionMacro(vtkTransform,vtkLinearTransform); void PrintSelf(ostream& os, vtkIndent indent); // Description: // Set the transformation to the identity transformation. If // the transform has an Input, then the transformation will be // reset so that it is the same as the Input. void Identity(); // Description: // Invert the transformation. This will also set a flag so that // the transformation will use the inverse of its Input, if an Input // has been set. void Inverse(); // Description: // Create a translation matrix and concatenate it with the current // transformation according to PreMultiply or PostMultiply semantics. void Translate(double x, double y, double z) { this->Concatenation->Translate(x,y,z); }; void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); }; void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); }; // Description: // Create a rotation matrix and concatenate it with the current // transformation according to PreMultiply or PostMultiply semantics. // The angle is in degrees, and (x,y,z) specifies the axis that the // rotation will be performed around. void RotateWXYZ(double angle, double x, double y, double z) { this->Concatenation->Rotate(angle,x,y,z); }; void RotateWXYZ(double angle, const double axis[3]) { this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); }; void RotateWXYZ(double angle, const float axis[3]) { this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); }; // Description: // Create a rotation matrix about the X, Y, or Z axis and concatenate // it with the current transformation according to PreMultiply or // PostMultiply semantics. The angle is expressed in degrees. void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); }; void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); }; void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); }; // Description: // Create a scale matrix (i.e. set the diagonal elements to x, y, z) // and concatenate it with the current transformation according to // PreMultiply or PostMultiply semantics. void Scale(double x, double y, double z) { this->Concatenation->Scale(x,y,z); }; void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); }; void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); }; // Description: // Set the current matrix directly. This actually calls Identity(), // followed by Concatenate(matrix). void SetMatrix(vtkMatrix4x4 *matrix) { this->SetMatrix(*matrix->Element); }; void SetMatrix(const double elements[16]) { this->Identity(); this->Concatenate(elements); }; // Description: // Concatenates the matrix with the current transformation according // to PreMultiply or PostMultiply semantics. void Concatenate(vtkMatrix4x4 *matrix) { this->Concatenate(*matrix->Element); }; void Concatenate(const double elements[16]) { this->Concatenation->Concatenate(elements); }; // Description: // Concatenate the specified transform with the current transformation // according to PreMultiply or PostMultiply semantics. // The concatenation is pipelined, meaning that if any of the // transformations are changed, even after Concatenate() is called, // those changes will be reflected when you call TransformPoint(). void Concatenate(vtkLinearTransform *transform); // Description: // Sets the internal state of the transform to PreMultiply. All subsequent // operations will occur before those already represented in the // current transformation. In homogeneous matrix notation, M = M*A where // M is the current transformation matrix and A is the applied matrix. // The default is PreMultiply. void PreMultiply() { if (this->Concatenation->GetPreMultiplyFlag()) { return; } this->Concatenation->SetPreMultiplyFlag(1); this->Modified(); }; // Description: // Sets the internal state of the transform to PostMultiply. All subsequent // operations will occur after those already represented in the // current transformation. In homogeneous matrix notation, M = A*M where // M is the current transformation matrix and A is the applied matrix. // The default is PreMultiply. void PostMultiply() { if (!this->Concatenation->GetPreMultiplyFlag()) { return; } this->Concatenation->SetPreMultiplyFlag(0); this->Modified(); }; // Description: // Get the total number of transformations that are linked into this // one via Concatenate() operations or via SetInput(). int GetNumberOfConcatenatedTransforms() { return this->Concatenation->GetNumberOfTransforms() + (this->Input == NULL ? 0 : 1); }; // Description // Get one of the concatenated transformations as a vtkAbstractTransform. // These transformations are applied, in series, every time the // transformation of a coordinate occurs. This method is provided // to make it possible to decompose a transformation into its // constituents, for example to save a transformation to a file. vtkLinearTransform *GetConcatenatedTransform(int i) { if (this->Input == NULL) { return (vtkLinearTransform *)this->Concatenation->GetTransform(i); } else if (i < this->Concatenation->GetNumberOfPreTransforms()) { return (vtkLinearTransform *)this->Concatenation->GetTransform(i); } else if (i > this->Concatenation->GetNumberOfPreTransforms()) { return (vtkLinearTransform *)this->Concatenation->GetTransform(i-1); } else if (this->GetInverseFlag()) { return (vtkLinearTransform *)this->Input->GetInverse(); } else { return (vtkLinearTransform *)this->Input; } }; // Description: // Get the x, y, z orientation angles from the transformation matrix as an // array of three floating point values. void GetOrientation(double orient[3]); void GetOrientation(float orient[3]) { double temp[3]; this->GetOrientation(temp); orient[0] = static_cast(temp[0]); orient[1] = static_cast(temp[1]); orient[2] = static_cast(temp[2]); }; double *GetOrientation() { this->GetOrientation(this->ReturnValue); return this->ReturnValue; }; // Description: // Convenience function to get the x, y, z orientation angles from // a transformation matrix as an array of three floating point values. static void GetOrientation(double orient[3], vtkMatrix4x4 *matrix); // Description: // Return the wxyz angle+axis representing the current orientation. // The angle is in degrees and the axis is a unit vector. void GetOrientationWXYZ(double wxyz[4]); void GetOrientationWXYZ(float wxyz[3]) { double temp[4]; this->GetOrientationWXYZ(temp); wxyz[0]=static_cast(temp[0]); wxyz[1]=static_cast(temp[1]); wxyz[2]=static_cast(temp[2]); wxyz[3]=static_cast(temp[3]);}; double *GetOrientationWXYZ() { this->GetOrientationWXYZ(this->ReturnValue); return this->ReturnValue; }; // Description: // Return the position from the current transformation matrix as an array // of three floating point numbers. This is simply returning the translation // component of the 4x4 matrix. void GetPosition(double pos[3]); void GetPosition(float pos[3]) { double temp[3]; this->GetPosition(temp); pos[0] = static_cast(temp[0]); pos[1] = static_cast(temp[1]); pos[2] = static_cast(temp[2]); }; double *GetPosition() { this->GetPosition(this->ReturnValue); return this->ReturnValue; }; // Description: // Return the scale factors of the current transformation matrix as // an array of three float numbers. These scale factors are not necessarily // about the x, y, and z axes unless unless the scale transformation was // applied before any rotations. void GetScale(double scale[3]); void GetScale(float scale[3]) { double temp[3]; this->GetScale(temp); scale[0] = static_cast(temp[0]); scale[1] = static_cast(temp[1]); scale[2] = static_cast(temp[2]); }; double *GetScale() { this->GetScale(this->ReturnValue); return this->ReturnValue; }; // Description: // Return a matrix which is the inverse of the current transformation // matrix. void GetInverse(vtkMatrix4x4 *inverse); // Description: // Return a matrix which is the transpose of the current transformation // matrix. This is equivalent to the inverse if and only if the // transformation is a pure rotation with no translation or scale. void GetTranspose(vtkMatrix4x4 *transpose); // Description: // Set the input for this transformation. This will be used as the // base transformation if it is set. This method allows you to build // a transform pipeline: if the input is modified, then this transformation // will automatically update accordingly. Note that the InverseFlag, // controlled via Inverse(), determines whether this transformation // will use the Input or the inverse of the Input. void SetInput(vtkLinearTransform *input); vtkLinearTransform *GetInput() { return this->Input; }; // Description: // Get the inverse flag of the transformation. This controls // whether it is the Input or the inverse of the Input that // is used as the base transformation. The InverseFlag is // flipped every time Inverse() is called. The InverseFlag // is off when a transform is first created. int GetInverseFlag() { return this->Concatenation->GetInverseFlag(); }; // Description: // Pushes the current transformation onto the transformation stack. void Push() { if (this->Stack == NULL) { this->Stack = vtkTransformConcatenationStack::New(); } this->Stack->Push(&this->Concatenation); this->Modified(); }; // Description: // Deletes the transformation on the top of the stack and sets the top // to the next transformation on the stack. void Pop() { if (this->Stack == NULL) { return; } this->Stack->Pop(&this->Concatenation); this->Modified(); }; // Description: // Check for self-reference. Will return true if concatenating // with the specified transform, setting it to be our inverse, // or setting it to be our input will create a circular reference. // CircuitCheck is automatically called by SetInput(), SetInverse(), // and Concatenate(vtkXTransform *). Avoid using this function, // it is experimental. int CircuitCheck(vtkAbstractTransform *transform); // Return an inverse transform which will always update itself // to match this transform. vtkAbstractTransform *GetInverse() { return vtkLinearTransform::GetInverse(); } // Description: // Make a new transform of the same type. vtkAbstractTransform *MakeTransform(); // Description: // Override GetMTime to account for input and concatenation. unsigned long GetMTime(); // Description: // Use this method only if you wish to compute the transformation in // homogeneous (x,y,z,w) coordinates, otherwise use TransformPoint(). // This method calls this->GetMatrix()->MultiplyPoint(). void MultiplyPoint(const float in[4], float out[4]) { this->GetMatrix()->MultiplyPoint(in,out);}; void MultiplyPoint(const double in[4], double out[4]) { this->GetMatrix()->MultiplyPoint(in,out);}; protected: vtkTransform (); ~vtkTransform (); void InternalDeepCopy(vtkAbstractTransform *t); void InternalUpdate(); vtkLinearTransform *Input; vtkTransformConcatenation *Concatenation; vtkTransformConcatenationStack *Stack; // this allows us to check whether people have been fooling // around with our matrix unsigned long MatrixUpdateMTime; float Point[4]; double DoublePoint[4]; double ReturnValue[4]; private: vtkTransform (const vtkTransform&); // Not implemented void operator=(const vtkTransform&); // Not implemented }; #endif