#!/usr/bin/env python # # This example demonstrates the creation of multiple actors and the # manipulation of their properties and transformations. It is a # derivative of Cone.py, see that example for more information. # import vtk import time # # Next we create an instance of vtkConeSource and set some of its # properties. The instance of vtkConeSource "cone" is part of a visualization # pipeline (it is a source process object); it produces data (output type is # vtkPolyData) which other filters may process. # cone = vtk.vtkConeSource () cone.SetHeight( 3.0 ) cone.SetRadius( 1.0 ) cone.SetResolution( 10 ) # # In this example we terminate the pipeline with a mapper process object. # (Intermediate filters such as vtkShrinkPolyData could be inserted in # between the source and the mapper.) We create an instance of # vtkPolyDataMapper to map the polygonal data into graphics primitives. We # connect the output of the cone souece to the input of this mapper. # coneMapper = vtk.vtkPolyDataMapper() coneMapper.SetInputConnection(cone.GetOutputPort()) # # Create an actor to represent the first cone. The actor's properties are # modified to give it different surface properties. By default, an actor # is create with a property so the GetProperty() method can be used. # coneActor = vtk.vtkActor() coneActor.SetMapper(coneMapper) coneActor.GetProperty().SetColor(0.2, 0.63, 0.79) coneActor.GetProperty().SetDiffuse(0.7) coneActor.GetProperty().SetSpecular(0.4) coneActor.GetProperty().SetSpecularPower(20) # # Create a property and directly manipulate it. Assign it to the # second actor. # property = vtk.vtkProperty() property.SetColor(1.0, 0.3882, 0.2784) property.SetDiffuse(0.7) property.SetSpecular(0.4) property.SetSpecularPower(20) # # Create a second actor and a property. The property is directly # manipulated and then assigned to the actor. In this way, a single # property can be shared among many actors. Note also that we use the # same mapper as the first actor did. This way we avoid duplicating # geometry, which may save lots of memory if the geoemtry is large. coneActor2 = vtk.vtkActor() coneActor2.SetMapper(coneMapper) coneActor2.GetProperty().SetColor(0.2, 0.63, 0.79) coneActor2.SetProperty(property) coneActor2.SetPosition(0, 2, 0) # # Create the Renderer and assign actors to it. A renderer is like a # viewport. It is part or all of a window on the screen and it is responsible # for drawing the actors it has. We also set the background color here. # ren1 = vtk.vtkRenderer() ren1.AddActor(coneActor) ren1.AddActor(coneActor2) ren1.SetBackground(0.1, 0.2, 0.4) # # Finally we create the render window which will show up on the screen # We put our renderer into the render window using AddRenderer. We also # set the size to be 300 pixels by 300. # renWin = vtk.vtkRenderWindow() renWin.AddRenderer(ren1) renWin.SetSize(300, 300) # # Now we loop over 360 degreeees and render the cone each time. # for i in range(0,360): time.sleep(0.03) renWin.Render() ren1.GetActiveCamera().Azimuth( 1 )