/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkHexagonalPrism.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // Thanks to Philippe Guerville who developed this class. // Thanks to Charles Pignerol (CEA-DAM, France) who ported this class under // VTK 4. // Thanks to Jean Favre (CSCS, Switzerland) who contributed to integrate this // class in VTK. // Please address all comments to Jean Favre (jfavre at cscs.ch). #include "vtkHexagonalPrism.h" #include "vtkObjectFactory.h" #include "vtkLine.h" #include "vtkQuad.h" #include "vtkPolygon.h" #include "vtkMath.h" #include "vtkPoints.h" vtkCxxRevisionMacro(vtkHexagonalPrism, "$Revision: 1.4 $"); vtkStandardNewMacro(vtkHexagonalPrism); static const double VTK_DIVERGED = 1.e6; // You can recompute the value by doing: // const double a = sqrt(3.0)/4.0 + 0.5; #define EXPRA 0.933012701892219298 // You can recompute the value by doing: // const double b = 0.5 - sqrt(3.0)/4.0; // Thus EXPRA + EXPRB = 1.0 #define EXPRB 0.066987298107780702 //---------------------------------------------------------------------------- // Construct the prism with twelve points. vtkHexagonalPrism::vtkHexagonalPrism() { int i; this->Points->SetNumberOfPoints(12); this->PointIds->SetNumberOfIds(12); for (i = 0; i < 12; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i,0); } this->Line = vtkLine::New(); this->Quad = vtkQuad::New(); this->Polygon = vtkPolygon::New(); this->Polygon->PointIds->SetNumberOfIds(6); this->Polygon->Points->SetNumberOfPoints(6); for (i = 0; i < 6; i++) { this->Polygon->Points->SetPoint(i, 0.0, 0.0, 0.0); this->Polygon->PointIds->SetId(i,0); } } //---------------------------------------------------------------------------- vtkHexagonalPrism::~vtkHexagonalPrism() { this->Line->Delete(); this->Quad->Delete(); this->Polygon->Delete(); } // Method to calculate parametric coordinates in an eight noded // linear hexahedron element from global coordinates. // static const int VTK_HEX_MAX_ITERATION=10; static const double VTK_HEX_CONVERGED=1.e-03; //---------------------------------------------------------------------------- int vtkHexagonalPrism::EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights) { int iteration, converged; double params[3]; double fcol[3], rcol[3], scol[3], tcol[3]; int i, j; double d, pt[3]; double derivs[36]; // set initial position for Newton's method subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = params[0] = params[1] = params[2]=0.5; // enter iteration loop for (iteration=converged=0; !converged && (iteration < VTK_HEX_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives this->InterpolationFunctions(pcoords, weights); this->InterpolationDerivs(pcoords, derivs); // calculate newton functions for (i=0; i<3; i++) { fcol[i] = rcol[i] = scol[i] = tcol[i] = 0.0; } for (i=0; i<12; i++) { this->Points->GetPoint(i, pt); for (j=0; j<3; j++) { fcol[j] += pt[j] * weights[i]; rcol[j] += pt[j] * derivs[i]; scol[j] += pt[j] * derivs[i+12]; tcol[j] += pt[j] * derivs[i+24]; } } for (i=0; i<3; i++) { fcol[i] -= x[i]; } // compute determinants and generate improvements d=vtkMath::Determinant3x3(rcol,scol,tcol); if ( fabs(d) < 1.e-20) { return -1; } pcoords[0] = params[0] - vtkMath::Determinant3x3 (fcol,scol,tcol) / d; pcoords[1] = params[1] - vtkMath::Determinant3x3 (rcol,fcol,tcol) / d; pcoords[2] = params[2] - vtkMath::Determinant3x3 (rcol,scol,fcol) / d; // check for convergence if ( ((fabs(pcoords[0]-params[0])) < VTK_HEX_CONVERGED) && ((fabs(pcoords[1]-params[1])) < VTK_HEX_CONVERGED) && ((fabs(pcoords[2]-params[2])) < VTK_HEX_CONVERGED) ) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) || (fabs(pcoords[2]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if ( !converged ) { return -1; } this->InterpolationFunctions(pcoords, weights); if ( pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001 ) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; dist2 = 0.0; //inside hexahedron } return 1; } else { double pc[3], w[12]; if (closestPoint) { for (i=0; i<3; i++) //only approximate, not really true for warped hexa { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, (double *)w); dist2 = vtkMath::Distance2BetweenPoints(closestPoint,x); } return 0; } } //---------------------------------------------------------------------------- // // Compute iso-parametric interpolation functions // void vtkHexagonalPrism::InterpolationFunctions(double pcoords[3], double sf[12]) { double r, s, t; r = pcoords[0]; s = pcoords[1]; t = pcoords[2]; const double a = EXPRA; const double b = EXPRB; //First hexagon sf[0] = -16./3.*(r - a )*(r - b)*(s - 1.0 )*(t - 1.0); sf[1] = 16./3.*(r - 0.5)*(r - b)*(s - 0.75)*(t - 1.0); sf[2] = -16./3.*(r - 0.5)*(r - b)*(s - 0.25)*(t - 1.0); sf[3] = 16./3.*(r - a )*(r - b)*(s - 0.0 )*(t - 1.0); sf[4] = -16./3.*(r - 0.5)*(r - a)*(s - 0.25)*(t - 1.0); sf[5] = 16./3.*(r - 0.5)*(r - a)*(s - 0.75)*(t - 1.0); //Second hexagon sf[6] = 16./3.*(r - a )*(r - b)*(s - 1.0 )*(t - 0.0); sf[7] = -16./3.*(r - 0.5)*(r - b)*(s - 0.75)*(t - 0.0); sf[8] = 16./3.*(r - 0.5)*(r - b)*(s - 0.25)*(t - 0.0); sf[9] = -16./3.*(r - a )*(r - b)*(s - 0.0 )*(t - 0.0); sf[10] = 16./3.*(r - 0.5)*(r - a)*(s - 0.25)*(t - 0.0); sf[11] = -16./3.*(r - 0.5)*(r - a)*(s - 0.75)*(t - 0.0); } //---------------------------------------------------------------------------- void vtkHexagonalPrism::InterpolationDerivs(double pcoords[3], double derivs[36]) { double r, s, t; r = pcoords[0]; s = pcoords[1]; t = pcoords[2]; const double a = EXPRA; const double b = EXPRB; //note: a+b=1.0 // r-derivatives //First hexagon derivs[0] = -16./3.*( 2*r - 1.0) *(s - 1.0 )*(t - 1.0); derivs[1] = 16./3.*( 2*r - b - 0.5)*(s - 0.75)*(t - 1.0); derivs[2] = -16./3.*( 2*r - b - 0.5)*(s - 0.25)*(t - 1.0); derivs[3] = 16./3.*( 2*r - 1.0) *(s - 0.0 )*(t - 1.0); derivs[4] = -16./3.*( 2*r - a - 0.5)*(s - 0.25)*(t - 1.0); derivs[5] = 16./3.*( 2*r - a - 0.5)*(s - 0.75)*(t - 1.0); //Second hexagon derivs[6] = 16./3.*( 2*r - 1.0) *(s - 1.0 )*(t - 0.0); derivs[7] = -16./3.*( 2*r - b - 0.5)*(s - 0.75)*(t - 0.0); derivs[8] = 16./3.*( 2*r - b - 0.5)*(s - 0.25)*(t - 0.0); derivs[9] = -16./3.*( 2*r - 1.0) *(s - 0.0 )*(t - 0.0); derivs[10] = 16./3.*( 2*r - a - 0.5)*(s - 0.25)*(t - 0.0); derivs[11] = -16./3.*( 2*r - a - 0.5)*(s - 0.75)*(t - 0.0); // s-derivatives //First hexagon derivs[12] = -16./3.*(r - a )*(r - b)*(t - 1.0); derivs[13] = 16./3.*(r - 0.5)*(r - b)*(t - 1.0); derivs[14] = -16./3.*(r - 0.5)*(r - b)*(t - 1.0); derivs[15] = 16./3.*(r - a )*(r - b)*(t - 1.0); derivs[16] = -16./3.*(r - 0.5)*(r - a)*(t - 1.0); derivs[17] = 16./3.*(r - 0.5)*(r - a)*(t - 1.0); //Second hexagon derivs[18] = 16./3.*(r - a )*(r - b)*(t - 0.0); derivs[19] = -16./3.*(r - 0.5)*(r - b)*(t - 0.0); derivs[20] = 16./3.*(r - 0.5)*(r - b)*(t - 0.0); derivs[21] = -16./3.*(r - a )*(r - b)*(t - 0.0); derivs[22] = 16./3.*(r - 0.5)*(r - a)*(t - 0.0); derivs[23] = -16./3.*(r - 0.5)*(r - a)*(t - 0.0); // t-derivatives //First hexagon derivs[24] = -16./3.*(r - a )*(r - b)*(s - 1.0 ); derivs[25] = 16./3.*(r - 0.5)*(r - b)*(s - 0.75); derivs[26] = -16./3.*(r - 0.5)*(r - b)*(s - 0.25); derivs[27] = 16./3.*(r - a )*(r - b)*(s - 0.0 ); derivs[28] = -16./3.*(r - 0.5)*(r - a)*(s - 0.25); derivs[29] = 16./3.*(r - 0.5)*(r - a)*(s - 0.75); //Second hexagon derivs[30] = 16./3.*(r - a )*(r - b)*(s - 1.0 ); derivs[31] = -16./3.*(r - 0.5)*(r - b)*(s - 0.75); derivs[32] = 16./3.*(r - 0.5)*(r - b)*(s - 0.25); derivs[33] = -16./3.*(r - a )*(r - b)*(s - 0.0 ); derivs[34] = 16./3.*(r - 0.5)*(r - a)*(s - 0.25); derivs[35] = -16./3.*(r - 0.5)*(r - a)*(s - 0.75); } //---------------------------------------------------------------------------- void vtkHexagonalPrism::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3], double x[3], double *weights) { int i, j; double pt[3]; this->InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i = 0; i < 12; i++) { this->Points->GetPoint (i, pt); for (j = 0; j < 3; j++) { x[j] += pt [j] * weights [i]; } } } //---------------------------------------------------------------------------- static int edges[18][2] = { {0,1}, {1, 2}, {2, 3}, {3,4}, {4, 5}, {5, 0}, {6,7}, {7, 8}, {8, 9}, {9,10}, {10,11}, {11, 6}, {0,6}, {1, 7}, {2, 8}, {3,9}, {4, 10}, {5, 11} }; static int faces[8][6] = { {0,5,4,3,2,1}, {6,7,8,9,10,11}, {0,1,7,6,-1,-1}, {1,2,8,7,-1,-1}, {2,3,9,8,-1,-1}, {3,4,10,9,-1,-1}, {4,5,11,10,-1,-1}, {5,0,6,11,-1,-1} }; #define VTK_MAX(a,b) (((a)>(b))?(a):(b)) #define VTK_MIN(a,b) (((a)<(b))?(a):(b)) //---------------------------------------------------------------------------- // Returns the closest face to the point specified. Closeness is measured // parametrically. int vtkHexagonalPrism::CellBoundary(int subId, double pcoords[3], vtkIdList *pts) { // load coordinates double *points = this->GetParametricCoords(); for(int i=0;i<6;i++) { this->Polygon->PointIds->SetId(i, i); this->Polygon->Points->SetPoint(i, &points[3*i]); } this->Polygon->CellBoundary( subId, pcoords, pts); int min = VTK_MIN(pts->GetId( 0 ), pts->GetId( 1 )); int max = VTK_MAX(pts->GetId( 0 ), pts->GetId( 1 )); //Base on the edge find the quad that correspond: int index; if( (index = (max - min)) > 1) { index = 7; } else { index += min + 1; } double a[3], b[3], u[3], v[3]; this->Polygon->Points->GetPoint(pts->GetId( 0 ), a); this->Polygon->Points->GetPoint(pts->GetId( 1 ), b); u[0] = b[0] - a[0]; u[1] = b[1] - a[1]; v[0] = pcoords[0] - a[0]; v[1] = pcoords[1] - a[1]; double dot = vtkMath::Dot2D(v, u); double uNorm = vtkMath::Norm2D( u ); if (uNorm) { dot /= uNorm; } dot = (v[0]*v[0] + v[1]*v[1]) - dot*dot; // mathematically dot must be >= zero but, suprise suprise, it can actually // be negative if (dot > 0) { dot = sqrt( dot ); } else { dot = 0; } int *verts; if(pcoords[2] < 0.5) { //could be closer to face 1 //compare that distance to the distance to the quad. if(dot < pcoords[2]) { //We are closer to the quad face verts = faces[index]; for(int i=0; i<4; i++) { pts->InsertId(i, verts[i]); } } else { //we are closer to the hexa face 1 for(int i=0; i<6; i++) { pts->InsertId(i, faces[0][i]); } } } else { //could be closer to face 2 //compare that distance to the distance to the quad. if(dot < (1. - pcoords[2]) ) { //We are closer to the quad face verts = faces[index]; for(int i=0; i<4; i++) { pts->InsertId(i, verts[i]); } } else { //we are closer to the hexa face 2 for(int i=0; i<6; i++) { pts->InsertId(i, faces[1][i]); } } } // determine whether point is inside of hexagon if ( pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 || pcoords[2] < 0.0 || pcoords[2] > 1.0 ) { return 0; } else { return 1; } } //---------------------------------------------------------------------------- int *vtkHexagonalPrism::GetEdgeArray(int edgeId) { return edges[edgeId]; } //---------------------------------------------------------------------------- vtkCell *vtkHexagonalPrism::GetEdge(int edgeId) { int *verts; verts = edges[edgeId]; // load point id's this->Line->PointIds->SetId(0,this->PointIds->GetId(verts[0])); this->Line->PointIds->SetId(1,this->PointIds->GetId(verts[1])); // load coordinates this->Line->Points->SetPoint(0,this->Points->GetPoint(verts[0])); this->Line->Points->SetPoint(1,this->Points->GetPoint(verts[1])); return this->Line; } //---------------------------------------------------------------------------- int *vtkHexagonalPrism::GetFaceArray(int faceId) { return faces[faceId]; } //---------------------------------------------------------------------------- vtkCell *vtkHexagonalPrism::GetFace(int faceId) { int *verts; verts = faces[faceId]; if ( verts[4] != -1 ) // polys cell { // load point id's this->Polygon->PointIds->SetId(0,this->PointIds->GetId(verts[0])); this->Polygon->PointIds->SetId(1,this->PointIds->GetId(verts[1])); this->Polygon->PointIds->SetId(2,this->PointIds->GetId(verts[2])); this->Polygon->PointIds->SetId(3,this->PointIds->GetId(verts[3])); this->Polygon->PointIds->SetId(4,this->PointIds->GetId(verts[4])); this->Polygon->PointIds->SetId(5,this->PointIds->GetId(verts[5])); // load coordinates this->Polygon->Points->SetPoint(0,this->Points->GetPoint(verts[0])); this->Polygon->Points->SetPoint(1,this->Points->GetPoint(verts[1])); this->Polygon->Points->SetPoint(2,this->Points->GetPoint(verts[2])); this->Polygon->Points->SetPoint(3,this->Points->GetPoint(verts[3])); this->Polygon->Points->SetPoint(4,this->Points->GetPoint(verts[4])); this->Polygon->Points->SetPoint(5,this->Points->GetPoint(verts[5])); return this->Polygon; } else { // load point id's this->Quad->PointIds->SetId(0,this->PointIds->GetId(verts[0])); this->Quad->PointIds->SetId(1,this->PointIds->GetId(verts[1])); this->Quad->PointIds->SetId(2,this->PointIds->GetId(verts[2])); this->Quad->PointIds->SetId(3,this->PointIds->GetId(verts[3])); // load coordinates this->Quad->Points->SetPoint(0,this->Points->GetPoint(verts[0])); this->Quad->Points->SetPoint(1,this->Points->GetPoint(verts[1])); this->Quad->Points->SetPoint(2,this->Points->GetPoint(verts[2])); this->Quad->Points->SetPoint(3,this->Points->GetPoint(verts[3])); return this->Quad; } } //---------------------------------------------------------------------------- // // Intersect prism faces against line. Each prism face is a quadrilateral. // int vtkHexagonalPrism::IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int& subId) { int intersection=0; double pt1[3], pt2[3], pt3[3], pt4[3], pt5[3], pt6[3]; double tTemp; double pc[3], xTemp[3], dist2, weights[12]; int faceNum; t = VTK_DOUBLE_MAX; //first intersect the penta faces for (faceNum=0; faceNum<2; faceNum++) { this->Points->GetPoint(faces[faceNum][0], pt1); this->Points->GetPoint(faces[faceNum][1], pt2); this->Points->GetPoint(faces[faceNum][2], pt3); this->Points->GetPoint(faces[faceNum][3], pt4); this->Points->GetPoint(faces[faceNum][4], pt5); this->Points->GetPoint(faces[faceNum][5], pt6); this->Polygon->Points->SetPoint(0,pt1); this->Polygon->Points->SetPoint(1,pt2); this->Polygon->Points->SetPoint(2,pt3); this->Polygon->Points->SetPoint(3,pt4); this->Polygon->Points->SetPoint(4,pt5); this->Polygon->Points->SetPoint(5,pt6); if ( this->Polygon->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId) ) { intersection = 1; if ( tTemp < t ) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 0: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 0.0; break; case 1: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 1.0; break; } } } } //now intersect the quad faces for (faceNum=2; faceNum<8; faceNum++) { this->Points->GetPoint(faces[faceNum][0], pt1); this->Points->GetPoint(faces[faceNum][1], pt2); this->Points->GetPoint(faces[faceNum][2], pt3); this->Points->GetPoint(faces[faceNum][3], pt4); this->Quad->Points->SetPoint(0,pt1); this->Quad->Points->SetPoint(1,pt2); this->Quad->Points->SetPoint(2,pt3); this->Quad->Points->SetPoint(3,pt4); if ( this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId) ) { intersection = 1; if ( tTemp < t ) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; this->EvaluatePosition(x, xTemp, subId, pcoords, dist2, weights); } } } return intersection; } //---------------------------------------------------------------------------- int vtkHexagonalPrism::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds, vtkPoints *pts) { ptIds->Reset(); pts->Reset(); for ( int i=0; i < 4; i++ ) { ptIds->InsertId(i,this->PointIds->GetId(i)); pts->InsertPoint(i,this->Points->GetPoint(i)); } return 1; } //---------------------------------------------------------------------------- // // Compute derivatives in x-y-z directions. Use chain rule in combination // with interpolation function derivatives. // void vtkHexagonalPrism::Derivatives(int vtkNotUsed(subId), double pcoords[3], double *values, int dim, double *derivs) { double *jI[3], j0[3], j1[3], j2[3]; double functionDerivs[36], sum[3], value; int i, j, k; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(pcoords, jI, functionDerivs); // now compute derivates of values provided for (k=0; k < dim; k++) //loop over values per vertex { sum[0] = sum[1] = sum[2] = 0.0; for ( i=0; i < 12; i++) //loop over interp. function derivatives { value = values[dim*i + k]; sum[0] += functionDerivs[i] * value; sum[1] += functionDerivs[12 + i] * value; sum[2] += functionDerivs[24 + i] * value; } for (j=0; j < 3; j++) //loop over derivative directions { derivs[3*k + j] = sum[0]*jI[j][0] + sum[1]*jI[j][1] + sum[2]*jI[j][2]; } } } //---------------------------------------------------------------------------- // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. void vtkHexagonalPrism::JacobianInverse(double pcoords[3], double **inverse, double derivs[36]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives this->InterpolationDerivs(pcoords, derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i=0; i < 3; i++) //initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for ( j=0; j < 12; j++ ) { this->Points->GetPoint(j, x); for ( i=0; i < 3; i++ ) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[12 + j]; m2[i] += x[i] * derivs[24 + j]; } } // now find the inverse if ( vtkMath::InvertMatrix(m,inverse,3) == 0 ) { vtkErrorMacro(<<"Jacobian inverse not found"); return; } } //---------------------------------------------------------------------------- void vtkHexagonalPrism::GetEdgePoints(int edgeId, int* &pts) { pts = this->GetEdgeArray(edgeId); } //---------------------------------------------------------------------------- void vtkHexagonalPrism::GetFacePoints(int faceId, int* &pts) { pts = this->GetFaceArray(faceId); } static double vtkHexagonalPrismCellPCoords[36] = { 0.5, 0.0 , 0.0, EXPRA, 0.25, 0.0, EXPRA, 0.75, 0.0, 0.5, 1.0 , 0.0, EXPRB, 0.75, 0.0, EXPRB, 0.25, 0.0, 0.5, 0.0 , 1.0, EXPRA, 0.25, 1.0, EXPRA, 0.75, 1.0, 0.5, 1.0 , 1.0, EXPRB, 0.75, 1.0, EXPRB, 0.25, 1.0, }; //---------------------------------------------------------------------------- double *vtkHexagonalPrism::GetParametricCoords() { return vtkHexagonalPrismCellPCoords; } //---------------------------------------------------------------------------- void vtkHexagonalPrism::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Line:\n"; this->Line->PrintSelf(os,indent.GetNextIndent()); os << indent << "Quad:\n"; this->Quad->PrintSelf(os,indent.GetNextIndent()); os << indent << "Polygon:\n"; this->Polygon->PrintSelf(os,indent.GetNextIndent()); }