/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkHexahedron.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkHexahedron.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkLine.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkPointLocator.h" #include "vtkPoints.h" #include "vtkQuad.h" vtkCxxRevisionMacro(vtkHexahedron, "$Revision: 1.4 $"); vtkStandardNewMacro(vtkHexahedron); static const double VTK_DIVERGED = 1.e6; //---------------------------------------------------------------------------- // Construct the hexahedron with eight points. vtkHexahedron::vtkHexahedron() { this->Points->SetNumberOfPoints(8); this->PointIds->SetNumberOfIds(8); for (int i = 0; i < 8; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i,0); } this->Line = vtkLine::New(); this->Quad = vtkQuad::New(); } //---------------------------------------------------------------------------- vtkHexahedron::~vtkHexahedron() { this->Line->Delete(); this->Quad->Delete(); } //---------------------------------------------------------------------------- // Method to calculate parametric coordinates in an eight noded // linear hexahedron element from global coordinates. // static const int VTK_HEX_MAX_ITERATION=10; static const double VTK_HEX_CONVERGED=1.e-03; int vtkHexahedron::EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights) { int iteration, converged; double params[3]; double fcol[3], rcol[3], scol[3], tcol[3]; int i, j; double d, pt[3]; double derivs[24]; // set initial position for Newton's method subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = params[0] = params[1] = params[2]=0.5; // enter iteration loop for (iteration=converged=0; !converged && (iteration < VTK_HEX_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives this->InterpolationFunctions(pcoords, weights); this->InterpolationDerivs(pcoords, derivs); // calculate newton functions for (i=0; i<3; i++) { fcol[i] = rcol[i] = scol[i] = tcol[i] = 0.0; } for (i=0; i<8; i++) { this->Points->GetPoint(i, pt); for (j=0; j<3; j++) { fcol[j] += pt[j] * weights[i]; rcol[j] += pt[j] * derivs[i]; scol[j] += pt[j] * derivs[i+8]; tcol[j] += pt[j] * derivs[i+16]; } } for (i=0; i<3; i++) { fcol[i] -= x[i]; } // compute determinants and generate improvements d=vtkMath::Determinant3x3(rcol,scol,tcol); if ( fabs(d) < 1.e-20) { return -1; } pcoords[0] = params[0] - vtkMath::Determinant3x3 (fcol,scol,tcol) / d; pcoords[1] = params[1] - vtkMath::Determinant3x3 (rcol,fcol,tcol) / d; pcoords[2] = params[2] - vtkMath::Determinant3x3 (rcol,scol,fcol) / d; // check for convergence if ( ((fabs(pcoords[0]-params[0])) < VTK_HEX_CONVERGED) && ((fabs(pcoords[1]-params[1])) < VTK_HEX_CONVERGED) && ((fabs(pcoords[2]-params[2])) < VTK_HEX_CONVERGED) ) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) || (fabs(pcoords[2]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if ( !converged ) { return -1; } this->InterpolationFunctions(pcoords, weights); if ( pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001 ) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; dist2 = 0.0; //inside hexahedron } return 1; } else { double pc[3], w[8]; if (closestPoint) { for (i=0; i<3; i++) //only approximate, not really true for warped hexa { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, (double *)w); dist2 = vtkMath::Distance2BetweenPoints(closestPoint,x); } return 0; } } //---------------------------------------------------------------------------- // Compute iso-parametric interpolation functions // void vtkHexahedron::InterpolationFunctions(double pcoords[3], double sf[8]) { double rm, sm, tm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; tm = 1. - pcoords[2]; sf[0] = rm*sm*tm; sf[1] = pcoords[0]*sm*tm; sf[2] = pcoords[0]*pcoords[1]*tm; sf[3] = rm*pcoords[1]*tm; sf[4] = rm*sm*pcoords[2]; sf[5] = pcoords[0]*sm*pcoords[2]; sf[6] = pcoords[0]*pcoords[1]*pcoords[2]; sf[7] = rm*pcoords[1]*pcoords[2]; } //---------------------------------------------------------------------------- void vtkHexahedron::InterpolationDerivs(double pcoords[3], double derivs[24]) { double rm, sm, tm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; tm = 1. - pcoords[2]; // r-derivatives derivs[0] = -sm*tm; derivs[1] = sm*tm; derivs[2] = pcoords[1]*tm; derivs[3] = -pcoords[1]*tm; derivs[4] = -sm*pcoords[2]; derivs[5] = sm*pcoords[2]; derivs[6] = pcoords[1]*pcoords[2]; derivs[7] = -pcoords[1]*pcoords[2]; // s-derivatives derivs[8] = -rm*tm; derivs[9] = -pcoords[0]*tm; derivs[10] = pcoords[0]*tm; derivs[11] = rm*tm; derivs[12] = -rm*pcoords[2]; derivs[13] = -pcoords[0]*pcoords[2]; derivs[14] = pcoords[0]*pcoords[2]; derivs[15] = rm*pcoords[2]; // t-derivatives derivs[16] = -rm*sm; derivs[17] = -pcoords[0]*sm; derivs[18] = -pcoords[0]*pcoords[1]; derivs[19] = -rm*pcoords[1]; derivs[20] = rm*sm; derivs[21] = pcoords[0]*sm; derivs[22] = pcoords[0]*pcoords[1]; derivs[23] = rm*pcoords[1]; } //---------------------------------------------------------------------------- void vtkHexahedron::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3], double x[3], double *weights) { int i, j; double pt[3]; this->InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i=0; i<8; i++) { this->Points->GetPoint(i, pt); for (j=0; j<3; j++) { x[j] += pt[j] * weights[i]; } } } //---------------------------------------------------------------------------- int vtkHexahedron::CellBoundary(int vtkNotUsed(subId), double pcoords[3], vtkIdList *pts) { double t1=pcoords[0]-pcoords[1]; double t2=1.0-pcoords[0]-pcoords[1]; double t3=pcoords[1]-pcoords[2]; double t4=1.0-pcoords[1]-pcoords[2]; double t5=pcoords[2]-pcoords[0]; double t6=1.0-pcoords[2]-pcoords[0]; pts->SetNumberOfIds(4); // compare against six planes in parametric space that divide element // into six pieces. if ( t3 >= 0.0 && t4 >= 0.0 && t5 < 0.0 && t6 >= 0.0 ) { pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(1)); pts->SetId(2,this->PointIds->GetId(2)); pts->SetId(3,this->PointIds->GetId(3)); } else if ( t1 >= 0.0 && t2 < 0.0 && t5 < 0.0 && t6 < 0.0 ) { pts->SetId(0,this->PointIds->GetId(1)); pts->SetId(1,this->PointIds->GetId(2)); pts->SetId(2,this->PointIds->GetId(6)); pts->SetId(3,this->PointIds->GetId(5)); } else if ( t1 >= 0.0 && t2 >= 0.0 && t3 < 0.0 && t4 >= 0.0 ) { pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(1)); pts->SetId(2,this->PointIds->GetId(5)); pts->SetId(3,this->PointIds->GetId(4)); } else if ( t3 < 0.0 && t4 < 0.0 && t5 >= 0.0 && t6 < 0.0 ) { pts->SetId(0,this->PointIds->GetId(4)); pts->SetId(1,this->PointIds->GetId(5)); pts->SetId(2,this->PointIds->GetId(6)); pts->SetId(3,this->PointIds->GetId(7)); } else if ( t1 < 0.0 && t2 >= 0.0 && t5 >= 0.0 && t6 >= 0.0 ) { pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(4)); pts->SetId(2,this->PointIds->GetId(7)); pts->SetId(3,this->PointIds->GetId(3)); } else // if ( t1 < 0.0 && t2 < 0.0 && t3 >= 0.0 && t6 < 0.0 ) { pts->SetId(0,this->PointIds->GetId(2)); pts->SetId(1,this->PointIds->GetId(3)); pts->SetId(2,this->PointIds->GetId(7)); pts->SetId(3,this->PointIds->GetId(6)); } if ( pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 || pcoords[2] < 0.0 || pcoords[2] > 1.0 ) { return 0; } else { return 1; } } //---------------------------------------------------------------------------- static int edges[12][2] = { {0,1}, {1,2}, {3,2}, {0,3}, {4,5}, {5,6}, {7,6}, {4,7}, {0,4}, {1,5}, {3,7}, {2,6}}; static int faces[6][4] = { {0,4,7,3}, {1,2,6,5}, {0,1,5,4}, {3,7,6,2}, {0,3,2,1}, {4,5,6,7} }; // Marching cubes case table // #include "vtkMarchingCubesCases.h" void vtkHexahedron::Contour(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) { static int CASE_MASK[8] = {1,2,4,8,16,32,64,128}; vtkMarchingCubesTriangleCases *triCase; EDGE_LIST *edge; int i, j, index, *vert; int v1, v2, newCellId; vtkIdType pts[3]; double t, x1[3], x2[3], x[3], deltaScalar; vtkIdType offset = verts->GetNumberOfCells() + lines->GetNumberOfCells(); // Build the case table for ( i=0, index = 0; i < 8; i++) { if (cellScalars->GetComponent(i,0) >= value) { index |= CASE_MASK[i]; } } triCase = vtkMarchingCubesTriangleCases::GetCases() + index; edge = triCase->edges; for ( ; edge[0] > -1; edge += 3 ) { for (i=0; i<3; i++) // insert triangle { vert = edges[edge[i]]; // calculate a preferred interpolation direction deltaScalar = (cellScalars->GetComponent(vert[1],0) - cellScalars->GetComponent(vert[0],0)); if (deltaScalar > 0) { v1 = vert[0]; v2 = vert[1]; } else { v1 = vert[1]; v2 = vert[0]; deltaScalar = -deltaScalar; } // linear interpolation t = ( deltaScalar == 0.0 ? 0.0 : (value - cellScalars->GetComponent(v1,0)) / deltaScalar ); this->Points->GetPoint(v1, x1); this->Points->GetPoint(v2, x2); for (j=0; j<3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if ( locator->InsertUniquePoint(x, pts[i]) ) { if ( outPd ) { vtkIdType p1 = this->PointIds->GetId(v1); vtkIdType p2 = this->PointIds->GetId(v2); outPd->InterpolateEdge(inPd,pts[i],p1,p2,t); } } } // check for degenerate triangle if ( pts[0] != pts[1] && pts[0] != pts[2] && pts[1] != pts[2] ) { newCellId = offset + polys->InsertNextCell(3,pts); outCd->CopyData(inCd,cellId,newCellId); } } } //---------------------------------------------------------------------------- int *vtkHexahedron::GetEdgeArray(int edgeId) { return edges[edgeId]; } //---------------------------------------------------------------------------- vtkCell *vtkHexahedron::GetEdge(int edgeId) { int *verts; verts = edges[edgeId]; // load point id's this->Line->PointIds->SetId(0,this->PointIds->GetId(verts[0])); this->Line->PointIds->SetId(1,this->PointIds->GetId(verts[1])); // load coordinates this->Line->Points->SetPoint(0,this->Points->GetPoint(verts[0])); this->Line->Points->SetPoint(1,this->Points->GetPoint(verts[1])); return this->Line; } //---------------------------------------------------------------------------- int *vtkHexahedron::GetFaceArray(int faceId) { return faces[faceId]; } //---------------------------------------------------------------------------- vtkCell *vtkHexahedron::GetFace(int faceId) { int *verts, i; verts = faces[faceId]; for (i=0; i<4; i++) { this->Quad->PointIds->SetId(i,this->PointIds->GetId(verts[i])); this->Quad->Points->SetPoint(i,this->Points->GetPoint(verts[i])); } return this->Quad; } //---------------------------------------------------------------------------- // // Intersect hexa faces against line. Each hexa face is a quadrilateral. // int vtkHexahedron::IntersectWithLine(double p1[3], double p2[3], double tol, double &t, double x[3], double pcoords[3], int& subId) { int intersection=0; double pt1[3], pt2[3], pt3[3], pt4[3]; double tTemp; double pc[3], xTemp[3]; int faceNum; t = VTK_DOUBLE_MAX; for (faceNum=0; faceNum<6; faceNum++) { this->Points->GetPoint(faces[faceNum][0], pt1); this->Points->GetPoint(faces[faceNum][1], pt2); this->Points->GetPoint(faces[faceNum][2], pt3); this->Points->GetPoint(faces[faceNum][3], pt4); this->Quad->Points->SetPoint(0,pt1); this->Quad->Points->SetPoint(1,pt2); this->Quad->Points->SetPoint(2,pt3); this->Quad->Points->SetPoint(3,pt4); if ( this->Quad->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId) ) { intersection = 1; if ( tTemp < t ) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 0: pcoords[0] = 0.0; pcoords[0] = pc[0]; pcoords[1] = 0.0; break; case 1: pcoords[0] = 1.0; pcoords[0] = pc[0]; pcoords[1] = 0.0; break; case 2: pcoords[0] = pc[0]; pcoords[1] = 0.0; pcoords[2] = pc[1]; break; case 3: pcoords[0] = pc[0]; pcoords[1] = 1.0; pcoords[2] = pc[1]; break; case 4: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 0.0; break; case 5: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 1.0; break; } } } } return intersection; } //---------------------------------------------------------------------------- int vtkHexahedron::Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) { int p[4], i; ptIds->Reset(); pts->Reset(); // Create five tetrahedron. Triangulation varies depending upon index. This // is necessary to insure compatible voxel triangulations. if ( (index % 2) ) { p[0] = 0; p[1] = 1; p[2] = 3; p[3] = 4; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 4; p[2] = 5; p[3] = 6; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 4; p[2] = 6; p[3] = 3; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 1; p[1] = 3; p[2] = 6; p[3] = 2; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 3; p[1] = 6; p[2] = 7; p[3] = 4; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } } else { p[0] = 2; p[1] = 1; p[2] = 5; p[3] = 0; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 0; p[1] = 2; p[2] = 3; p[3] = 7; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 2; p[1] = 5; p[2] = 6; p[3] = 7; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 0; p[1] = 7; p[2] = 4; p[3] = 5; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } p[0] = 0; p[1] = 2; p[2] = 7; p[3] = 5; for ( i=0; i < 4; i++ ) { ptIds->InsertNextId(this->PointIds->GetId(p[i])); pts->InsertNextPoint(this->Points->GetPoint(p[i])); } } return 1; } //---------------------------------------------------------------------------- // Compute derivatives in x-y-z directions. Use chain rule in combination // with interpolation function derivatives. // void vtkHexahedron::Derivatives(int vtkNotUsed(subId), double pcoords[3], double *values, int dim, double *derivs) { double *jI[3], j0[3], j1[3], j2[3]; double functionDerivs[24], sum[3]; int i, j, k; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(pcoords, jI, functionDerivs); // now compute derivates of values provided for (k=0; k < dim; k++) //loop over values per vertex { sum[0] = sum[1] = sum[2] = 0.0; for ( i=0; i < 8; i++) //loop over interp. function derivatives { sum[0] += functionDerivs[i] * values[dim*i + k]; sum[1] += functionDerivs[8 + i] * values[dim*i + k]; sum[2] += functionDerivs[16 + i] * values[dim*i + k]; } for (j=0; j < 3; j++) //loop over derivative directions { derivs[3*k + j] = sum[0]*jI[j][0] + sum[1]*jI[j][1] + sum[2]*jI[j][2]; } } } //---------------------------------------------------------------------------- // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. void vtkHexahedron::JacobianInverse(double pcoords[3], double **inverse, double derivs[24]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives this->InterpolationDerivs(pcoords, derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i=0; i < 3; i++) //initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for ( j=0; j < 8; j++ ) { this->Points->GetPoint(j, x); for ( i=0; i < 3; i++ ) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[8 + j]; m2[i] += x[i] * derivs[16 + j]; } } // now find the inverse if ( vtkMath::InvertMatrix(m,inverse,3) == 0 ) { vtkErrorMacro(<<"Jacobian inverse not found"); return; } } //---------------------------------------------------------------------------- void vtkHexahedron::GetEdgePoints(int edgeId, int* &pts) { pts = this->GetEdgeArray(edgeId); } //---------------------------------------------------------------------------- void vtkHexahedron::GetFacePoints(int faceId, int* &pts) { pts = this->GetFaceArray(faceId); } //---------------------------------------------------------------------------- static double vtkHexahedronCellPCoords[24] = {0.0,0.0,0.0, 1.0,0.0,0.0, 1.0,1.0,0.0, 0.0,1.0,0.0, 0.0,0.0,1.0, 1.0,0.0,1.0, 1.0,1.0,1.0, 0.0,1.0,1.0}; double *vtkHexahedron::GetParametricCoords() { return vtkHexahedronCellPCoords; } //---------------------------------------------------------------------------- void vtkHexahedron::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Line:\n"; this->Line->PrintSelf(os,indent.GetNextIndent()); os << indent << "Quad:\n"; this->Quad->PrintSelf(os,indent.GetNextIndent()); }