/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkPixel.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkPixel.h" #include "vtkObjectFactory.h" #include "vtkQuad.h" #include "vtkTriangle.h" #include "vtkPlane.h" #include "vtkMath.h" #include "vtkCellArray.h" #include "vtkLine.h" #include "vtkPointLocator.h" #include "vtkPointData.h" #include "vtkCellData.h" #include "vtkPoints.h" vtkCxxRevisionMacro(vtkPixel, "$Revision: 1.2 $"); vtkStandardNewMacro(vtkPixel); //---------------------------------------------------------------------------- // Construct the pixel with four points. vtkPixel::vtkPixel() { int i; this->Points->SetNumberOfPoints(4); this->PointIds->SetNumberOfIds(4); for (i = 0; i < 4; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); } for (i = 0; i < 4; i++) { this->PointIds->SetId(i,0); } this->Line = vtkLine::New(); } //---------------------------------------------------------------------------- vtkPixel::~vtkPixel() { this->Line->Delete(); } //---------------------------------------------------------------------------- int vtkPixel::EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights) { double pt1[3], pt2[3], pt3[3]; int i; double p[3], p21[3], p31[3], cp[3]; double l21, l31, n[3]; subId = 0; pcoords[2] = 0.0; // Get normal for pixel // this->Points->GetPoint(0, pt1); this->Points->GetPoint(1, pt2); this->Points->GetPoint(2, pt3); vtkTriangle::ComputeNormal (pt1, pt2, pt3, n); // Project point to plane // vtkPlane::ProjectPoint(x,pt1,n,cp); for (i=0; i<3; i++) { p21[i] = pt2[i] - pt1[i]; p31[i] = pt3[i] - pt1[i]; p[i] = x[i] - pt1[i]; } if ( (l21=vtkMath::Norm(p21)) == 0.0 ) { l21 = 1.0; } if ( (l31=vtkMath::Norm(p31)) == 0.0 ) { l31 = 1.0; } pcoords[0] = vtkMath::Dot(p21,p) / (l21*l21); pcoords[1] = vtkMath::Dot(p31,p) / (l31*l31); this->InterpolationFunctions(pcoords, weights); if ( pcoords[0] >= 0.0 && pcoords[0] <= 1.0 && pcoords[1] >= 0.0 && pcoords[1] <= 1.0 ) { if (closestPoint) { closestPoint[0] = cp[0]; closestPoint[1] = cp[1]; closestPoint[2] = cp[2]; dist2 = vtkMath::Distance2BetweenPoints(closestPoint,x); //projection distance } return 1; } else { double pc[3], w[4]; if (closestPoint) { for (i=0; i<2; i++) { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, (double *)w); dist2 = vtkMath::Distance2BetweenPoints(closestPoint,x); } return 0; } } //---------------------------------------------------------------------------- void vtkPixel::EvaluateLocation(int& subId, double pcoords[3], double x[3], double *weights) { double pt1[3], pt2[3], pt3[3]; int i; subId = 0; this->Points->GetPoint(0, pt1); this->Points->GetPoint(1, pt2); this->Points->GetPoint(2, pt3); for (i=0; i<3; i++) { x[i] = pt1[i] + pcoords[0]*(pt2[i] - pt1[i]) + pcoords[1]*(pt3[i] - pt1[i]); } this->InterpolationFunctions(pcoords, weights); } //---------------------------------------------------------------------------- int vtkPixel::CellBoundary(int vtkNotUsed(subId), double pcoords[3], vtkIdList *pts) { double t1=pcoords[0]-pcoords[1]; double t2=1.0-pcoords[0]-pcoords[1]; pts->SetNumberOfIds(2); // compare against two lines in parametric space that divide element // into four pieces. if ( t1 >= 0.0 && t2 >= 0.0 ) { pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(1)); } else if ( t1 >= 0.0 && t2 < 0.0 ) { pts->SetId(0,this->PointIds->GetId(1)); pts->SetId(1,this->PointIds->GetId(3)); } else if ( t1 < 0.0 && t2 < 0.0 ) { pts->SetId(0,this->PointIds->GetId(3)); pts->SetId(1,this->PointIds->GetId(2)); } else //( t1 < 0.0 && t2 >= 0.0 ) { pts->SetId(0,this->PointIds->GetId(2)); pts->SetId(1,this->PointIds->GetId(0)); } if ( pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 ) { return 0; } else { return 1; } } //---------------------------------------------------------------------------- // // Marching squares // #include "vtkMarchingSquaresCases.h" static int edges[4][2] = { {0,1}, {1,3}, {2,3}, {0,2} }; void vtkPixel::Contour(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *vtkNotUsed(verts), vtkCellArray *lines, vtkCellArray *vtkNotUsed(polys), vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) { static int CASE_MASK[4] = {1,2,8,4}; //note differenceom quad! vtkMarchingSquaresLineCases *lineCase; EDGE_LIST *edge; int i, j, index, *vert; int newCellId; vtkIdType pts[2]; double t, x1[3], x2[3], x[3]; // Build the case table for ( i=0, index = 0; i < 4; i++) { if (cellScalars->GetComponent(i,0) >= value) { index |= CASE_MASK[i]; } } lineCase = vtkMarchingSquaresLineCases::GetCases() + index; edge = lineCase->edges; for ( ; edge[0] > -1; edge += 2 ) { for (i=0; i<2; i++) // insert line { vert = edges[edge[i]]; t = (value - cellScalars->GetComponent(vert[0],0)) / (cellScalars->GetComponent(vert[1],0) - cellScalars->GetComponent(vert[0],0)); this->Points->GetPoint(vert[0], x1); this->Points->GetPoint(vert[1], x2); for (j=0; j<3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if ( locator->InsertUniquePoint(x, pts[i]) ) { if ( outPd ) { int p1 = this->PointIds->GetId(vert[0]); int p2 = this->PointIds->GetId(vert[1]); outPd->InterpolateEdge(inPd,pts[i],p1,p2,t); } } } // check for degenerate line if ( pts[0] != pts[1] ) { newCellId = lines->InsertNextCell(2,pts); outCd->CopyData(inCd,cellId,newCellId); } } } //---------------------------------------------------------------------------- vtkCell *vtkPixel::GetEdge(int edgeId) { int *verts; verts = edges[edgeId]; // load point id's this->Line->PointIds->SetId(0,this->PointIds->GetId(verts[0])); this->Line->PointIds->SetId(1,this->PointIds->GetId(verts[1])); // load coordinates this->Line->Points->SetPoint(0,this->Points->GetPoint(verts[0])); this->Line->Points->SetPoint(1,this->Points->GetPoint(verts[1])); return this->Line; } //---------------------------------------------------------------------------- // // Compute interpolation functions (similar but different than Quad interpolation // functions) // void vtkPixel::InterpolationFunctions(double pcoords[3], double sf[4]) { double rm, sm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; sf[0] = rm * sm; sf[1] = pcoords[0] * sm; sf[2] = rm * pcoords[1]; sf[3] = pcoords[0] * pcoords[1]; } //---------------------------------------------------------------------------- // // Compute derivatives of interpolation functions. // void vtkPixel::InterpolationDerivs(double pcoords[3], double derivs[8]) { double rm, sm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; // r derivatives derivs[0] = -sm; derivs[1] = sm; derivs[2] = -pcoords[1]; derivs[3] = pcoords[1]; // s derivatives derivs[4] = -rm; derivs[5] = -pcoords[0]; derivs[6] = rm; derivs[7] = pcoords[0]; } //---------------------------------------------------------------------------- // // Intersect plane; see whether point is inside. // int vtkPixel::IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) { double pt1[3], pt4[3], n[3]; double tol2 = tol*tol; double closestPoint[3]; double dist2, weights[4]; int i; subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = 0.0; // // Get normal for triangle // this->Points->GetPoint(0, pt1); this->Points->GetPoint(3, pt4); n[0] = n[1] = n[2] = 0.0; for (i=0; i<3; i++) { if ( (pt4[i] - pt1[i]) <= 0.0 ) { n[i] = 1.0; break; } } // // Intersect plane of pixel with line // if ( ! vtkPlane::IntersectWithLine(p1,p2,n,pt1,t,x) ) { return 0; } // // Use evaluate position // if (this->EvaluatePosition(x, closestPoint, subId, pcoords, dist2, weights) ) { if ( dist2 <= tol2 ) { return 1; } } return 0; } //---------------------------------------------------------------------------- int vtkPixel::Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) { pts->Reset(); ptIds->Reset(); if ( (index % 2) ) { ptIds->InsertId(0,this->PointIds->GetId(0)); pts->InsertPoint(0,this->Points->GetPoint(0)); ptIds->InsertId(1,this->PointIds->GetId(1)); pts->InsertPoint(1,this->Points->GetPoint(1)); ptIds->InsertId(2,this->PointIds->GetId(2)); pts->InsertPoint(2,this->Points->GetPoint(2)); ptIds->InsertId(3,this->PointIds->GetId(1)); pts->InsertPoint(3,this->Points->GetPoint(1)); ptIds->InsertId(4,this->PointIds->GetId(3)); pts->InsertPoint(4,this->Points->GetPoint(3)); ptIds->InsertId(5,this->PointIds->GetId(2)); pts->InsertPoint(5,this->Points->GetPoint(2)); } else { ptIds->InsertId(0,this->PointIds->GetId(0)); pts->InsertPoint(0,this->Points->GetPoint(0)); ptIds->InsertId(1,this->PointIds->GetId(1)); pts->InsertPoint(1,this->Points->GetPoint(1)); ptIds->InsertId(2,this->PointIds->GetId(3)); pts->InsertPoint(2,this->Points->GetPoint(3)); ptIds->InsertId(3,this->PointIds->GetId(0)); pts->InsertPoint(3,this->Points->GetPoint(0)); ptIds->InsertId(4,this->PointIds->GetId(3)); pts->InsertPoint(4,this->Points->GetPoint(3)); ptIds->InsertId(5,this->PointIds->GetId(2)); pts->InsertPoint(5,this->Points->GetPoint(2)); } return 1; } //---------------------------------------------------------------------------- void vtkPixel::Derivatives(int vtkNotUsed(subId), double pcoords[3], double *values, int dim, double *derivs) { double functionDerivs[8], sum; int i, j, k, plane, idx[2], jj; double x0[3], x1[3], x2[3], x3[3], spacing[3]; this->Points->GetPoint(0, x0); this->Points->GetPoint(1, x1); this->Points->GetPoint(2, x2); this->Points->GetPoint(3, x3); //figure which plane this pixel is in for (i=0; i < 3; i++) { spacing[i] = x3[i] - x0[i]; } if ( spacing[0] > spacing[2] && spacing[1] > spacing[2] ) // z-plane { plane = 2; idx[0] = 0; idx[1] = 1; } else if ( spacing[0] > spacing[1] && spacing[2] > spacing[1] ) // y-plane { plane = 1; idx[0] = 0; idx[1] = 2; } else // x-plane { plane = 0; idx[0] = 1; idx[1] = 2; } spacing[0] = x1[idx[0]] - x0[idx[0]]; spacing[1] = x2[idx[1]] - x0[idx[1]]; // get derivatives in r-s directions this->InterpolationDerivs(pcoords, functionDerivs); // since two of the x-y-z axes are aligned with r-s axes, only need to scale // the derivative values by the data spacing. for (k=0; k < dim; k++) //loop over values per vertex { for (jj=j=0; j < 3; j++) //loop over derivative directions { if ( j == plane ) // 0-derivate values in this direction { sum = 0.0; } else //compute derivatives { for (sum=0.0, i=0; i < 4; i++) //loop over interp. function derivatives { sum += functionDerivs[4*jj + i] * values[dim*i + k]; } sum /= spacing[idx[jj++]]; } derivs[3*k + j] = sum; } } } //---------------------------------------------------------------------------- // support pixel clipping typedef int PIXEL_EDGE_LIST; typedef struct { PIXEL_EDGE_LIST edges[14]; } PIXEL_CASES; static PIXEL_CASES pixelCases[] = { {{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 0 {{ 3, 100, 0, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 1 {{ 3, 101, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 2 {{ 4, 100, 101, 1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 3 {{ 3, 103, 2, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 4 {{ 3, 100, 0, 3, 3, 103, 2, 1, 4, 0, 1, 2, 3, -1}}, // 5 {{ 4, 101, 103, 2, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 6 {{ 3, 100, 101, 3, 3, 101, 2, 3, 3, 101, 103, 2, -1, -1}}, // 7 {{ 3, 102, 3, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 8 {{ 4, 100, 0, 2, 102, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 9 {{ 3, 101, 1, 0, 3, 102, 3, 2, 4, 0, 1, 2, 3, -1}}, // 10 {{ 3, 100, 101, 1, 3, 100, 1, 2, 3, 100, 2, 102, -1, -1}}, // 11 {{ 4, 103, 102, 3, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 12 {{ 3, 100, 0, 102, 3, 0, 1, 102, 3, 1, 103, 102, -1, -1}}, // 13 {{ 3, 0, 101, 103, 3, 0, 103, 3, 3, 103, 102, 3, -1, -1}}, // 14 {{ 4, 100, 101, 103, 102, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 15 }; static PIXEL_CASES pixelCasesComplement[] = { {{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 0 {{ 3, 100, 0, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 1 {{ 3, 101, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 2 {{ 4, 100, 101, 1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 3 {{ 3, 103, 2, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 4 {{ 3, 100, 0, 3, 3, 103, 2, 1, -1, -1, -1, -1, -1, -1}}, // 5 {{ 4, 101, 103, 2, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 6 {{ 3, 100, 101, 3, 3, 101, 2, 3, 3, 101, 103, 2, -1, -1}}, // 7 {{ 3, 102, 3, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 8 {{ 4, 100, 0, 2, 102, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 9 {{ 3, 101, 1, 0, 3, 102, 3, 2, -1, -1, -1, -1, -1, -1}}, // 10 {{ 3, 100, 101, 1, 3, 100, 1, 2, 3, 100, 2, 102, -1, -1}}, // 11 {{ 4, 103, 102, 3, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 12 {{ 3, 100, 0, 102, 3, 0, 1, 102, 3, 1, 103, 102, -1, -1}}, // 13 {{ 3, 0, 101, 103, 3, 0, 103, 3, 3, 103, 102, 3, -1, -1}}, // 14 {{ 4, 100, 101, 103, 102, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 15 }; //---------------------------------------------------------------------------- // Clip this pixel using scalar value provided. Like contouring, except // that it cuts the pixel to produce quads and/or triangles. void vtkPixel::Clip(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) { static int CASE_MASK[4] = {1,2,8,4}; //note difference from quad! PIXEL_CASES *pixelCase; PIXEL_EDGE_LIST *edge; int i, j, index, *vert; int e1, e2; int newCellId; vtkIdType pts[4]; int vertexId; double t, x1[3], x2[3], x[3], deltaScalar; double scalar0, scalar1, e1Scalar; // Build the index into the case table if ( insideOut ) { for ( i=0, index = 0; i < 4; i++) { if (cellScalars->GetComponent(i,0) <= value) { index |= CASE_MASK[i]; } } // Select case based on the index and get the list of edges for this case pixelCase = pixelCases + index; } else { for ( i=0, index = 0; i < 4; i++) { if (cellScalars->GetComponent(i,0) > value) { index |= CASE_MASK[i]; } } // Select case based on the index and get the list of edges for this case pixelCase = pixelCasesComplement + index; } edge = pixelCase->edges; // generate each pixel for ( ; edge[0] > -1; edge += edge[0]+1 ) { for (i=0; i < edge[0]; i++) // insert pixel or triangle { // vertex exists, and need not be interpolated if (edge[i+1] >= 100) { vertexId = edge[i+1] - 100; this->Points->GetPoint(vertexId, x); if ( locator->InsertUniquePoint(x, pts[i]) ) { outPd->CopyData(inPd,this->PointIds->GetId(vertexId),pts[i]); } } else //new vertex, interpolate { vert = edges[edge[i+1]]; // calculate a preferred interpolation direction scalar0 = cellScalars->GetComponent(vert[0],0); scalar1 = cellScalars->GetComponent(vert[1],0); deltaScalar = scalar1 - scalar0; if (deltaScalar > 0) { e1 = vert[0]; e2 = vert[1]; e1Scalar = scalar0; } else { e1 = vert[1]; e2 = vert[0]; e1Scalar = scalar1; deltaScalar = -deltaScalar; } // linear interpolation if (deltaScalar == 0.0) { t = 0.0; } else { t = (value - e1Scalar) / deltaScalar; } this->Points->GetPoint(e1, x1); this->Points->GetPoint(e2, x2); for (j=0; j<3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if ( locator->InsertUniquePoint(x, pts[i]) ) { int p1 = this->PointIds->GetId(e1); int p2 = this->PointIds->GetId(e2); outPd->InterpolateEdge(inPd,pts[i],p1,p2,t); } } } // check for degenerate output if ( edge[0] == 3 ) //i.e., a triangle { if (pts[0] == pts[1] || pts[0] == pts[2] || pts[1] == pts[2] ) { continue; } } else // a pixel { if ((pts[0] == pts[3] && pts[1] == pts[2]) || (pts[0] == pts[1] && pts[3] == pts[2]) ) { continue; } } newCellId = polys->InsertNextCell(edge[0],pts); outCd->CopyData(inCd,cellId,newCellId); } } //---------------------------------------------------------------------------- static double vtkPixelCellPCoords[12] = {0.0,0.0,0.0, 1.0,0.0,0.0, 0.0,1.0,0.0, 1.0,1.0,0.0}; double *vtkPixel::GetParametricCoords() { return vtkPixelCellPCoords; } //---------------------------------------------------------------------------- void vtkPixel::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Line:\n"; this->Line->PrintSelf(os,indent.GetNextIndent()); }