/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkQuad.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkQuad.h" #include "vtkObjectFactory.h" #include "vtkCellArray.h" #include "vtkCellData.h" #include "vtkLine.h" #include "vtkTriangle.h" #include "vtkMath.h" #include "vtkPlane.h" #include "vtkPointData.h" #include "vtkPointLocator.h" #include "vtkPoints.h" vtkCxxRevisionMacro(vtkQuad, "$Revision: 1.3.12.1 $"); vtkStandardNewMacro(vtkQuad); static const double VTK_DIVERGED = 1.e6; //---------------------------------------------------------------------------- // Construct the quad with four points. vtkQuad::vtkQuad() { this->Points->SetNumberOfPoints(4); this->PointIds->SetNumberOfIds(4); for (int i = 0; i < 4; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i,0); } this->Line = vtkLine::New(); this->Triangle = vtkTriangle::New(); } //---------------------------------------------------------------------------- vtkQuad::~vtkQuad() { this->Line->Delete(); this->Triangle->Delete(); } //---------------------------------------------------------------------------- static const int VTK_QUAD_MAX_ITERATION=20; static const double VTK_QUAD_CONVERGED=1.e-04; inline static void ComputeNormal(vtkQuad *self, double pt1[3], double pt2[3], double pt3[3], double n[3]) { vtkTriangle::ComputeNormal (pt1, pt2, pt3, n); // If first three points are co-linear, then use fourth point // double pt4[3]; if ( n[0] == 0.0 && n[1] == 0.0 && n[2] == 0.0 ) { self->Points->GetPoint(3,pt4); vtkTriangle::ComputeNormal (pt2, pt3, pt4, n); } } //---------------------------------------------------------------------------- int vtkQuad::EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights) { int i, j; double pt1[3], pt2[3], pt3[3], pt[3], n[3]; double det; double maxComponent; int idx=0, indices[2]; int iteration, converged; double params[2]; double fcol[2], rcol[2], scol[2], cp[3]; double derivs[8]; subId = 0; pcoords[0] = pcoords[1] = params[0] = params[1] = 0.5; // Get normal for quadrilateral // this->Points->GetPoint(0, pt1); this->Points->GetPoint(1, pt2); this->Points->GetPoint(2, pt3); ComputeNormal (this, pt1, pt2, pt3, n); // Project point to plane // vtkPlane::ProjectPoint(x,pt1,n,cp); // Construct matrices. Since we have over determined system, need to find // which 2 out of 3 equations to use to develop equations. (Any 2 should // work since we've projected point to plane.) // for (maxComponent=0.0, i=0; i<3; i++) { if (fabs(n[i]) > maxComponent) { maxComponent = fabs(n[i]); idx = i; } } for (j=0, i=0; i<3; i++) { if ( i != idx ) { indices[j++] = i; } } // Use Newton's method to solve for parametric coordinates // for (iteration=converged=0; !converged && (iteration < VTK_QUAD_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives // this->InterpolationFunctions(pcoords, weights); this->InterpolationDerivs(pcoords, derivs); // calculate newton functions // for (i=0; i<2; i++) { fcol[i] = rcol[i] = scol[i] = 0.0; } for (i=0; i<4; i++) { this->Points->GetPoint(i, pt); for (j=0; j<2; j++) { fcol[j] += pt[indices[j]] * weights[i]; rcol[j] += pt[indices[j]] * derivs[i]; scol[j] += pt[indices[j]] * derivs[i+4]; } } for (j=0; j<2; j++) { fcol[j] -= cp[indices[j]]; } // compute determinants and generate improvements // if ( (det=vtkMath::Determinant2x2(rcol,scol)) == 0.0 ) { return -1; } pcoords[0] = params[0] - vtkMath::Determinant2x2 (fcol,scol) / det; pcoords[1] = params[1] - vtkMath::Determinant2x2 (rcol,fcol) / det; // check for convergence // if ( ((fabs(pcoords[0]-params[0])) < VTK_QUAD_CONVERGED) && ((fabs(pcoords[1]-params[1])) < VTK_QUAD_CONVERGED) ) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat // else { params[0] = pcoords[0]; params[1] = pcoords[1]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element // if ( !converged ) { return -1; } this->InterpolationFunctions(pcoords, weights); if ( pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 ) { if (closestPoint) { dist2 = vtkMath::Distance2BetweenPoints(cp,x); //projection distance closestPoint[0] = cp[0]; closestPoint[1] = cp[1]; closestPoint[2] = cp[2]; } return 1; } else { double t; double pt4[3]; if (closestPoint) { this->Points->GetPoint(3, pt4); if ( pcoords[0] < 0.0 && pcoords[1] < 0.0 ) { dist2 = vtkMath::Distance2BetweenPoints(x,pt1); for (i=0; i<3; i++) { closestPoint[i] = pt1[i]; } } else if ( pcoords[0] > 1.0 && pcoords[1] < 0.0 ) { dist2 = vtkMath::Distance2BetweenPoints(x,pt2); for (i=0; i<3; i++) { closestPoint[i] = pt2[i]; } } else if ( pcoords[0] > 1.0 && pcoords[1] > 1.0 ) { dist2 = vtkMath::Distance2BetweenPoints(x,pt3); for (i=0; i<3; i++) { closestPoint[i] = pt3[i]; } } else if ( pcoords[0] < 0.0 && pcoords[1] > 1.0 ) { dist2 = vtkMath::Distance2BetweenPoints(x,pt4); for (i=0; i<3; i++) { closestPoint[i] = pt4[i]; } } else if ( pcoords[0] < 0.0 ) { dist2 = vtkLine::DistanceToLine(x,pt1,pt4,t,closestPoint); } else if ( pcoords[0] > 1.0 ) { dist2 = vtkLine::DistanceToLine(x,pt2,pt3,t,closestPoint); } else if ( pcoords[1] < 0.0 ) { dist2 = vtkLine::DistanceToLine(x,pt1,pt2,t,closestPoint); } else if ( pcoords[1] > 1.0 ) { dist2 = vtkLine::DistanceToLine(x,pt3,pt4,t,closestPoint); } } return 0; } } //---------------------------------------------------------------------------- void vtkQuad::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3], double x[3], double *weights) { int i, j; double pt[3]; this->InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i=0; i<4; i++) { this->Points->GetPoint(i, pt); for (j=0; j<3; j++) { x[j] += pt[j] * weights[i]; } } } //---------------------------------------------------------------------------- // Compute iso-parametric interpolation functions // void vtkQuad::InterpolationFunctions(double pcoords[3], double sf[4]) { double rm, sm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; sf[0] = rm * sm; sf[1] = pcoords[0] * sm; sf[2] = pcoords[0] * pcoords[1]; sf[3] = rm * pcoords[1]; } //---------------------------------------------------------------------------- void vtkQuad::InterpolationDerivs(double pcoords[3], double derivs[8]) { double rm, sm; rm = 1. - pcoords[0]; sm = 1. - pcoords[1]; derivs[0] = -sm; derivs[1] = sm; derivs[2] = pcoords[1]; derivs[3] = -pcoords[1]; derivs[4] = -rm; derivs[5] = -pcoords[0]; derivs[6] = pcoords[0]; derivs[7] = rm; } //---------------------------------------------------------------------------- int vtkQuad::CellBoundary(int vtkNotUsed(subId), double pcoords[3], vtkIdList *pts) { double t1=pcoords[0]-pcoords[1]; double t2=1.0-pcoords[0]-pcoords[1]; pts->SetNumberOfIds(2); // compare against two lines in parametric space that divide element // into four pieces. if ( t1 >= 0.0 && t2 >= 0.0 ) { pts->SetId(0,this->PointIds->GetId(0)); pts->SetId(1,this->PointIds->GetId(1)); } else if ( t1 >= 0.0 && t2 < 0.0 ) { pts->SetId(0,this->PointIds->GetId(1)); pts->SetId(1,this->PointIds->GetId(2)); } else if ( t1 < 0.0 && t2 < 0.0 ) { pts->SetId(0,this->PointIds->GetId(2)); pts->SetId(1,this->PointIds->GetId(3)); } else //( t1 < 0.0 && t2 >= 0.0 ) { pts->SetId(0,this->PointIds->GetId(3)); pts->SetId(1,this->PointIds->GetId(0)); } if ( pcoords[0] < 0.0 || pcoords[0] > 1.0 || pcoords[1] < 0.0 || pcoords[1] > 1.0 ) { return 0; } else { return 1; } } //---------------------------------------------------------------------------- // Marching (convex) quadrilaterals // static int edges[4][2] = { {0,1}, {1,2}, {3,2}, {0,3} }; typedef int EDGE_LIST; typedef struct { EDGE_LIST edges[5]; } LINE_CASES; static LINE_CASES lineCases[] = { {{-1, -1, -1, -1, -1}}, {{0, 3, -1, -1, -1}}, {{1, 0, -1, -1, -1}}, {{1, 3, -1, -1, -1}}, {{2, 1, -1, -1, -1}}, {{0, 3, 2, 1, -1}}, {{2, 0, -1, -1, -1}}, {{2, 3, -1, -1, -1}}, {{3, 2, -1, -1, -1}}, {{0, 2, -1, -1, -1}}, {{1, 0, 3, 2, -1}}, {{1, 2, -1, -1, -1}}, {{3, 1, -1, -1, -1}}, {{0, 1, -1, -1, -1}}, {{3, 0, -1, -1, -1}}, {{-1, -1, -1, -1, -1}} }; //---------------------------------------------------------------------------- void vtkQuad::Contour(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *vtkNotUsed(polys), vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) { static int CASE_MASK[4] = {1,2,4,8}; LINE_CASES *lineCase; EDGE_LIST *edge; int i, j, index, *vert; int newCellId; vtkIdType pts[2]; int e1, e2; double t, x1[3], x2[3], x[3], deltaScalar; vtkIdType offset = verts->GetNumberOfCells(); // Build the case table for ( i=0, index = 0; i < 4; i++) { if (cellScalars->GetComponent(i,0) >= value) { index |= CASE_MASK[i]; } } lineCase = lineCases + index; edge = lineCase->edges; for ( ; edge[0] > -1; edge += 2 ) { for (i=0; i<2; i++) // insert line { vert = edges[edge[i]]; // calculate a preferred interpolation direction deltaScalar = (cellScalars->GetComponent(vert[1],0) - cellScalars->GetComponent(vert[0],0)); if (deltaScalar > 0) { e1 = vert[0]; e2 = vert[1]; } else { e1 = vert[1]; e2 = vert[0]; deltaScalar = -deltaScalar; } // linear interpolation if (deltaScalar == 0.0) { t = 0.0; } else { t = (value - cellScalars->GetComponent(e1,0)) / deltaScalar; } this->Points->GetPoint(e1, x1); this->Points->GetPoint(e2, x2); for (j=0; j<3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if ( locator->InsertUniquePoint(x, pts[i]) ) { if ( outPd ) { vtkIdType p1 = this->PointIds->GetId(e1); vtkIdType p2 = this->PointIds->GetId(e2); outPd->InterpolateEdge(inPd,pts[i],p1,p2,t); } } } // check for degenerate line if ( pts[0] != pts[1] ) { newCellId = offset + lines->InsertNextCell(2,pts); outCd->CopyData(inCd,cellId,newCellId); } } } //---------------------------------------------------------------------------- vtkCell *vtkQuad::GetEdge(int edgeId) { int edgeIdPlus1 = edgeId + 1; if (edgeIdPlus1 > 3) { edgeIdPlus1 = 0; } // load point id's this->Line->PointIds->SetId(0,this->PointIds->GetId(edgeId)); this->Line->PointIds->SetId(1,this->PointIds->GetId(edgeIdPlus1)); // load coordinates this->Line->Points->SetPoint(0,this->Points->GetPoint(edgeId)); this->Line->Points->SetPoint(1,this->Points->GetPoint(edgeIdPlus1)); return this->Line; } //---------------------------------------------------------------------------- // Intersect plane; see whether point is in quadrilateral. This code // splits the quad into two triangles and intersects them (because the // quad may be non-planar). // int vtkQuad::IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId) { int diagonalCase; double d1 = vtkMath::Distance2BetweenPoints(this->Points->GetPoint(0), this->Points->GetPoint(2)); double d2 = vtkMath::Distance2BetweenPoints(this->Points->GetPoint(1), this->Points->GetPoint(3)); subId = 0; // Figure out how to uniquely tessellate the quad. Watch out for // equivalent triangulations (i.e., the triangulation is equivalent // no matter where the diagonal). In this case use the point ids as // a tie breaker to insure unique triangulation across the quad. // if ( d1 == d2 ) //rare case; discriminate based on point id { int i, id, maxId=0, maxIdx=0; for (i=0; i<4; i++) //find the maximum id { if ( (id=this->PointIds->GetId(i)) > maxId ) { maxId = id; maxIdx = i; } } if ( maxIdx == 0 || maxIdx == 2) diagonalCase = 0; else diagonalCase = 1; } else if ( d1 < d2 ) { diagonalCase = 0; } else //d2 < d1 { diagonalCase = 1; } // Note: in the following code the parametric coords must be adjusted to // reflect the use of the triangle parametric coordinate system. switch (diagonalCase) { case 0: this->Triangle->Points->SetPoint(0,this->Points->GetPoint(0)); this->Triangle->Points->SetPoint(1,this->Points->GetPoint(1)); this->Triangle->Points->SetPoint(2,this->Points->GetPoint(2)); if (this->Triangle->IntersectWithLine(p1, p2, tol, t, x, pcoords, subId) ) { pcoords[0] = pcoords[0] + pcoords[1]; return 1; } this->Triangle->Points->SetPoint(0,this->Points->GetPoint(2)); this->Triangle->Points->SetPoint(1,this->Points->GetPoint(3)); this->Triangle->Points->SetPoint(2,this->Points->GetPoint(0)); if (this->Triangle->IntersectWithLine(p1, p2, tol, t, x, pcoords, subId) ) { pcoords[0] = 1.0 - (pcoords[0]+pcoords[1]); pcoords[1] = 1.0 - pcoords[1]; return 1; } return 0; case 1: this->Triangle->Points->SetPoint(0,this->Points->GetPoint(0)); this->Triangle->Points->SetPoint(1,this->Points->GetPoint(1)); this->Triangle->Points->SetPoint(2,this->Points->GetPoint(3)); if (this->Triangle->IntersectWithLine(p1, p2, tol, t, x, pcoords, subId) ) { return 1; } this->Triangle->Points->SetPoint(0,this->Points->GetPoint(2)); this->Triangle->Points->SetPoint(1,this->Points->GetPoint(3)); this->Triangle->Points->SetPoint(2,this->Points->GetPoint(1)); if (this->Triangle->IntersectWithLine(p1, p2, tol, t, x, pcoords, subId) ) { pcoords[0] = 1.0 - pcoords[0]; pcoords[1] = 1.0 - pcoords[1]; return 1; } return 0; } return 0; } //---------------------------------------------------------------------------- int vtkQuad::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds, vtkPoints *pts) { double d1, d2; pts->Reset(); ptIds->Reset(); // use minimum diagonal (Delaunay triangles) - assumed convex d1 = vtkMath::Distance2BetweenPoints(this->Points->GetPoint(0), this->Points->GetPoint(2)); d2 = vtkMath::Distance2BetweenPoints(this->Points->GetPoint(1), this->Points->GetPoint(3)); if ( d1 <= d2 ) { ptIds->InsertId(0,this->PointIds->GetId(0)); pts->InsertPoint(0,this->Points->GetPoint(0)); ptIds->InsertId(1,this->PointIds->GetId(1)); pts->InsertPoint(1,this->Points->GetPoint(1)); ptIds->InsertId(2,this->PointIds->GetId(2)); pts->InsertPoint(2,this->Points->GetPoint(2)); ptIds->InsertId(3,this->PointIds->GetId(0)); pts->InsertPoint(3,this->Points->GetPoint(0)); ptIds->InsertId(4,this->PointIds->GetId(2)); pts->InsertPoint(4,this->Points->GetPoint(2)); ptIds->InsertId(5,this->PointIds->GetId(3)); pts->InsertPoint(5,this->Points->GetPoint(3)); } else { ptIds->InsertId(0,this->PointIds->GetId(0)); pts->InsertPoint(0,this->Points->GetPoint(0)); ptIds->InsertId(1,this->PointIds->GetId(1)); pts->InsertPoint(1,this->Points->GetPoint(1)); ptIds->InsertId(2,this->PointIds->GetId(3)); pts->InsertPoint(2,this->Points->GetPoint(3)); ptIds->InsertId(3,this->PointIds->GetId(1)); pts->InsertPoint(3,this->Points->GetPoint(1)); ptIds->InsertId(4,this->PointIds->GetId(2)); pts->InsertPoint(4,this->Points->GetPoint(2)); ptIds->InsertId(5,this->PointIds->GetId(3)); pts->InsertPoint(5,this->Points->GetPoint(3)); } return 1; } //---------------------------------------------------------------------------- void vtkQuad::Derivatives(int vtkNotUsed(subId), double pcoords[3], double *values, int dim, double *derivs) { double v0[2], v1[2], v2[2], v3[2], v10[3], v20[3], lenX; double x0[3], x1[3], x2[3], x3[3], n[3], vec20[3], vec30[3]; double *J[2], J0[2], J1[2]; double *JI[2], JI0[2], JI1[2]; double funcDerivs[8], sum[2], dBydx, dBydy; int i, j; // Project points of quad into 2D system this->Points->GetPoint(0, x0); this->Points->GetPoint(1, x1); this->Points->GetPoint(2, x2); ComputeNormal (this,x0, x1, x2, n); this->Points->GetPoint(3, x3); for (i=0; i < 3; i++) { v10[i] = x1[i] - x0[i]; vec20[i] = x2[i] - x0[i]; vec30[i] = x3[i] - x0[i]; } vtkMath::Cross(n,v10,v20); //creates local y' axis if ( (lenX=vtkMath::Normalize(v10)) <= 0.0 || vtkMath::Normalize(v20) <= 0.0 ) //degenerate { for ( j=0; j < dim; j++ ) { for ( i=0; i < 3; i++ ) { derivs[j*dim + i] = 0.0; } } return; } v0[0] = v0[1] = 0.0; //convert points to 2D (i.e., local system) v1[0] = lenX; v1[1] = 0.0; v2[0] = vtkMath::Dot(vec20,v10); v2[1] = vtkMath::Dot(vec20,v20); v3[0] = vtkMath::Dot(vec30,v10); v3[1] = vtkMath::Dot(vec30,v20); this->InterpolationDerivs(pcoords, funcDerivs); // Compute Jacobian and inverse Jacobian J[0] = J0; J[1] = J1; JI[0] = JI0; JI[1] = JI1; J[0][0] = v0[0]*funcDerivs[0] + v1[0]*funcDerivs[1] + v2[0]*funcDerivs[2] + v3[0]*funcDerivs[3]; J[0][1] = v0[1]*funcDerivs[0] + v1[1]*funcDerivs[1] + v2[1]*funcDerivs[2] + v3[1]*funcDerivs[3]; J[1][0] = v0[0]*funcDerivs[4] + v1[0]*funcDerivs[5] + v2[0]*funcDerivs[6] + v3[0]*funcDerivs[7]; J[1][1] = v0[1]*funcDerivs[4] + v1[1]*funcDerivs[5] + v2[1]*funcDerivs[6] + v3[1]*funcDerivs[7]; // Compute inverse Jacobian, return if Jacobian is singular if (!vtkMath::InvertMatrix(J,JI,2)) { for ( j=0; j < dim; j++ ) { for ( i=0; i < 3; i++ ) { derivs[j*dim + i] = 0.0; } } return; } // Loop over "dim" derivative values. For each set of values, // compute derivatives // in local system and then transform into modelling system. // First compute derivatives in local x'-y' coordinate system for ( j=0; j < dim; j++ ) { sum[0] = sum[1] = 0.0; for ( i=0; i < 4; i++) //loop over interp. function derivatives { sum[0] += funcDerivs[i] * values[dim*i + j]; sum[1] += funcDerivs[4 + i] * values[dim*i + j]; } dBydx = sum[0]*JI[0][0] + sum[1]*JI[0][1]; dBydy = sum[0]*JI[1][0] + sum[1]*JI[1][1]; // Transform into global system (dot product with global axes) derivs[3*j] = dBydx * v10[0] + dBydy * v20[0]; derivs[3*j + 1] = dBydx * v10[1] + dBydy * v20[1]; derivs[3*j + 2] = dBydx * v10[2] + dBydy * v20[2]; } } //---------------------------------------------------------------------------- // support quad clipping typedef int QUAD_EDGE_LIST; typedef struct { QUAD_EDGE_LIST edges[14]; } QUAD_CASES; static QUAD_CASES quadCases[] = { {{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 0 {{ 3, 100, 0, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 1 {{ 3, 101, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 2 {{ 4, 100, 101, 1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 3 {{ 3, 102, 2, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 4 {{ 3, 100, 0, 3, 3, 102, 2, 1, 4, 0, 1, 2, 3, -1}}, // 5 {{ 4, 101, 102, 2, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 6 {{ 3, 100, 101, 3, 3, 101, 2, 3, 3, 101, 102, 2, -1, -1}}, // 7 {{ 3, 103, 3, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 8 {{ 4, 100, 0, 2, 103, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 9 {{ 3, 101, 1, 0, 3, 103, 3, 2, 4, 0, 1, 2, 3, -1}}, // 10 {{ 3, 100, 101, 1, 3, 100, 1, 2, 3, 100, 2, 103, -1, -1}}, // 11 {{ 4, 102, 103, 3, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 12 {{ 3, 100, 0, 103, 3, 0, 1, 103, 3, 1, 102, 103, -1, -1}}, // 13 {{ 3, 0, 101, 102, 3, 0, 102, 3, 3, 102, 103, 3, -1, -1}}, // 14 {{ 4, 100, 101, 102, 103, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 15 }; static QUAD_CASES quadCasesComplement[] = { {{ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 0 {{ 3, 100, 0, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 1 {{ 3, 101, 1, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 2 {{ 4, 100, 101, 1, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 3 {{ 3, 102, 2, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 4 {{ 3, 100, 0, 3, 3, 102, 2, 1, -1, -1, -1, -1, -1, -1}}, // 5 {{ 4, 101, 102, 2, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 6 {{ 3, 100, 101, 3, 3, 101, 2, 3, 3, 101, 102, 2, -1, -1}}, // 7 {{ 3, 103, 3, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 8 {{ 4, 100, 0, 2, 103, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 9 {{ 3, 101, 1, 0, 3, 103, 3, 2, -1, -1, -1, -1, -1, -1}}, // 10 {{ 3, 100, 101, 1, 3, 100, 1, 2, 3, 100, 2, 103, -1, -1}}, // 11 {{ 4, 102, 103, 3, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 12 {{ 3, 100, 0, 103, 3, 0, 1, 103, 3, 1, 102, 103, -1, -1}}, // 13 {{ 3, 0, 101, 102, 3, 0, 102, 3, 3, 102, 103, 3, -1, -1}}, // 14 {{ 4, 100, 101, 102, 103, -1, -1, -1, -1, -1, -1, -1, -1, -1}}, // 15 }; //---------------------------------------------------------------------------- // Clip this quad using scalar value provided. Like contouring, except // that it cuts the quad to produce other quads and/or triangles. void vtkQuad::Clip(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) { static int CASE_MASK[4] = {1,2,4,8}; QUAD_CASES *quadCase; QUAD_EDGE_LIST *edge; int i, j, index, *vert; int e1, e2; int newCellId; vtkIdType pts[4]; int vertexId; double t, x1[3], x2[3], x[3], deltaScalar; double scalar0, scalar1, e1Scalar; // Build the index into the case table if ( insideOut ) { for ( i=0, index = 0; i < 4; i++) { if (cellScalars->GetComponent(i,0) <= value) { index |= CASE_MASK[i]; } } // Select case based on the index and get the list of edges for this case quadCase = quadCases + index; } else { for ( i=0, index = 0; i < 4; i++) { if (cellScalars->GetComponent(i,0) > value) { index |= CASE_MASK[i]; } } // Select case based on the index and get the list of edges for this case quadCase = quadCasesComplement + index; } edge = quadCase->edges; // generate each quad for ( ; edge[0] > -1; edge += edge[0]+1 ) { for (i=0; i < edge[0]; i++) // insert quad or triangle { // vertex exists, and need not be interpolated if (edge[i+1] >= 100) { vertexId = edge[i+1] - 100; this->Points->GetPoint(vertexId, x); if ( locator->InsertUniquePoint(x, pts[i]) ) { outPd->CopyData(inPd,this->PointIds->GetId(vertexId),pts[i]); } } else //new vertex, interpolate { vert = edges[edge[i+1]]; // calculate a preferred interpolation direction scalar0 = cellScalars->GetComponent(vert[0],0); scalar1 = cellScalars->GetComponent(vert[1],0); deltaScalar = scalar1 - scalar0; if (deltaScalar > 0) { e1 = vert[0]; e2 = vert[1]; e1Scalar = scalar0; } else { e1 = vert[1]; e2 = vert[0]; e1Scalar = scalar1; deltaScalar = -deltaScalar; } // linear interpolation if (deltaScalar == 0.0) { t = 0.0; } else { t = (value - e1Scalar) / deltaScalar; } this->Points->GetPoint(e1, x1); this->Points->GetPoint(e2, x2); for (j=0; j<3; j++) { x[j] = x1[j] + t * (x2[j] - x1[j]); } if ( locator->InsertUniquePoint(x, pts[i]) ) { vtkIdType p1 = this->PointIds->GetId(e1); vtkIdType p2 = this->PointIds->GetId(e2); outPd->InterpolateEdge(inPd,pts[i],p1,p2,t); } } } // check for degenerate output if ( edge[0] == 3 ) //i.e., a triangle { if (pts[0] == pts[1] || pts[0] == pts[2] || pts[1] == pts[2] ) { continue; } } else // a quad { if ((pts[0] == pts[3] && pts[1] == pts[2]) || (pts[0] == pts[1] && pts[3] == pts[2]) ) { continue; } } newCellId = polys->InsertNextCell(edge[0],pts); outCd->CopyData(inCd,cellId,newCellId); } } //---------------------------------------------------------------------------- static double vtkQuadCellPCoords[12] = {0.0,0.0,0.0, 1.0,0.0,0.0, 1.0,1.0,0.0, 0.0,1.0,0.0}; double *vtkQuad::GetParametricCoords() { return vtkQuadCellPCoords; } //---------------------------------------------------------------------------- void vtkQuad::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Line:\n"; this->Line->PrintSelf(os,indent.GetNextIndent()); os << indent << "Triangle:\n"; this->Triangle->PrintSelf(os,indent.GetNextIndent()); }