/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkQuadraticEdge.h,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // .NAME vtkQuadraticEdge - cell represents a parabolic, isoparametric edge // .SECTION Description // vtkQuadraticEdge is a concrete implementation of vtkNonLinearCell to // represent a one-dimensional, 3-nodes, isoparametric parabolic line. The // interpolation is the standard finite element, quadratic isoparametric // shape function. The cell includes a mid-edge node. The ordering of the // three points defining the cell is point ids (0,1,2) where id #2 is the // midedge node. // .SECTION See Also // vtkQuadraticTriangle vtkQuadraticTetra vtkQuadraticWedge // vtkQuadraticQuad vtkQuadraticHexahedron vtkQuadraticPyramid #ifndef __vtkQuadraticEdge_h #define __vtkQuadraticEdge_h #include "vtkNonLinearCell.h" class vtkLine; class VTK_FILTERING_EXPORT vtkQuadraticEdge : public vtkNonLinearCell { public: static vtkQuadraticEdge *New(); vtkTypeRevisionMacro(vtkQuadraticEdge,vtkNonLinearCell); void PrintSelf(ostream& os, vtkIndent indent); // Description: // Implement the vtkCell API. See the vtkCell API for descriptions // of these methods. int GetCellType() {return VTK_QUADRATIC_EDGE;}; int GetCellDimension() {return 1;} int GetNumberOfEdges() {return 0;} int GetNumberOfFaces() {return 0;} vtkCell *GetEdge(int) {return 0;} vtkCell *GetFace(int) {return 0;} int CellBoundary(int subId, double pcoords[3], vtkIdList *pts); void Contour(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd); int EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights); void EvaluateLocation(int& subId, double pcoords[3], double x[3], double *weights); int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts); void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs); virtual double *GetParametricCoords(); // Description: // Clip this edge using scalar value provided. Like contouring, except // that it cuts the edge to produce linear line segments. void Clip(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *lines, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut); // Description: // Line-edge intersection. Intersection has to occur within [0,1] parametric // coordinates and with specified tolerance. int IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId); // Description: // Return the center of the quadratic tetra in parametric coordinates. int GetParametricCenter(double pcoords[3]); // Description: // Quadratic edge specific methods. static void InterpolationFunctions(double pcoords[3], double weights[3]); static void InterpolationDerivs(double pcoords[3], double derivs[3]); protected: vtkQuadraticEdge(); ~vtkQuadraticEdge(); vtkLine *Line; vtkDoubleArray *Scalars; //used to avoid New/Delete in contouring/clipping private: vtkQuadraticEdge(const vtkQuadraticEdge&); // Not implemented. void operator=(const vtkQuadraticEdge&); // Not implemented. }; //---------------------------------------------------------------------------- inline int vtkQuadraticEdge::GetParametricCenter(double pcoords[3]) { pcoords[0] = 0.5; pcoords[1] = pcoords[2] = 0.; return 0; } #endif