/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkQuadraticHexahedron.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkQuadraticHexahedron.h" #include "vtkCellData.h" #include "vtkDoubleArray.h" #include "vtkHexahedron.h" #include "vtkMath.h" #include "vtkObjectFactory.h" #include "vtkPointData.h" #include "vtkPointLocator.h" #include "vtkPolyData.h" #include "vtkQuadraticEdge.h" #include "vtkQuadraticQuad.h" vtkCxxRevisionMacro(vtkQuadraticHexahedron, "$Revision: 1.2 $"); vtkStandardNewMacro(vtkQuadraticHexahedron); //---------------------------------------------------------------------------- // Construct the hex with 20 points + 7 extra points for internal // computation. vtkQuadraticHexahedron::vtkQuadraticHexahedron() { // At times the cell looks like it has 27 points (during interpolation) // We initially allocate for 27. this->Points->SetNumberOfPoints(27); this->PointIds->SetNumberOfIds(27); for (int i = 0; i < 27; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i,0); } this->Points->SetNumberOfPoints(20); this->PointIds->SetNumberOfIds(20); this->Edge = vtkQuadraticEdge::New(); this->Face = vtkQuadraticQuad::New(); this->Hex = vtkHexahedron::New(); this->PointData = vtkPointData::New(); this->CellData = vtkCellData::New(); this->CellScalars = vtkDoubleArray::New(); this->CellScalars->SetNumberOfTuples(27); this->Scalars = vtkDoubleArray::New(); this->Scalars->SetNumberOfTuples(8); } //---------------------------------------------------------------------------- vtkQuadraticHexahedron::~vtkQuadraticHexahedron() { this->Edge->Delete(); this->Face->Delete(); this->Hex->Delete(); this->PointData->Delete(); this->CellData->Delete(); this->Scalars->Delete(); this->CellScalars->Delete(); } static int LinearHexs[8][8] = { {0,8,24,11,16,22,26,20}, {8,1,9,24,22,17,21,26}, {11,24,10,3,20,26,23,19}, {24,9,2,10,26,21,18,23}, {16,22,26,20,4,12,25,15}, {22,17,21,26,12,5,13,25}, {20,26,23,19,15,25,14,7}, {26,21,18,23,25,13,6,14} }; static int HexFaces[6][8] = { {0,4,7,3,16,15,19,11}, {1,2,6,5,9,18,13,17}, {0,1,5,4,8,17,12,16}, {3,7,6,2,19,14,18,10}, {0,3,2,1,11,10,9,8}, {4,5,6,7,12,13,14,15} }; static int HexEdges[12][3] = { {0,1,8}, {1,2,9}, {3,2,10}, {0,3,11}, {4,5,12}, {5,6,13}, {7,6,14}, {4,7,15}, {0,4,16}, {1,5,17}, {3,7,19}, {2,6,18} }; static double MidPoints[7][3] = { {0.0,0.5,0.5}, {1.0,0.5,0.5}, {0.5,0.0,0.5}, {0.5,1.0,0.5}, {0.5,0.5,0.0}, {0.5,0.5,1.0}, {0.5,0.5,0.5} }; //---------------------------------------------------------------------------- vtkCell *vtkQuadraticHexahedron::GetEdge(int edgeId) { edgeId = (edgeId < 0 ? 0 : (edgeId > 11 ? 11 : edgeId )); for (int i=0; i<3; i++) { this->Edge->PointIds->SetId(i,this->PointIds->GetId(HexEdges[edgeId][i])); this->Edge->Points->SetPoint(i,this->Points->GetPoint(HexEdges[edgeId][i])); } return this->Edge; } //---------------------------------------------------------------------------- vtkCell *vtkQuadraticHexahedron::GetFace(int faceId) { faceId = (faceId < 0 ? 0 : (faceId > 5 ? 5 : faceId )); for (int i=0; i<8; i++) { this->Face->PointIds->SetId(i,this->PointIds->GetId(HexFaces[faceId][i])); this->Face->Points->SetPoint(i,this->Points->GetPoint(HexFaces[faceId][i])); } return this->Face; } //---------------------------------------------------------------------------- void vtkQuadraticHexahedron::Subdivide(vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId, vtkDataArray *cellScalars) { int numMidPts, i, j; double weights[20]; double x[3]; double s; //Copy point and cell attribute data, first make sure it's empty: this->PointData->Initialize(); this->CellData->Initialize(); this->PointData->CopyAllocate(inPd,27); this->CellData->CopyAllocate(inCd,8); for (i=0; i<20; i++) { this->PointData->CopyData(inPd,this->PointIds->GetId(i),i); this->CellScalars->SetValue( i, cellScalars->GetTuple1(i)); } this->CellData->CopyData(inCd,cellId,0); //Interpolate new values double p[3]; for ( numMidPts=0; numMidPts < 7; numMidPts++ ) { this->InterpolationFunctions(MidPoints[numMidPts], weights); x[0] = x[1] = x[2] = 0.0; s = 0.0; for (i=0; i<20; i++) { this->Points->GetPoint(i, p); for (j=0; j<3; j++) { x[j] += p[j] * weights[i]; } s += cellScalars->GetTuple1(i) * weights[i]; } this->Points->SetPoint(20+numMidPts,x); this->CellScalars->SetValue(20+numMidPts,s); this->PointData->InterpolatePoint(inPd, 20+numMidPts, this->PointIds, weights); } } //---------------------------------------------------------------------------- static const double VTK_DIVERGED = 1.e6; static const int VTK_HEX_MAX_ITERATION=10; static const double VTK_HEX_CONVERGED=1.e-03; int vtkQuadraticHexahedron::EvaluatePosition(double* x, double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights) { int iteration, converged; double params[3]; double fcol[3], rcol[3], scol[3], tcol[3]; int i, j; double d, pt[3]; double derivs[60]; // set initial position for Newton's method subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = params[0] = params[1] = params[2]=0.5; // enter iteration loop for (iteration=converged=0; !converged && (iteration < VTK_HEX_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives this->InterpolationFunctions(pcoords, weights); this->InterpolationDerivs(pcoords, derivs); // calculate newton functions for (i=0; i<3; i++) { fcol[i] = rcol[i] = scol[i] = tcol[i] = 0.0; } for (i=0; i<20; i++) { this->Points->GetPoint(i, pt); for (j=0; j<3; j++) { fcol[j] += pt[j] * weights[i]; rcol[j] += pt[j] * derivs[i]; scol[j] += pt[j] * derivs[i+20]; tcol[j] += pt[j] * derivs[i+40]; } } for (i=0; i<3; i++) { fcol[i] -= x[i]; } // compute determinants and generate improvements d=vtkMath::Determinant3x3(rcol,scol,tcol); if ( fabs(d) < 1.e-20) { return -1; } pcoords[0] = params[0] - 0.5*vtkMath::Determinant3x3 (fcol,scol,tcol) / d; pcoords[1] = params[1] - 0.5*vtkMath::Determinant3x3 (rcol,fcol,tcol) / d; pcoords[2] = params[2] - 0.5*vtkMath::Determinant3x3 (rcol,scol,fcol) / d; // check for convergence if ( ((fabs(pcoords[0]-params[0])) < VTK_HEX_CONVERGED) && ((fabs(pcoords[1]-params[1])) < VTK_HEX_CONVERGED) && ((fabs(pcoords[2]-params[2])) < VTK_HEX_CONVERGED) ) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) || (fabs(pcoords[2]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if ( !converged ) { return -1; } this->InterpolationFunctions(pcoords, weights); if ( pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001 ) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; dist2 = 0.0; //inside hexahedron } return 1; } else { double pc[3], w[20]; if (closestPoint) { for (i=0; i<3; i++) //only approximate, not really true for warped hexa { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, (double *)w); dist2 = vtkMath::Distance2BetweenPoints(closestPoint,x); } return 0; } } //---------------------------------------------------------------------------- void vtkQuadraticHexahedron::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3], double x[3], double *weights) { int i, j; double pt[3]; this->InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i=0; i<20; i++) { this->Points->GetPoint(i, pt); for (j=0; j<3; j++) { x[j] += pt[j] * weights[i]; } } } //---------------------------------------------------------------------------- int vtkQuadraticHexahedron::CellBoundary(int subId, double pcoords[3], vtkIdList *pts) { return this->Hex->CellBoundary(subId, pcoords, pts); } //---------------------------------------------------------------------------- void vtkQuadraticHexahedron::Contour(double value, vtkDataArray* cellScalars, vtkPointLocator* locator, vtkCellArray *verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { //subdivide into 8 linear hexs this->Subdivide(inPd,inCd,cellId, cellScalars); //contour each linear quad separately for (int i=0; i<8; i++) // For each subdivided hexahedron { for (int j=0; j<8; j++) // For each of the eight vertices of the hexhedron { this->Hex->Points->SetPoint(j,this->Points->GetPoint(LinearHexs[i][j])); this->Hex->PointIds->SetId(j,LinearHexs[i][j]); this->Scalars->SetValue(j,this->CellScalars->GetValue(LinearHexs[i][j])); } this->Hex->Contour(value,this->Scalars,locator,verts,lines,polys, this->PointData,outPd,this->CellData,cellId,outCd); } } //---------------------------------------------------------------------------- // Line-hex intersection. Intersection has to occur within [0,1] parametric // coordinates and with specified tolerance. int vtkQuadraticHexahedron::IntersectWithLine(double* p1, double* p2, double tol, double& t, double* x, double* pcoords, int& subId) { int intersection=0; double tTemp; double pc[3], xTemp[3]; int faceNum; t = VTK_DOUBLE_MAX; for (faceNum=0; faceNum<6; faceNum++) { for (int i=0; i<8; i++) { this->Face->Points->SetPoint(i, this->Points->GetPoint(HexFaces[faceNum][i])); } if ( this->Face->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId) ) { intersection = 1; if ( tTemp < t ) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 0: pcoords[0] = 0.0; pcoords[1] = pc[1]; pcoords[2] = pc[0]; break; case 1: pcoords[0] = 1.0; pcoords[1] = pc[0]; pcoords[2] = pc[1]; break; case 2: pcoords[0] = pc[0]; pcoords[1] = 0.0; pcoords[2] = pc[1]; break; case 3: pcoords[0] = pc[1]; pcoords[1] = 1.0; pcoords[2] = pc[0]; break; case 4: pcoords[0] = pc[1]; pcoords[1] = pc[0]; pcoords[2] = 0.0; break; case 5: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 1.0; break; } } } } return intersection; } //---------------------------------------------------------------------------- int vtkQuadraticHexahedron::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds, vtkPoints *pts) { pts->Reset(); ptIds->Reset(); ptIds->InsertId(0,this->PointIds->GetId(0)); pts->InsertPoint(0,this->Points->GetPoint(0)); ptIds->InsertId(1,this->PointIds->GetId(1)); pts->InsertPoint(1,this->Points->GetPoint(1)); return 1; } //---------------------------------------------------------------------------- // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. void vtkQuadraticHexahedron::JacobianInverse(double pcoords[3], double **inverse, double derivs[60]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives this->InterpolationDerivs(pcoords, derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i=0; i < 3; i++) //initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for ( j=0; j < 20; j++ ) { this->Points->GetPoint(j, x); for ( i=0; i < 3; i++ ) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[20 + j]; m2[i] += x[i] * derivs[40 + j]; } } // now find the inverse if ( vtkMath::InvertMatrix(m,inverse,3) == 0 ) { vtkErrorMacro(<<"Jacobian inverse not found"); return; } } //---------------------------------------------------------------------------- void vtkQuadraticHexahedron::Derivatives(int vtkNotUsed(subId), double pcoords[3], double *values, int dim, double *derivs) { double *jI[3], j0[3], j1[3], j2[3]; double functionDerivs[60], sum[3]; int i, j, k; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(pcoords, jI, functionDerivs); // now compute derivates of values provided for (k=0; k < dim; k++) //loop over values per vertex { sum[0] = sum[1] = sum[2] = 0.0; for ( i=0; i < 20; i++) //loop over interp. function derivatives { sum[0] += functionDerivs[i] * values[dim*i + k]; sum[1] += functionDerivs[20 + i] * values[dim*i + k]; sum[2] += functionDerivs[40 + i] * values[dim*i + k]; } for (j=0; j < 3; j++) //loop over derivative directions { derivs[3*k + j] = sum[0]*jI[j][0] + sum[1]*jI[j][1] + sum[2]*jI[j][2]; } } } //---------------------------------------------------------------------------- // Clip this quadratic hex using scalar value provided. Like contouring, // except that it cuts the hex to produce tetrahedra. void vtkQuadraticHexahedron::Clip(double value, vtkDataArray* cellScalars, vtkPointLocator* locator, vtkCellArray* tets, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) { //create eight linear hexes this->Subdivide(inPd,inCd,cellId,cellScalars); //contour each linear hex separately for (int i=0; i<8; i++) // For each subdivided hexahedron { for (int j=0; j<8; j++) // For each of the eight vertices of the hexhedron { this->Hex->Points->SetPoint(j,this->Points->GetPoint(LinearHexs[i][j])); this->Hex->PointIds->SetId(j,LinearHexs[i][j]); this->Scalars->SetValue(j,this->CellScalars->GetValue(LinearHexs[i][j])); } this->Hex->Clip(value,this->Scalars,locator,tets,this->PointData,outPd, this->CellData,cellId,outCd,insideOut); } } //---------------------------------------------------------------------------- // Compute interpolation functions for the twenty nodes. void vtkQuadraticHexahedron::InterpolationFunctions(double pcoords[3], double weights[20]) { //VTK needs parametric coordinates to be between (0,1). Isoparametric //shape functions are formulated between (-1,1). Here we do a //coordinate system conversion from (0,1) to (-1,1). double r = 2.0*(pcoords[0]-0.5); double s = 2.0*(pcoords[1]-0.5); double t = 2.0*(pcoords[2]-0.5); double rm = 1.0 - r; double rp = 1.0 + r; double sm = 1.0 - s; double sp = 1.0 + s; double tm = 1.0 - t; double tp = 1.0 + t; double r2 = 1.0 - r*r; double s2 = 1.0 - s*s; double t2 = 1.0 - t*t; //The eight corner points weights[0] = 0.125 * rm * sm * tm * (-r - s - t - 2.0); weights[1] = 0.125 * rp * sm * tm * ( r - s - t - 2.0); weights[2] = 0.125 * rp * sp * tm * ( r + s - t - 2.0); weights[3] = 0.125 * rm * sp * tm * (-r + s - t - 2.0); weights[4] = 0.125 * rm * sm * tp * (-r - s + t - 2.0); weights[5] = 0.125 * rp * sm * tp * ( r - s + t - 2.0); weights[6] = 0.125 * rp * sp * tp * ( r + s + t - 2.0); weights[7] = 0.125 * rm * sp * tp * (-r + s + t - 2.0); //The mid-edge nodes weights[8] = 0.25 * r2 * sm * tm; weights[9] = 0.25 * s2 * rp * tm; weights[10] = 0.25 * r2 * sp * tm; weights[11] = 0.25 * s2 * rm * tm; weights[12] = 0.25 * r2 * sm * tp; weights[13] = 0.25 * s2 * rp * tp; weights[14] = 0.25 * r2 * sp * tp; weights[15] = 0.25 * s2 * rm * tp; weights[16] = 0.25 * t2 * rm * sm; weights[17] = 0.25 * t2 * rp * sm; weights[18] = 0.25 * t2 * rp * sp; weights[19] = 0.25 * t2 * rm * sp; } //---------------------------------------------------------------------------- // Derivatives in parametric space. void vtkQuadraticHexahedron::InterpolationDerivs(double pcoords[3], double derivs[60]) { //VTK needs parametric coordinates to be between (0,1). Isoparametric //shape functions are formulated between (-1,1). Here we do a //coordinate system conversion from (0,1) to (-1,1). double r = 2.0*(pcoords[0]-0.5); double s = 2.0*(pcoords[1]-0.5); double t = 2.0*(pcoords[2]-0.5); double rm = 1.0 - r; double rp = 1.0 + r; double sm = 1.0 - s; double sp = 1.0 + s; double tm = 1.0 - t; double tp = 1.0 + t; //r-derivatives derivs[0] = -0.125*(sm*tm - 2.0*r*sm*tm - s*sm*tm - t*sm*tm - 2.0*sm*tm); derivs[1] = 0.125*(sm*tm + 2.0*r*sm*tm - s*sm*tm - t*sm*tm - 2.0*sm*tm); derivs[2] = 0.125*(sp*tm + 2.0*r*sp*tm + s*sp*tm - t*sp*tm - 2.0*sp*tm); derivs[3] = -0.125*(sp*tm - 2.0*r*sp*tm + s*sp*tm - t*sp*tm - 2.0*sp*tm); derivs[4] = -0.125*(sm*tp - 2.0*r*sm*tp - s*sm*tp + t*sm*tp - 2.0*sm*tp); derivs[5] = 0.125*(sm*tp + 2.0*r*sm*tp - s*sm*tp + t*sm*tp - 2.0*sm*tp); derivs[6] = 0.125*(sp*tp + 2.0*r*sp*tp + s*sp*tp + t*sp*tp - 2.0*sp*tp); derivs[7] = -0.125*(sp*tp - 2.0*r*sp*tp + s*sp*tp + t*sp*tp - 2.0*sp*tp); derivs[8] = -0.5*r*sm*tm; derivs[9] = 0.25*(tm - s*s*tm); derivs[10] = -0.5*r*sp*tm; derivs[11] = -0.25*(tm - s*s*tm); derivs[12] = -0.5*r*sm*tp; derivs[13] = 0.25*(tp - s*s*tp); derivs[14] = -0.5*r*sp*tp; derivs[15] = -0.25*(tp - s*s*tp); derivs[16] = -0.25*(sm - t*t*sm); derivs[17] = 0.25*(sm - t*t*sm); derivs[18] = 0.25*(sp - t*t*sp); derivs[19] = -0.25*(sp - t*t*sp); //s-derivatives derivs[20] = -0.125*(rm*tm - 2.0*s*rm*tm - r*rm*tm - t*rm*tm - 2.0*rm*tm); derivs[21] = -0.125*(rp*tm - 2.0*s*rp*tm + r*rp*tm - t*rp*tm - 2.0*rp*tm); derivs[22] = 0.125*(rp*tm + 2.0*s*rp*tm + r*rp*tm - t*rp*tm - 2.0*rp*tm); derivs[23] = 0.125*(rm*tm + 2.0*s*rm*tm - r*rm*tm - t*rm*tm - 2.0*rm*tm); derivs[24] = -0.125*(rm*tp - 2.0*s*rm*tp - r*rm*tp + t*rm*tp - 2.0*rm*tp); derivs[25] = -0.125*(rp*tp - 2.0*s*rp*tp + r*rp*tp + t*rp*tp - 2.0*rp*tp); derivs[26] = 0.125*(rp*tp + 2.0*s*rp*tp + r*rp*tp + t*rp*tp - 2.0*rp*tp); derivs[27] = 0.125*(rm*tp + 2.0*s*rm*tp - r*rm*tp + t*rm*tp - 2.0*rm*tp); derivs[28] = -0.25*(tm - r*r*tm); derivs[29] = -0.5*s*rp*tm; derivs[30] = 0.25*(tm - r*r*tm); derivs[31] = -0.5*s*rm*tm; derivs[32] = -0.25*(tp - r*r*tp); derivs[33] = -0.5*s*rp*tp; derivs[34] = 0.25*(tp - r*r*tp); derivs[35] = -0.5*s*rm*tp; derivs[36] = -0.25*(rm - t*t*rm); derivs[37] = -0.25*(rp - t*t*rp); derivs[38] = 0.25*(rp - t*t*rp); derivs[39] = 0.25*(rm - t*t*rm); //t-derivatives derivs[40] = -0.125*(rm*sm - 2.0*t*rm*sm - r*rm*sm - s*rm*sm - 2.0*rm*sm); derivs[41] = -0.125*(rp*sm - 2.0*t*rp*sm + r*rp*sm - s*rp*sm - 2.0*rp*sm); derivs[42] = -0.125*(rp*sp - 2.0*t*rp*sp + r*rp*sp + s*rp*sp - 2.0*rp*sp); derivs[43] = -0.125*(rm*sp - 2.0*t*rm*sp - r*rm*sp + s*rm*sp - 2.0*rm*sp); derivs[44] = 0.125*(rm*sm + 2.0*t*rm*sm - r*rm*sm - s*rm*sm - 2.0*rm*sm); derivs[45] = 0.125*(rp*sm + 2.0*t*rp*sm + r*rp*sm - s*rp*sm - 2.0*rp*sm); derivs[46] = 0.125*(rp*sp + 2.0*t*rp*sp + r*rp*sp + s*rp*sp - 2.0*rp*sp); derivs[47] = 0.125*(rm*sp + 2.0*t*rm*sp - r*rm*sp + s*rm*sp - 2.0*rm*sp); derivs[48] = -0.25*(sm - r*r*sm); derivs[49] = -0.25*(rp - s*s*rp); derivs[50] = -0.25*(sp - r*r*sp); derivs[51] = -0.25*(rm - s*s*rm); derivs[52] = 0.25*(sm - r*r*sm); derivs[53] = 0.25*(rp - s*s*rp); derivs[54] = 0.25*(sp - r*r*sp); derivs[55] = 0.25*(rm - s*s*rm); derivs[56] = -0.5*t*rm*sm; derivs[57] = -0.5*t*rp*sm; derivs[58] = -0.5*t*rp*sp; derivs[59] = -0.5*t*rm*sp; } //---------------------------------------------------------------------------- static double vtkQHexCellPCoords[60] = {0.0,0.0,0.0, 1.0,0.0,0.0, 1.0,1.0,0.0, 0.0,1.0,0.0, 0.0,0.0,1.0, 1.0,0.0,1.0, 1.0,1.0,1.0, 0.0,1.0,1.0, 0.5,0.0,0.0, 1.0,0.5,0.0, 0.5,1.0,0.0, 0.0,0.5,0.0, 0.5,0.0,1.0, 1.0,0.5,1.0, 0.5,1.0,1.0, 0.0,0.5,1.0, 0.0,0.0,0.5, 1.0,0.0,0.5, 1.0,1.0,0.5, 0.0,1.0,0.5}; double *vtkQuadraticHexahedron::GetParametricCoords() { return vtkQHexCellPCoords; } //---------------------------------------------------------------------------- void vtkQuadraticHexahedron::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Edge:\n"; this->Edge->PrintSelf(os,indent.GetNextIndent()); os << indent << "Face:\n"; this->Face->PrintSelf(os,indent.GetNextIndent()); os << indent << "Hex:\n"; this->Hex->PrintSelf(os,indent.GetNextIndent()); os << indent << "PointData:\n"; this->PointData->PrintSelf(os,indent.GetNextIndent()); os << indent << "CellData:\n"; this->CellData->PrintSelf(os,indent.GetNextIndent()); os << indent << "Scalars:\n"; this->Scalars->PrintSelf(os,indent.GetNextIndent()); }