/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkQuadraticTetra.cxx,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ #include "vtkQuadraticTetra.h" #include "vtkPolyData.h" #include "vtkPointLocator.h" #include "vtkMath.h" #include "vtkQuadraticEdge.h" #include "vtkQuadraticTriangle.h" #include "vtkTetra.h" #include "vtkDoubleArray.h" #include "vtkObjectFactory.h" vtkCxxRevisionMacro(vtkQuadraticTetra, "$Revision: 1.3.8.1 $"); vtkStandardNewMacro(vtkQuadraticTetra); //---------------------------------------------------------------------------- // Construct the tetra with ten points. vtkQuadraticTetra::vtkQuadraticTetra() { this->Edge = vtkQuadraticEdge::New(); this->Face = vtkQuadraticTriangle::New(); this->Tetra = vtkTetra::New(); this->Scalars = vtkDoubleArray::New(); this->Scalars->SetNumberOfTuples(4); this->Points->SetNumberOfPoints(10); this->PointIds->SetNumberOfIds(10); for (int i = 0; i < 10; i++) { this->Points->SetPoint(i, 0.0, 0.0, 0.0); this->PointIds->SetId(i,0); } } //---------------------------------------------------------------------------- vtkQuadraticTetra::~vtkQuadraticTetra() { this->Edge->Delete(); this->Face->Delete(); this->Tetra->Delete(); this->Scalars->Delete(); } //---------------------------------------------------------------------------- //clip each of the four vertices; the remaining octahedron is //divided into four tetrahedron. static int LinearTetras[8][4] = { {0,4,6,7}, {4,1,5,8}, {6,5,2,9}, {7,8,9,3}, {6,4,5,8}, {6,5,9,8}, {6,9,7,8}, {6,7,4,8} }; static int TetraFaces[4][6] = { {0,1,3,4,8,7}, {1,2,3,5,9,8}, {2,0,3,6,7,9}, {0,2,1,6,5,4} }; static int TetraEdges[6][3] = { {0,1,4}, {1,2,5}, {2,0,6}, {0,3,7}, {1,3,8}, {2,3,9} }; //---------------------------------------------------------------------------- vtkCell *vtkQuadraticTetra::GetEdge(int edgeId) { edgeId = (edgeId < 0 ? 0 : (edgeId > 5 ? 5 : edgeId )); // load point id's this->Edge->PointIds->SetId(0,this->PointIds->GetId(TetraEdges[edgeId][0])); this->Edge->PointIds->SetId(1,this->PointIds->GetId(TetraEdges[edgeId][1])); this->Edge->PointIds->SetId(2,this->PointIds->GetId(TetraEdges[edgeId][2])); // load coordinates this->Edge->Points->SetPoint(0,this->Points->GetPoint(TetraEdges[edgeId][0])); this->Edge->Points->SetPoint(1,this->Points->GetPoint(TetraEdges[edgeId][1])); this->Edge->Points->SetPoint(2,this->Points->GetPoint(TetraEdges[edgeId][2])); return this->Edge; } //---------------------------------------------------------------------------- vtkCell *vtkQuadraticTetra::GetFace(int faceId) { faceId = (faceId < 0 ? 0 : (faceId > 3 ? 3 : faceId )); // load point id's and coordinates for (int i=0; i< 6; i++) { this->Face->PointIds->SetId( i,this->PointIds->GetId(TetraFaces[faceId][i])); this->Face->Points->SetPoint( i,this->Points->GetPoint(TetraFaces[faceId][i])); } return this->Face; } //---------------------------------------------------------------------------- static const double VTK_DIVERGED = 1.e6; static const int VTK_TETRA_MAX_ITERATION=10; static const double VTK_TETRA_CONVERGED=1.e-03; int vtkQuadraticTetra::EvaluatePosition(double* x, double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights) { int iteration, converged; double params[3]; double fcol[3], rcol[3], scol[3], tcol[3]; int i, j; double d, pt[3]; double derivs[30]; // set initial position for Newton's method subId = 0; pcoords[0] = pcoords[1] = pcoords[2] = params[0] = params[1] = params[2]=0.25; // enter iteration loop for (iteration=converged=0; !converged && (iteration < VTK_TETRA_MAX_ITERATION); iteration++) { // calculate element interpolation functions and derivatives this->InterpolationFunctions(pcoords, weights); this->InterpolationDerivs(pcoords, derivs); // calculate newton functions for (i=0; i<3; i++) { fcol[i] = rcol[i] = scol[i] = tcol[i] = 0.0; } for (i=0; i<10; i++) { this->Points->GetPoint(i, pt); for (j=0; j<3; j++) { fcol[j] += pt[j] * weights[i]; rcol[j] += pt[j] * derivs[i]; scol[j] += pt[j] * derivs[i+10]; tcol[j] += pt[j] * derivs[i+20]; } } for (i=0; i<3; i++) { fcol[i] -= x[i]; } // compute determinants and generate improvements d=vtkMath::Determinant3x3(rcol,scol,tcol); if ( fabs(d) < 1.e-20) { return -1; } pcoords[0] = params[0] - 0.5*vtkMath::Determinant3x3 (fcol,scol,tcol) / d; pcoords[1] = params[1] - 0.5*vtkMath::Determinant3x3 (rcol,fcol,tcol) / d; pcoords[2] = params[2] - 0.5*vtkMath::Determinant3x3 (rcol,scol,fcol) / d; // check for convergence if ( ((fabs(pcoords[0]-params[0])) < VTK_TETRA_CONVERGED) && ((fabs(pcoords[1]-params[1])) < VTK_TETRA_CONVERGED) && ((fabs(pcoords[2]-params[2])) < VTK_TETRA_CONVERGED) ) { converged = 1; } // Test for bad divergence (S.Hirschberg 11.12.2001) else if ((fabs(pcoords[0]) > VTK_DIVERGED) || (fabs(pcoords[1]) > VTK_DIVERGED) || (fabs(pcoords[2]) > VTK_DIVERGED)) { return -1; } // if not converged, repeat else { params[0] = pcoords[0]; params[1] = pcoords[1]; params[2] = pcoords[2]; } } // if not converged, set the parametric coordinates to arbitrary values // outside of element if ( !converged ) { return -1; } this->InterpolationFunctions(pcoords, weights); if ( pcoords[0] >= -0.001 && pcoords[0] <= 1.001 && pcoords[1] >= -0.001 && pcoords[1] <= 1.001 && pcoords[2] >= -0.001 && pcoords[2] <= 1.001 ) { if (closestPoint) { closestPoint[0] = x[0]; closestPoint[1] = x[1]; closestPoint[2] = x[2]; dist2 = 0.0; //inside tetra } return 1; } else { double pc[3], w[10]; if (closestPoint) { for (i=0; i<3; i++) //only approximate, not really true for warped tetra { if (pcoords[i] < 0.0) { pc[i] = 0.0; } else if (pcoords[i] > 1.0) { pc[i] = 1.0; } else { pc[i] = pcoords[i]; } } this->EvaluateLocation(subId, pc, closestPoint, (double *)w); dist2 = vtkMath::Distance2BetweenPoints(closestPoint,x); } return 0; } } //---------------------------------------------------------------------------- void vtkQuadraticTetra::EvaluateLocation(int& vtkNotUsed(subId), double pcoords[3], double x[3], double *weights) { int i, j; double pt[3]; this->InterpolationFunctions(pcoords, weights); x[0] = x[1] = x[2] = 0.0; for (i=0; i<10; i++) { this->Points->GetPoint(i, pt); for (j=0; j<3; j++) { x[j] += pt[j] * weights[i]; } } } //---------------------------------------------------------------------------- int vtkQuadraticTetra::CellBoundary(int subId, double pcoords[3], vtkIdList *pts) { return this->Tetra->CellBoundary(subId, pcoords, pts); } //---------------------------------------------------------------------------- void vtkQuadraticTetra::Contour(double value, vtkDataArray* cellScalars, vtkPointLocator* locator, vtkCellArray *verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) { for ( int i=0; i < 8; i++) //for each subdivided tetra { for ( int j=0; j<4; j++) //for each of the four vertices of the tetra { this->Tetra->Points->SetPoint(j,this->Points->GetPoint(LinearTetras[i][j])); this->Tetra->PointIds->SetId(j,this->PointIds->GetId(LinearTetras[i][j])); this->Scalars->SetValue(j,cellScalars->GetTuple1(LinearTetras[i][j])); } this->Tetra->Contour(value, this->Scalars, locator, verts, lines, polys, inPd, outPd, inCd, cellId, outCd); } } //---------------------------------------------------------------------------- // Line-line intersection. Intersection has to occur within [0,1] parametric // coordinates and with specified tolerance. int vtkQuadraticTetra::IntersectWithLine(double* p1, double* p2, double tol, double& t, double* x, double* pcoords, int& subId) { int intersection=0; double tTemp; double pc[3], xTemp[3]; int faceNum; t = VTK_DOUBLE_MAX; for (faceNum=0; faceNum<4; faceNum++) { for (int i=0; i<4; i++) { this->Face->Points->SetPoint(i,this->Points->GetPoint(TetraFaces[faceNum][i])); } if ( this->Face->IntersectWithLine(p1, p2, tol, tTemp, xTemp, pc, subId) ) { intersection = 1; if ( tTemp < t ) { t = tTemp; x[0] = xTemp[0]; x[1] = xTemp[1]; x[2] = xTemp[2]; switch (faceNum) { case 0: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = 0.0; break; case 1: pcoords[0] = 0.0; pcoords[1] = pc[1]; pcoords[2] = 0.0; break; case 2: pcoords[0] = pc[0]; pcoords[1] = 0.0; pcoords[2] = 0.0; break; case 3: pcoords[0] = pc[0]; pcoords[1] = pc[1]; pcoords[2] = pc[2]; break; } } } } return intersection; } //---------------------------------------------------------------------------- int vtkQuadraticTetra::Triangulate(int vtkNotUsed(index), vtkIdList *ptIds, vtkPoints *pts) { pts->Reset(); ptIds->Reset(); for ( int i=0; i < 8; i++) { for ( int j=0; j < 4; j++) { ptIds->InsertId(4*i+j,this->PointIds->GetId(LinearTetras[i][j])); pts->InsertPoint(4*i+j,this->Points->GetPoint(LinearTetras[i][j])); } } return 1; } //---------------------------------------------------------------------------- // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. void vtkQuadraticTetra::JacobianInverse(double pcoords[3], double **inverse, double derivs[60]) { int i, j; double *m[3], m0[3], m1[3], m2[3]; double x[3]; // compute interpolation function derivatives this->InterpolationDerivs(pcoords, derivs); // create Jacobian matrix m[0] = m0; m[1] = m1; m[2] = m2; for (i=0; i < 3; i++) //initialize matrix { m0[i] = m1[i] = m2[i] = 0.0; } for ( j=0; j < 10; j++ ) { this->Points->GetPoint(j, x); for ( i=0; i < 3; i++ ) { m0[i] += x[i] * derivs[j]; m1[i] += x[i] * derivs[10 + j]; m2[i] += x[i] * derivs[20 + j]; } } // now find the inverse if ( vtkMath::InvertMatrix(m,inverse,3) == 0 ) { vtkErrorMacro(<<"Jacobian inverse not found"); return; } } //---------------------------------------------------------------------------- void vtkQuadraticTetra::Derivatives(int vtkNotUsed(subId), double pcoords[3], double *values, int dim, double *derivs) { double *jI[3], j0[3], j1[3], j2[3]; double functionDerivs[30], sum[3]; int i, j, k; // compute inverse Jacobian and interpolation function derivatives jI[0] = j0; jI[1] = j1; jI[2] = j2; this->JacobianInverse(pcoords, jI, functionDerivs); // now compute derivates of values provided for (k=0; k < dim; k++) //loop over values per vertex { sum[0] = sum[1] = sum[2] = 0.0; for ( i=0; i < 10; i++) //loop over interp. function derivatives { sum[0] += functionDerivs[i] * values[dim*i + k]; sum[1] += functionDerivs[10 + i] * values[dim*i + k]; sum[2] += functionDerivs[20 + i] * values[dim*i + k]; } for (j=0; j < 3; j++) //loop over derivative directions { derivs[3*k + j] = sum[0]*jI[j][0] + sum[1]*jI[j][1] + sum[2]*jI[j][2]; } } } //---------------------------------------------------------------------------- // Clip this quadratic tetra using the scalar value provided. Like contouring, // except that it cuts the tetra to produce other tetra. void vtkQuadraticTetra::Clip(double value, vtkDataArray* cellScalars, vtkPointLocator* locator, vtkCellArray* tetras, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd, int insideOut) { for ( int i=0; i < 8; i++) //for each subdivided tetra { for ( int j=0; j<4; j++) //for each of the four vertices of the tetra { this->Tetra->Points->SetPoint(j,this->Points->GetPoint(LinearTetras[i][j])); this->Tetra->PointIds->SetId(j,this->PointIds->GetId(LinearTetras[i][j])); this->Scalars->SetValue(j,cellScalars->GetTuple1(LinearTetras[i][j])); } this->Tetra->Clip(value, this->Scalars, locator, tetras, inPd, outPd, inCd, cellId, outCd, insideOut); } } //---------------------------------------------------------------------------- int vtkQuadraticTetra::GetParametricCenter(double pcoords[3]) { pcoords[0] = pcoords[1] = pcoords[2] = 0.25; return 0; } //---------------------------------------------------------------------------- // Compute interpolation functions. First four nodes are the // tetrahedron corner vertices; the others are mid-edge nodes. void vtkQuadraticTetra::InterpolationFunctions(double pcoords[3], double weights[10]) { double r = pcoords[0]; double s = pcoords[1]; double t = pcoords[2]; double u = 1.0 - r - s - t; // corners weights[0] = u*(2.0*u - 1.0); weights[1] = r*(2.0*r - 1.0); weights[2] = s*(2.0*s - 1.0); weights[3] = t*(2.0*t - 1.0); // midedge weights[4] = 4.0 * u * r; weights[5] = 4.0 * r * s; weights[6] = 4.0 * s * u; weights[7] = 4.0 * u * t; weights[8] = 4.0 * r * t; weights[9] = 4.0 * s * t; } //---------------------------------------------------------------------------- // Derivatives in parametric space. void vtkQuadraticTetra::InterpolationDerivs(double pcoords[3], double derivs[30]) { double r = pcoords[0]; double s = pcoords[1]; double t = pcoords[2]; // r-derivatives: dW0/dr to dW9/dr derivs[0] = 4.0*(r + s + t) - 3.0; derivs[1] = 4.0*r - 1.0; derivs[2] = 0.0; derivs[3] = 0.0; derivs[4] = 4.0 - 8.0*r - 4.0*s - 4.0*t; derivs[5] = 4.0*s; derivs[6] = -4.0*s; derivs[7] = -4.0*t; derivs[8] = 4.0*t; derivs[9] = 0.0; // s-derivatives: dW0/ds to dW9/ds derivs[10] = 4.0*(r + s + t) - 3.0; derivs[11] = 0.0; derivs[12] = 4.0*s - 1.0; derivs[13] = 0.0; derivs[14] = -4.0*r; derivs[15] = 4.0*r; derivs[16] = 4.0 - 4.0*r - 8.0*s - 4.0*t; derivs[17] = -4.0*t; derivs[18] = 0.0; derivs[19] = 4.0*t; // t-derivatives: dW0/dt to dW9/dt derivs[20] = 4.0*(r + s + t) - 3.0; derivs[21] = 0.0; derivs[22] = 0.0; derivs[23] = 4.0*t - 1.0; derivs[24] = -4.0*r; derivs[25] = 0.0; derivs[26] = -4.0*s; derivs[27] = 4.0 - 4.0*r - 4.0*s - 8.0*t; derivs[28] = 4.0*r; derivs[29] = 4.0*s; } //---------------------------------------------------------------------------- double vtkQuadraticTetra::GetParametricDistance(double pcoords[3]) { int i; double pDist, pDistMax=0.0; double pc[4]; pc[0] = pcoords[0]; pc[1] = pcoords[1]; pc[2] = pcoords[2]; pc[3] = 1.0 - pcoords[0] - pcoords[1] - pcoords[2]; for (i=0; i<4; i++) { if ( pc[i] < 0.0 ) { pDist = -pc[i]; } else if ( pc[i] > 1.0 ) { pDist = pc[i] - 1.0; } else //inside the cell in the parametric direction { pDist = 0.0; } if ( pDist > pDistMax ) { pDistMax = pDist; } } return pDistMax; } //---------------------------------------------------------------------------- static double vtkQTetraCellPCoords[30] = { 0.0,0.0,0.0, 1.0,0.0,0.0, 0.0,1.0,0.0, 0.0,0.0,1.0, 0.5,0.0,0.0, 0.5,0.5,0.0, 0.0,0.5,0.0, 0.0,0.0,0.5, 0.5,0.0,0.5, 0.0,0.5,0.5}; double *vtkQuadraticTetra::GetParametricCoords() { return vtkQTetraCellPCoords; } //---------------------------------------------------------------------------- void vtkQuadraticTetra::PrintSelf(ostream& os, vtkIndent indent) { this->Superclass::PrintSelf(os,indent); os << indent << "Edge:\n"; this->Edge->PrintSelf(os,indent.GetNextIndent()); os << indent << "Face:\n"; this->Face->PrintSelf(os,indent.GetNextIndent()); os << indent << "Tetra:\n"; this->Tetra->PrintSelf(os,indent.GetNextIndent()); os << indent << "Scalars:\n"; this->Scalars->PrintSelf(os,indent.GetNextIndent()); }