/*========================================================================= Program: Visualization Toolkit Module: $RCSfile: vtkTetra.h,v $ Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen All rights reserved. See Copyright.txt or http://www.kitware.com/Copyright.htm for details. This software is distributed WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the above copyright notice for more information. =========================================================================*/ // .NAME vtkTetra - a 3D cell that represents a tetrahedron // .SECTION Description // vtkTetra is a concrete implementation of vtkCell to represent a 3D // tetrahedron. vtkTetra uses the standard isoparametric shape functions // for a linear tetrahedron. The tetrahedron is defined by the four points // (0-3); where (0,1,2) is the base of the tetrahedron which, using the // right hand rule, forms a triangle whose normal points in the direction // of the fourth point. // .SECTION See Also // vtkConvexPointSet vtkHexahedron vtkPyramid vtkVoxel vtkWedge #ifndef __vtkTetra_h #define __vtkTetra_h #include "vtkCell3D.h" class vtkLine; class vtkTriangle; class vtkUnstructuredGrid; class VTK_FILTERING_EXPORT vtkTetra : public vtkCell3D { public: static vtkTetra *New(); vtkTypeRevisionMacro(vtkTetra,vtkCell3D); void PrintSelf(ostream& os, vtkIndent indent); // Description: // See vtkCell3D API for description of these methods. virtual void GetEdgePoints(int edgeId, int* &pts); virtual void GetFacePoints(int faceId, int* &pts); // Description: // See the vtkCell API for descriptions of these methods. int GetCellType() {return VTK_TETRA;} int GetNumberOfEdges() {return 6;} int GetNumberOfFaces() {return 4;} vtkCell *GetEdge(int edgeId); vtkCell *GetFace(int faceId); void Contour(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd); void Clip(double value, vtkDataArray *cellScalars, vtkPointLocator *locator, vtkCellArray *connectivity, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut); int EvaluatePosition(double x[3], double* closestPoint, int& subId, double pcoords[3], double& dist2, double *weights); void EvaluateLocation(int& subId, double pcoords[3], double x[3], double *weights); int IntersectWithLine(double p1[3], double p2[3], double tol, double& t, double x[3], double pcoords[3], int& subId); int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts); void Derivatives(int subId, double pcoords[3], double *values, int dim, double *derivs); virtual double *GetParametricCoords(); // Description: // Returns the set of points that are on the boundary of the tetrahedron that // are closest parametrically to the point specified. This may include faces, // edges, or vertices. int CellBoundary(int subId, double pcoords[3], vtkIdList *pts); // Description: // Return the center of the tetrahedron in parametric coordinates. int GetParametricCenter(double pcoords[3]); // Description: // Return the distance of the parametric coordinate provided to the // cell. If inside the cell, a distance of zero is returned. double GetParametricDistance(double pcoords[3]); // Description: // Compute the center of the tetrahedron, static void TetraCenter(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]); // Description: // Compute the circumcenter (center[3]) and radius squared (method // return value) of a tetrahedron defined by the four points x1, x2, // x3, and x4. static double Circumsphere(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]); // Description: // Compute the center (center[3]) and radius (method return value) of // a sphere that just fits inside the faces of a tetrahedron defined // by the four points x1, x2, x3, and x4. static double Insphere(double p1[3], double p2[3], double p3[3], double p4[3], double center[3]); // Description: // Given a 3D point x[3], determine the barycentric coordinates of the point. // Barycentric coordinates are a natural coordinate system for simplices that // express a position as a linear combination of the vertices. For a // tetrahedron, there are four barycentric coordinates (because there are // four vertices), and the sum of the coordinates must equal 1. If a // point x is inside a simplex, then all four coordinates will be strictly // positive. If three coordinates are zero (so the fourth =1), then the // point x is on a vertex. If two coordinates are zero, the point x is on an // edge (and so on). In this method, you must specify the vertex coordinates // x1->x4. Returns 0 if tetrahedron is degenerate. static int BarycentricCoords(double x[3], double x1[3], double x2[3], double x3[3], double x4[3], double bcoords[4]); // Description: // Compute the volume of a tetrahedron defined by the four points // p1, p2, p3, and p4. static double ComputeVolume(double p1[3], double p2[3], double p3[3], double p4[3]); // Description: // Given parametric coordinates compute inverse Jacobian transformation // matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation // function derivatives. Returns 0 if no inverse exists. int JacobianInverse(double **inverse, double derivs[12]); // Description: // Tetra specific methods. static void InterpolationFunctions(double pcoords[3], double weights[4]); static void InterpolationDerivs(double derivs[12]); static int *GetEdgeArray(int edgeId); static int *GetFaceArray(int faceId); protected: vtkTetra(); ~vtkTetra(); vtkLine *Line; vtkTriangle *Triangle; private: vtkTetra(const vtkTetra&); // Not implemented. void operator=(const vtkTetra&); // Not implemented. }; inline int vtkTetra::GetParametricCenter(double pcoords[3]) { pcoords[0] = pcoords[1] = pcoords[2] = 0.25; return 0; } #endif